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Abstract. The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is
a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA
focus on how tropical forest conversion, regrowth, and selective logging influence carbon
storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in
the Amazon region. Early results from ecological studies within LBA emphasize the var-
iability within the vast Amazon region and the profound effects that land-use and land-
cover changes are having on that landscape. The predominant land cover of the Amazon
region is evergreen forest; nonetheless, LBA studies have observed strong seasonal patterns
in gross primary production, ecosystem respiration, and net ecosystem exchange, as well
as phenology and tree growth. The seasonal patterns vary spatially and interannually and
evidence suggests that these patterns are driven not only by variations in weather but also
by innate biological rhythms of the forest species. Rapid rates of deforestation have marked
the forests of the Amazon region over the past three decades. Evidence from ground-based
surveys and remote sensing show that substantial areas of forest are being degraded by
logging activities and through the collapse of forest edges. Because forest edges and logged
forests are susceptible to fire, positive feedback cycles of forest degradation may be initiated
by land-use-change events. LBA studies indicate that cleared lands in the Amazon, once
released from cultivation or pasture usage, regenerate biomass rapidly. However, the pace
of biomass accumulation is dependent upon past land use and the depletion of nutrients
by unsustainable land-management practices. The challenge for ongoing research within
LBA is to integrate the recognition of diverse patterns and processes into general models
for prediction of regional ecosystem function.
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INTRODUCTION

The Large-scale Biosphere–Atmosphere Experiment
in Amazonia (LBA) is a multinational, interdisciplin-
ary, research program led by Brazil. LBA is not for-
mally an experiment; instead, it links many researchers
whose goal is to understand how Amazonia functions
as a regional entity in the Earth system. Research within
LBA is guided by the recognition that Amazonia is
changing rapidly through development. Therefore,
LBA researchers seek to understand how changes in
land use and climate will affect the biological, chem-
ical, and physical functions of Amazonia, including the
sustainability of development in the region and the in-
fluence of Amazonia on global climate. LBA scientific
activities cover seven themes: (1) land-use and land-
cover change, (2) physical climate, (3) carbon dynam-
ics, (4) biogeochemistry, (5) atmospheric chemistry,
(6) land-surface hydrology and aquatic chemistry, and
(7) human dimensions.

Studies of the effects of land-use and land-cover
changes on Amazonian ecosystems developed as a re-
sult of a deliberate planning process that engaged both
Brazilian and international scientists. The key question
guiding ecological studies within LBA was defined as:
‘‘How do tropical forest conversion, regrowth, and se-
lective logging influence carbon storage, nutrient dy-
namics, trace gas fluxes, and the prospect for sustain-
able land use in the Amazon region?’’ (Cerri et al.
1995).

‘‘Forest conversion’’ refers to forest clearing and
conversion to agricultural uses, especially cattle pas-
ture, and ‘‘forest regrowth’’ refers to vegetation suc-
cession following the abandonment of agricultural
lands. This question calls for an explicit consideration
of the effects of these land-cover and land-use changes
on terrestrial carbon and nutrient budgets, the fluxes of
trace gases between the land and the atmosphere, and
the exchange of materials between the land and river
systems. Implicitly, the question also calls for an un-
derstanding of these budgets, fluxes, and exchanges in
‘‘primary’’ or predisturbance forest ecosystems. Sci-
entists participating in ecological studies within LBA
have elaborated on this initial question to develop a
set of more detailed questions to guide our research in
four thematic areas, land-use and land-cover change,
carbon dynamics, nutrient dynamics and surface water
chemistry, and trace gas and aerosol fluxes (Box 1).

In this paper, we briefly review the design of the
LBA study with an emphasis on ecological research.
Then we review the results from 22 studies in LBA in
this issue that consider the science themes of physical
climate, carbon dynamics, nutrient dynamics, trace gas
fluxes, and land-use and land-cover change. These
studies either deal with the Amazon region generally
or were conducted at one or more of 13 sites that are
listed in Table 1. Early results from LBA focusing
mainly on physical climate and atmospheric chemistry

have recently been collected in a special issue of the
Journal of Geophysical Research (see Andreae et al.
2002, Avissar and Nobre 2002, Avissar et al. 2002, and
Silva-Dias et al. 2002 for summaries). Recent work on
land-cover and land-use change has been compiled for
a special issue of Remote Sensing of the Environment
(Roberts et al. 2003). The papers collected in this issue
do not cover all current ecological work within LBA.
In this summary paper, we attempt to compare the re-
sults presented in this volume and to place this work
within the context of other recently published studies
within LBA and within the broader scope of tropical
ecosystem studies without attempting an exhaustive re-
view. We conclude by identifying emerging trends and
challenges for future ecological research in LBA.

BIOPHYSICAL AND BIOGEOCHEMICAL

CHARACTERISTICS OF THE AMAZON REGION

The Amazon Basin covers 5.8 3 106 km2 and con-
tains the world’s largest river with a discharge of nearly
6 3 1012 m3/yr (Salati and Vose 1984). The natural land
cover of the Amazon Basin is mainly closed-canopy
tropical forest, although a substantial portion is covered
by savanna, known in Brazil as cerrado. The cerrado
is itself an extensive biome (2 3 106 km2) that lies
mainly outside of the hydrographic basin of the Am-
azon (Oliveira and Marques 2002). Energy and mois-
ture exchanges in the Amazon region play a significant
role in global atmospheric circulation. From 1350 to
1570 mm/yr, equivalent to 63–73% of the annual rain-
fall, evaporates or transpires at the surface (Costa and
Foley 1999, Marengo and Nobre 2001). Models indi-
cate that extensive regional deforestation would lead
to regional declines in precipitation and could have
significant effects on global climate (Nobre et al. 1991,
Marengo and Nobre 2001, Werth and Avissar 2002).
In contrast to regional scale deforestation, deforestation
on a mesoscale (,100 km) may lead to locally in-
creased precipitation (Baidya Roy and Avissar 2002).
This raises the hypothesis that there is a threshold of
deforestation amount and distribution beyond which
precipitation will decline (Avissar et al. 2002).

The Amazon forest vegetation in Brazil alone con-
tains ;7 3 1016 g of carbon (C), which amounts to
between 10% and 15% of global biomass (Houghton
et al. 2001). The biomass density of Amazon forests
is poorly quantified, mainly because of the scarcity of
plot-based data (Houghton et al. 2001, Keller et al.
2001). Forests in the Amazon region are mostly ev-
ergreen and highly productive. Deep rooting allows
Amazon forests to maintain productivity through dry
seasons that extend up to 5–6 mo (Fig. 1) (Nepstad et
al. 1994). The productivity of the forests is sustained
despite the infertility of the highly weathered soils
common to the region (Irion 1978). Although ;70%
of Amazon soils are dystrophic Oxisols and Ultisols,
soils that are more fertile do cover substantial areas
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TABLE 1. A list of LBA study sites highlighted in this special issue. This represents a subset of all LBA study sites.

Site name Nearest city
South

latitude
West

longitude Description

Biological Dynamics of Forest
Fragments Project

Manaus, Amazonas 2.5 60 fragmented mature forest

Cuieras Reserve (C14)† Manaus, Amazonas 2.5892 60.1149 mature forest
Cuieras Reserve (k34)† Manaus, Amazonas 2.6091 60.2093 mature forest
EMBRAPA Cerrados Brasilia, D.F. 15.65 47.75 pasture
Fazenda Cauaxi Paragominas, Pará 3.75 48.3 logged forest
Fazenda Vitoria Paragominas, Pará 2.97 47.41 pastures and secondary forest
Fazenda Maracai† Sinop, Mato Grosso 11.4125 55.325 mature forest
Fazenda Nova Vida Ariquemes, Rondônia 10.14 62.79 pasture
IBGE Reserve Brasilia, D.F. 15.95 47.86 native cerrado
Jarú Biological Reserve† Ji-Paraná, Rondônia 10.078 61.9331 mature forest
SUFRAMA Agricultural District Manaus, Amazonas 2.45 60.05 secondary forests
Tapajós National Forest (km 83)† Santarém, Pará 3.013 54.5815 mature forest (logged in 2001)
Tapajós National Forest (km 67)† Santarém, Pará 2.8567 54.9589 mature forest tower

† Tower sites. These are geolocated with finer spatial resolution.

(Richter and Babbar 1991). Nutrients such as phos-
phorus (P) and base cations (K1, Ca11, and Mg11) are
relatively scarce or only slowly available in most heavi-
ly weathered Amazon soils, whereas, under mature up-
land forests, nitrogen is often abundant. The rapid cy-
cling of nitrogen supports large emissions of the green-
house gas nitrous oxide (N2O). Emissions of N2O from
the forests of the Amazon Basin account for ;0.8–1.3
3 1012 g N/yr, or nearly 10–15%, of the global natural
emissions of that gas (Melillo et al. 2001).

LAND-USE CHANGE AND DEVELOPMENT IN THE

BRAZILIAN AMAZON FORESTS

Over the past three decades, the Amazon region has
been undergoing a burst of development. This devel-
opment takes place on a backdrop of forest that has
recorded the imprint of human habitation and use ex-
tending back 10 000 years (Roosevelt et al. 1996). The
region, particularly the populated river corridors, suf-
fered depopulation following the influx of European
explorers and settlers in the 16th century. The popu-
lation enumerated by censuses in the Amazon region
of Brazil grew from slightly more than 100 000 in 1840
to 1.2 million in 1912 (Weinstein 1983). Regional pop-
ulation then stagnated through 1940 (1.5 million) but
grew exponentially thereafter, reaching nearly 18 mil-
lion by 2000.18 More than 50% of the population is
urban, which is defined as living in towns and cities
with at least 5000 inhabitants (Browder and Godfrey
1997).

Agricultural colonization and development schemes
have a long history in the Amazon, beginning with the
Jesuit missions. The history of recent agricultural ex-
ploitation began during the rubber boom. From 1875
to 1900, settlements were encouraged along a railroad
line from Belém to Bragança in Pará; lands along the
route were cleared to help feed the growing trading
metropolis of Belém (Weinstein 1983). Forest clear-

18 ^http://www.ibge.gov.br&

ance and agricultural development was catalyzed by
the opening of the Belém-Brasilia Highway in the
1960s and accelerated enormously in the 1970s and
1980s with the construction of roads such as the Trans-
Amazon Highway and BR-364 in Rondônia. Rates of
forest clearance have averaged ;20 000 km2/yr during
the past decade (Houghton et al. 2001; see also the
deforestation estimates from Instituto Nacional de Pes-
quisas Espacias [INPE]).19

Recent trends in land use indicate consolidation of
the old frontiers, a new phase of experimentation in
land management, and a heightened level of gover-
nance (Carvalho et al. 2002). Whereas previous de-
velopment depended largely on a mixture of logging,
cattle ranching, and subsistence cropping, current
trends suggest a move toward more intensive manage-
ment including mechanized production of grains, dairy
cattle, and agroforestry products (Carvalho et al. 2002).
Logging continues to expand and most logging might
still be considered predatory or timber mining where
valuable species are removed and little or no attention
is paid to future timber production. Canopy opening is
one effect of logging that leaves normally nonflam-
mable forests susceptible to fire (Nepstad et al. 1999).
The potential for fire to spread from deforested areas
into fragmented forests represents a threat to long-term
ecosystem health and sustainability (Cochrane et al.
1999, Nepstad et al. 1999, Cochrane and Laurance
2002).

LBA STUDY DESIGN

Design and planning of LBA began in 1993 (Kirch-
hoff 1994, Wickland 1994, Wofsy et al. 1994, Avissar
and Nobre 2002). LBA science and the selection of
LBA study sites reflect the history of Brazilian-led re-
search in the Amazon region. LBA owes a debt to the
Anglo-Brazilian Climatic Observation Study (ABRA-

19 ^http://sputnik.dpi.inpe.br:1910/col/dpi.inpe.br/vagner/
2000/05.18.16.34/doc/index.html&
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BOX 1. Questions for Ecological Research within LBA

Land-use and -cover change

1) What are the rates and mechanisms of forest conversion to agricultural land uses, and what is the
relative importance of these land uses?

2) At what rate are converted lands abandoned to secondary forests; what is the fate of these converted
lands, and what are the overall dynamic patterns of land conversion and abandonment?

3) What is the area of forest that is affected by selective logging each year? How does the intensity of
selective logging influence forest ecosystem function, thus altering forest regrowth and flammability?

4) What are plausible scenarios for future land-cover change in Amazônia?

Carbon dynamics

1) What is the (climatically driven) seasonal and interannual variability of the CO2 flux between the
atmosphere and different land-cover/land-use types?

2) How do biological processes such as mortality and recruitment or succession following land-use
change influence the net annual C balance for different land-cover/land-use types?

3) What are the relative contributions of fluxes from natural and disturbed ecosystems to the net Ama-
zonia-wide flux? This question can be approached through a number of subsidiary questions:
a) How do pools and fluxes of C and nutrients (in soils) of pasture/cropland change over time and

what factors determine C gain or loss?
b) How does selective logging change the storage and cycling of C in forests?
c) What factors (biologically mediated, land-use history, soil properties, etc.) control the rate of C

sequestration in biomass and soils of regrowing forest?
d) What portion of the Amazonia-wide C flux is from fire? How do ecosystems recover from fire?

What are the relations between land management and fire occurrence/frequency?

Nutrient dynamics and surface water chemistry

1) How do stocks, cycling rates, and budgets of carbon and important elements N, P, K, Ca, Mg, and
Al change under different land covers and land uses?

2) Are nutrients major factors that control the rates of regrowth and carbon accumulation in abandoned
pastures and regrowing secondary forests?

3) What are the processes and consequences of atmospheric horizontal transport of nutrients (wind) on
the nutrient stocks and cycles of ecosystems within the Amazon basin at various spatial and temporal
scales? (For example, Saharan dust inputs, losses and redistribution due to fire, and links between
physical climate models and nutrient cycling.)

4) How do changes in land use and climate alter the stocks, processes, and fluxes of dissolved and
particulate organic matter, nutrients, and trace gases from the uplands across the riparian zones and
floodplains and down the channels of river corridors?
a) How will the composition and quantity of nutrients and organic matter entering and being processed

within streams be altered under different land-use change scenarios?
b) Are there unique signatures that can be traced downstream?
c) To what extent do intact riparian zones buffer streams against changes due to anthropogenic

activities in surrounding uplands?
5) What is the importance of periodically wet environments (from moist soils to standing and flowing

waters) for the land and atmospheric balances of nutrients, CO2, trace gases, and water and energy
on multiple scales?

Trace gas and aerosol flux

1) How are fluxes of trace gases and aerosols between ecosystems (both upland and wetland) and the
atmosphere of Amazonia affected by land-cover and land-use change?

2) What is the (climatically driven) seasonal and interannual variability of trace gas and aerosol fluxes
between the atmosphere and different land-use/land-cover types?

3) Are losses and gains of carbon from Amazonian ecosystems in forms other than CO2 (e.g., CO, CH4,
VOC, organic aerosol) of sufficient magnitude to influence ecosystem carbon balance?
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FIG. 1. Mean number of months with less than 100 mm rainfall based on a compilation by C. J. Wilmott and S. R.
Webber. The LBA transects are shown along with research sites mentioned in this issue (BSB, IBGE Reserve, Brasilia; SIN,
Fazenda Maracai, Sinop, Mato Grosso; JIP, Jarú Biological Reserve, Ji-Paraná, Rondônia; MAO, Cueiras Reserve Manaus,
Amazonas; STM, Tapajós National Forest, Santarém, Pará).
Data were provided courtesy of LBA-HYDRONET, ^http://eos-webster.sr.unh.edu/&.

COS) (Gash et al. 1996) and the Amazon Boundary
Layer Experiments (ABLE) sponsored by INPE and
NASA (Harriss et al. 1988, 1990) in the 1980s and
early 1990s. Planning for ecological studies within
LBA was summarized in the Manaus Workshop Report
led by Carlos Cerri and Jerry Melillo (Cerri et al. 1995).
This report established a design including two transects
to incorporate the main climatic variability within the
Amazon region, especially total rainfall and dry season
length (Fig. 1). The northern transect traverses more
highly weathered and dystrophic soils compared to the
southern transect. The two transects both cover a range
in the extent, intensity, and character of land-use
change.

Study-site selection was guided by the transect de-
sign. Prince and Steininger (1999) suggested a bio-
physical classification of the Amazon region to further
guide the observational strategy. Practical consider-
ations, especially site logistics and research history,
also strongly influenced the selection of LBA study
sites. For example, the long-term studies supported by
Brazil’s National Institute for Amazon Research
(INPA), in the vicinity of Manaus, made that area a
leading candidate for study. Specific opportunities to
study land-use changes also influenced site selection.
The presence of the only logging concession in the
Amazon region managed by the Brazilian government
in the Tapajós National Forest outside of Santarém led

to the inclusion of sites there for the study of selective
logging.

PHYSICAL CLIMATE

LBA studies of physical climate extend from the
global and continental scale to the microscale. The
same range of scales is represented in this issue. Gon-
calves de Goncalves et al. (2004) discuss the impor-
tance of incorporating land-cover heterogeneity in
weather prediction models for South America. Da Ro-
cha et al. (2004) and Quesada et al. (2004) quantify
water and energy budgets for a forested and a savanna
site, respectively. The difference in the water budgets
between the campo sujo savanna at the IBGE Reserve
and the dense forest at the Tapajós National Forest are
impressive. Dry season evapotranspiration in the sa-
vanna averaged 1.6 mm/d vs. 4.0 mm/d for the forest.
Both ecosystems depend upon deep rooting to sustain
evapotranspiration during the dry season. Da Rocha et
al. (2004) also observed that hydraulic lift and/or cap-
illary flow redistributed 0.3 mm/d of water to the top
60 cm of soil under the forest during the dry season.
At Tapajós, the forest showed no signs of drought
stress, allowing uniformly high carbon uptake through-
out the dry season (July to December 2000) (da Rocha
et al. 2004, Goulden et al. 2004). During the wet sea-
son, cloudiness greatly reduced incoming solar radia-
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tion in the forest. Wet season evapotranspiration av-
eraged only 3.2 mm/d.

CARBON DYNAMICS

Amazon forests are mainly evergreen, but results
published in this special issue emphasize the seasonal
variation of carbon fluxes from these forests. Patterns
of seasonal variability are apparent in measurements
of parts of the forest such as stem growth (Rice et al.
2004), litter fall (Goulden et al. 2004), and soil–at-
mosphere carbon dioxide flux (Chambers et al. 2004,
Goulden et al. 2004). The seasonality of litterfall in
evergreen Amazon forests is a well-known phenome-
non (e.g., Luizão 1989) and litterfall generally peaks
during the dry season. Leaf shedding may represent an
adaptation to water stress, but the common pattern of
dry season flushing of new leaves also suggests that
leaf phenology has been strongly influenced by natural
selection factors to avoid herbivory and nutrient leach-
ing (Sarmiento et al. 1985, van Schaik et al. 1993).
Innate seasonal rhythms may also account for the pulse
of stem growth observed prior to the initiation of the
wet season in Tapajós National Forest in 2001 (Goulden
et al. 2004).

Soil atmosphere fluxes of carbon dioxide were highly
seasonal although contrasting patterns were observed
near Santarém and Manaus. Whereas Goulden et al.
(2004) found that low moisture content in litter and
soil constrained soil respiration in the Tapajós National
Forest during the dry season, Chambers et al. (2004)
found that excess moisture appeared to inhibit soil res-
piration in the Cueiras Reserve during the wet season.
Differences in rainfall at the two sites (see Fig. 1) in-
fluence the pattern of litter and soil moisture. The re-
gion of Manaus tends to have shorter and less intense
droughts. In addition, soil physical properties may ex-
plain the observed differences. For example, the Ta-
pajós site is flat and well drained and the Cueiras site
contains rolling topography with poorly drained valleys
where soils are saturated during the wet season.

Whole-system eddy covariance measurements of net
ecosystem exchange (NEE) are also distinctly seasonal
(Goulden et al. 2004, Vourlitis et al. 2004). The first
eddy covariance study in the Amazon region that in-
cluded both wet season and dry season measurements
noted differences in the NEE between the seasons
(Grace et al. 1995). Working in the Jarú Biological
Reserve near Ji-Paraná, Rondônia, Grace et al. (1995)
measured NEE of 20.09 mol C·m22·d21 during 11 d in
the dry season and 20.05 mol C·m22·d21 during 44 d
in the wet season.

Contrasting patterns of NEE, ecosystem respiration
(Reco), and gross primary production (GPP) have been
observed in different sites (Fig. 2). Most of these data
cover only one year of measurements and so unob-
served interannual variation may be as important as
spatial variation for differences among the seasonal

patterns. Nonetheless, these patterns raise some inter-
esting questions. In two sites, Jarú Reserve and Fa-
zenda Maracai, Mato Grosso, net carbon uptake (neg-
ative NEE) clearly occurred during the rainy season.
At the Cueiras Reserve, NEE was nearly constant
across the year while, in the Tapajós National Forest,
NEE was most negative during the dry season. The
latter pattern appears to be driven by the strong de-
crease in Reco during the dry season at the Tapajós Na-
tional Forest without a comparable decrease in GPP.
Goulden et al. (2004) found that the vegetation did not
show evidence of drought stress during the dry season.

In contrast to the Tapajós National Forest, the Cueir-
as Reserve, the Jarú Reserve and the Fazenda Maracai
displayed greater GPP during the wet season as com-
pared to the dry season. What controls seasonal dif-
ferences in GPP across sites? The effect of the length
of drought intervals as well as the degree of cloud cover
remain to be investigated. Access to deep soil water or
the efficiency of deep water extraction may vary across
sites. Additionally, innate phenological controls may
play an important role in the regulation of seasonal
carbon uptake.

NEE is a relatively small quantity that represents the
difference between two large quantities, GPP and Reco.
As the difference between large numbers and variable
processes, NEE is difficult to measure and model ac-
curately. The errors and biases related to the calculation
of annual sums of NEE from eddy covariance data is
a focus of two papers in this issue, Kruijt et al. (2004)
and Miller et al. (2004). As noted previously by Araújo
et al. (2002), both Kruijt et al. and Miller et al. conclude
that interpretation of nocturnal fluxes is the largest sin-
gle source of error for sites with strong nocturnal sta-
bility, a typical situation in tropical moist forests. Not
all LBA sites appear to suffer equally from this prob-
lem. For example, Kruijt et al. present data from the
Jarú Reserve that show no relation between measured
nocturnal NEE and u*, a measure of turbulence.

Difficulties in analyzing NEE from tropical forest
sites reinforce the need to use complementary methods
to constrain biological fluxes. As Kruijt et al. (2004)
point out, biometric methods and eddy covariance
methods provide independent approaches to measure-
ments of NEE. Chambers et al. (2004), Rice et al.
(2004), and Miller et al. (2004) make biometric mea-
surements that can be compared to eddy covariance
results. Rice et al. and Miller et al. measured above-
ground biomass changes and concluded that stands
studied at the Tapajós National Forest are either rough-
ly in carbon balance or losing a moderate amount of
carbon annually. Miller et al. found that these mea-
surements of change in aboveground biomass were
consistent with their own measurements of NEE using
eddy covariance techniques. Chambers et al. made ex-
tensive measurements of four components of ecosys-
tem respiration (leaf, stem, CWD, and soil) and scaled
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FIG. 2. Seasonal patterns of ecosystem–atmosphere carbon exchange from four forested LBA eddy covariance tower sites.
Monthly net ecosystem exchange (NEE; solid line, filled circles) is shown using the atmospheric sign convention so that
negative fluxes indicate ecosystem uptake of carbon from the atmosphere. Monthly gross primary production (GPP; dashed
line, filled triangles) and monthly Reco (dotted line, open circles) are shown as positive values. Total monthly precipitation
is shown by gray bars (right-hand axes). Values for NEE, GPP, and Reco for the Cueiras Reserve (k34), Jarú Biological
Reserve, and Tapajós National Forest (kilometer 83) are based on data for which no u* filter has been applied. Application
of a u* filter may cause absolute values to shift (see Miller et al. 2004, Kruijt et al. 2004) although seasonal patterns should
be preserved. Estimates from Fazenda Maracai are based on a composite of three years of data and a simple model (Vourlitis
et al. 2004). Data for Santarém are from Goulden et al. (2004), and data from the Reserva Jarú and Manaus are from Kruijt
et al. (2004).

these measurements to annual values. They concluded
that biometric and nocturnal eddy covariance results
for sustained high turbulence conditions were indistin-
guishable within the errors of the methods. A challenge
in both eddy covariance and biometric studies is to
analyze and minimize those errors.

Biometric studies provide insights into controlling
mechanisms that complement mechanistic inferences
available from eddy covariance studies. For example,
Chambers et al. (2004) conclude that the tropical moist
forest at the Cueiras reserve has a low carbon-use ef-
ficiency (the ratio of NPP to GPP) compared to tem-
perate forests but similar to other tropical forests. Rice
et al. (2004) found that stand structure and the abun-
dance of coarse woody debris (CWD) at their site in
the Tapajós National Forest indicates that it suffered a
recent disturbance that they attribute to severe ENSO
related drought in the 1990s. The respiration fluxes
from CWD are surprisingly large. Understanding this
carbon pool and its site to site variation will be critical
to accurate estimation of NEE. The CWD pool at the

kilometer 67, Tapajós National Forest Site (4.8 3 107

g C/ha), is two to four times greater than the standing
stock of CWD measured in forests near Manaus (Cham-
bers et al. 2000, Nascimento and Laurance 2004). Sim-
ilarly, estimates of the annual CWD respiration are 5.7
3 106 g C·ha21·yr21 for the kilometer 67 site at Tapajós
and a maximum of 1.8 3 106 g C·ha21·yr21 for forest
outside Manaus (Chambers et al. 2000, Rice et al.
2004).

Analysis of NEE from eddy covariance data span-
ning at least one year of measurements from Fazenda
Maracai, the Tapajós National Forest, and the Cueiras
Reserve (k34), as well as biometric data from the Ta-
pajós National Forest, indicate that forest NEEs were
relatively small 0 6 2 Mg C·ha21·yr21 (mean 6 1 SE;
SE 5 standard error of the mean; Araújo et al. 2002,
Miller et al. 2004, Rice et al. 2004, Vourlitis et al.
2004). Araújo et al. (2002) found a slightly greater
uptake for the C14 tower in the Cueiras reserve even
after filling nighttime fluxes for u* , 0.2 m/s. Inter-
estingly, net fluxes of magnitude of only 1 3 106 g
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C·ha21·yr21 extrapolated over with the large extent of
old-growth forest in the Amazon Basin (;5 3 106 km2)
lead to globally significant amounts of carbon (0.5 3
1015 g C/yr). Because of the locations of observing
stations, even large fluxes are currently below the res-
olution of global atmospheric inversion models for the
Amazon region (Rayner et al. 1999, Bousquet et al.
2000, Gurney et al. 2002) but not below the threshold
for measurement using regional airborne sampling. Us-
ing a budget method, a reanalysis of CO2 concentration
data from the 1987 ABLE 2B flights showed that the
central Amazon region had a near zero carbon flux
(20.03 6 0.2 mmol·m22·s21; mean 6 1 SE) during the
wet season (Chou et al. 2002).

The accuracy of global atmospheric transport model
inversions could be greatly improved if high precision
CO2 concentration data from the Amazon region were
to become available (Rayner et al. 1999). Weekly sam-
pling of tropospheric air to 3 km is planned for coastal
and interior sites in LBA. Even so, interpretation of
the net fluxes derived from these models will remain
ambiguous until we accurately quantify both the sea-
sonality of biological exchanges and the magnitude of
emissions caused by extensive annual burning (Lan-
genfelds et al. 2002, Potter et al. 2002, Alencar et al.
2004).

NUTRIENT DYNAMICS

Efficient nutrient conservation mechanisms allow
mature tropical forests to thrive even on dystrophic,
acid soils. Base cations (e.g., K1, Ca11, and Mg11) and
phosphorus (P) are tightly cycled in tropical forests and
thus they often are considered limiting factors for forest
productivity (Vitousek and Sanford 1986). In this issue,
Markewitz et al. (2004) confirmed prior studies show-
ing significant losses of carbon (C), nitrogen (N), and
P from cleared and burned sites (McGrath et al. 2001).
Markewitz et al. showed through a budget analysis that
base cations derived from forest clearing and burning
are tightly retained in the surface soils of ‘‘secondary
lands’’ (secondary forest, degraded pasture, and active
pasture) at their Fazenda Vitoria study site after more
than 20 yr following the land-clearing fires. It is gen-
erally accepted that C and N are lost from the ecosystem
to the atmosphere during such fires and through sub-
sequent mineralization of organic matter. Unlike C and
N, P does not have a long-lived volatile phase in the
atmosphere (Schlesinger 1997). The selective loss of
P as opposed to other nonvolatile elements, such as K,
Ca, and Mg, remains unexplained.

Conversion of forest to pasture was the most com-
mon land-use change in the exploitation of the Amazon
region during the 1970s and 1980s. Pasture is still the
most common land use in deforested areas although
considerable areas of pasture have been abandoned to
secondary vegetation (Schneider et al. 2002, Alves et
al. 2003). The intensity of prior land use, the distance

to seed sources, and the presence or absence of fire are
all important factors regulating the pace of secondary
succession in abandoned pastures (Uhl et al. 1982, Nep-
stad et al. 1996). In this issue, Davidson et al. (2004),
Feldpausch et al. (2004), and Markewitz et al. (2004)
each argue that the scarcity of key nutrients may limit
the pace of secondary succession. Davidson et al. con-
ducted a fertilization experiment in a 6-yr-old second-
ary forest at Fazenda Vitoria. They found that additions
of N, or N together with P, increased the rate of above-
ground biomass increment by woody vegetation. In
contrast, additions of P only favored the growth of
herbs and grasses. Davidson et al. concluded that forest
biomass increment was limited by N at their site. Mar-
kewitz et al., who also worked at Fazenda Vitoria, came
to a similar conclusion by inference from the relative
rates of accumulation of N and P. The secondary forest
they studied had only accumulated 33.5 3 106 g C/ha
above ground over 19 yr (accumulation rate of ;1.8
3 106 g C·ha21·yr21). In contrast, working in secondary
forests growing on land formerly covered by pastures
in the SUFRAMA Agricultural District north of Ma-
naus, Feldpausch et al. observed an aboveground bio-
mass accumulation rate of 5.5 3 106 g C·ha21·yr21 for
a chronosequence of secondary forests (up to 14 yr
old) developed on abandoned pastures. They found that
surface soil to 45 cm depth was accruing N and while
being depleted of extractable (Mehlich I) P. They con-
cluded that it was likely that P or possibly Ca might
limit growth and that these nutrients were actively ex-
tracted from the subsoil towards the surface layers.

Rates of biomass accumulation in secondary forests
are highly variable and models that successfully cap-
ture regional behavior of secondary forest regrowth are
based on soil texture (a proxy for water and nutrient
availability) and growing season limitations (wet vs.
dry months; Johnson et al. 2000). But, there are other
important sources of variability. Fig. 3 shows the range
of carbon-to-nutrient ratios encountered in two studies
in this issue. It is not surprising that differences in
nutrient availability appear to influence the rate of suc-
cession. Factors affecting nutrient stocks include the
history of land use and management, particularly the
use of fire, a practice that impoverishes system N
stocks. As shown by Davidson et al. 2004, secondary
succession on pastures that have been repeatedly
burned can be nitrogen limited. Secondary vegetation
on pastures that were grazed heavily and burned fre-
quently may accumulate biomass more slowly com-
pared to vegetation in areas that suffered a less inten-
sive use. Therefore, future models of secondary forest
regrowth should consider prior land management, es-
pecially the frequency of fire, in order to accurately
predict biomass accumulation.

The importance of fire as a control of biogeochemical
dynamics in Amazon ecosystems is difficult to over-
state. The Brazilian cerrado (savanna) is highly diverse
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FIG. 3. Carbon-to-nutrient ratios in above-
ground biomass for a mature forest and a 19-
yr-old secondary forest at Fazenda Vitoria
(Markewitz et al. 2004) and 14- and 8-yr-old
secondary forests in the SUFRAMA Agricul-
tural District (Feldpausch et al. 2004). Note that
ratios for P and Mg have been multiplied by
0.1.

(Eiten 1972) and currently undergoing far greater rel-
ative rates of land-use change than the forests of the
Amazon (Nepstad et al. 1997, Klink and Moreira 2002).
The cerrado receives annual rainfall from ;1 to 2
m/yr, of which 90% falls in the ;6-mo rainy season.
The cerrado is marked by a strong dry season, and fire
is frequent. The return time for fire in the cerrado is
2–40 yr while it appears to be hundreds of years or
more in the Amazon forests (Sanford et al. 1985, Cou-
tinho 1990, Vicentini 1999). Analysis of 15N:14N ratios
in cerrado vegetation shows that this vegetation shares
wide ranges in these ratios characteristic of N-limited
ecosystems. Additionally, 15N contents reflected fire
frequency even among different vegetation formations
within the cerrado (Bustamante et al. 2004) with the
most fire-prone and nitrogen-poor systems showing the
greatest enrichment in 15N. As predicted by Schimel et
al. (1996), frequent fire causes chronic N limitation in
dry tropical ecosystems so that they produce less car-
bon for the same amount of water vs. systems not dom-
inated by fire.

TRACE GAS FLUXES

Estimation of trace gas fluxes from the Amazon eco-
systems to the atmosphere for both long- and short-
lived trace gases is an essential component of LBA.
This issue includes four examples of studies of gas
fluxes for both long-lived radiatively important gases
such as nitrous oxide (N2O), methane (CH4), and carbon
dioxide (CO2) (Davidson et al. 2004, Garcia-Montiel
et al. 2004, Guild et al. 2004, Varella et al. 2004) or
medium and short-lived gases such as carbon monoxide
(CO) (Guild et al. 2004), nitric oxide (NO) (Davidson
et al. 2004, Varella et al. 2004), and volatile organic
compounds (Guild et al. 2004, Rottenberger et al.
2004).

Garcia-Montiel et al. (2004) present a new approach
for regional estimation of N2O emissions based on field
investigations in Rondônia. In their analysis, soil N2O

emission is scaled linearly to the soil emission of CO2;
the latter is estimated based upon the TEM model
(McGuire et al. 1992). This approach parallels a pre-
vious effort by Garcia-Montiel and her colleagues
(Melillo et al. 2001) whereby regional N2O emission
was estimated from modeled N-mineralization using
TEM.

Tropical forests release substantial quantities of vol-
atile organic compounds (VOCs) to the atmosphere
(Guenther et al. 1995). VOCs regulate the production
and destruction of atmospheric oxidants and may be
important to the ecosystem carbon balance (Crutzen et
al. 1999). However, as Rottenberger et al. (2004) found
in their study of small-chain aldehydes, vegetation can
be a sink as well as a source of VOC. A full accounting
of the influence of VOC on ecosystem carbon budgets
must consider both sources and sinks for these com-
pounds and the reaction products of VOC including
atmospheric particulates.

Guild et al. (2004) quantified the emission of carbon
compounds (CO2, CO, CH4, and several VOCs) from
fires in a 94 000-ha area surrounding Jamari, Rondônia
for the period 1984–1992. For estimation of burned
area, they used a novel approach linking fire to land
use rather than mapping active fires or fire scars. While
they found that the initial forest clearing fires emitted
the majority of the CO and CH4, frequent pasture burn-
ing (0.3–0.5/y) could account for 15 to 20% of the CO
emissions and 11 to 15% of the CH4 emissions by fire
from the study region. Frequent pasture burning is an
important source of carbon trace gases.

LAND-USE AND LAND-COVER CHANGE

Current trends in land use in the Amazon region have
caused significant fragmentation of the forest (Skole
and Tucker 1993). Increasing fragmentation leads to
an increasing length of forest edge and area of edge
habitat. Living on the edge, whether for people or for
trees, has its drawbacks. Nascimento and Laurance
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(2004) quantify the biomass and necromass in forest
edges and interior forests. They found that large tree
mortality was accelerated in edge habitats compared to
forest interiors.

As noted in the sections on nutrients and trace gases,
land-use change has significant effects on biogeochem-
ical cycles. Bernardes et al. (2004) showed that con-
version of forest to pasture in Rondônia changes the
quality of organic matter in rivers of the Ji-Paraná River
Basin. Understanding the organic signals in rivers of-
fers the prospect of tracing the signal of deforestation
from low order streams through to larger river systems.

The acceleration of fire risk on the Amazon land-
scape has the potential to greatly alter ecosystem struc-
ture and function (Cochrane et al. 1999, Nepstad et al.
1999). Cochrane and Laurance (2002) recently dem-
onstrated that fire risk is greatest within 2–3 km of
existing forest edges. However, distance to the forest
edge is not always a strong predictor of fire vulnera-
bility. Alencar et al. (2004) demonstrated that the prob-
ability of fire in the region of Paragominas, Pará was
related to forest degradation, settlement patterns, in-
frastructure, and economic activities such as charcoal
manufacture. Their work showed radically greater
probabilities of fire in El Niño vs. non-El Niño years.
Forest degradation through logging or fire strongly pre-
dicted fire occurrence. Alencar et al. (2004) supple-
mented remote sensing interpretation with six months
of field interviews to classify degraded forest. New
approaches, such as the automated Monte-Carlo un-
mixing developed by Asner et al. (2004) used with
Landsat 7 imagery show great promise for quantitative
measurement of forest degradation. Combining their
remote sensing techniques with a large-scale, detailed
set of field studies, Asner et al. precisely measured
canopy opening using remote sensing data for forests
that were recently logged and forests recovering from
logging. This measurement is valuable because canopy
opening is associated with increased fuel loads in log-
ging gaps and altered microclimates that make the for-
ests more susceptible to fire. Measurements of forest
degradation therefore can be used to predict future fire
susceptibility (Alencar et al. 2004).

Fig. 4 highlights two important findings using Land-
sat and field observations during LBA. On the left, the
Alencar et al. (2004) multitemporal analysis of Landsat
fire areas in the eastern Amazon revealed a complex
mosaic of fire patches spanning several years and land-
cover types. Fire occurs in a spatially explicit patch-
work driven by land use, and a single-year fire analysis
does not depict the fire dynamics of a region. Distinct
areas burned in different years while others burned
multiple times. To the right side of Fig. 4, the technique
presented by Asner et al. (2004) was applied to the
same region, revealing a great deal of spatial variability
in the proportions of three biophysical surface con-
stituents, photosynthetic vegetation (PV), nonphoto-

synthetic vegetation (NPV), and bare soil in this region.
Fire and postfire recovery processes generate complex
mosaics of surface properties. Understanding the var-
iability of surface properties bears on our ability to
simulate the environmental impacts of land use and fire
on regional carbon and nutrient cycles.

LBA research is contributing to understanding the
processes governing land use and land cover change
and to predicting the future course of land management
in the Amazon. This is a tremendously complex task.
Walker et al. (2004) consider the case of agricultural
colonists. They present a theoretical model of house-
hold economy wherein smallholder families maximize
utility (as opposed to profits) constrained by the pro-
ductivity of the resource base and the availability of
family labor. While Walker and colleagues have not
implemented the full model, they produced a convinc-
ing simulation of the spatial pattern of clearing based
on control variables for the farming rotation period and
the deforestation event magnitude.

FUTURE CHALLENGES FOR ECOLOGICAL STUDIES

IN LBA

Studies in LBA are advancing our understanding of
the functions of managed and unmanaged ecosystems
in the Amazon. The overall challenge for ecological
research in LBA is the unification of the results of site-
based studies into a regional synthetic framework. Bet-
ter understanding of the region will require further em-
phasis on wetland areas to complement ongoing studies
of the uplands. Results presented in this issue raise
many questions and indicate some directions forward.

While most of the Amazon region is covered by ev-
ergreen forest, strong seasonality in rainfall leaves its
imprint on the cycling of carbon and nutrients, the flux-
es of trace gases, and the patterns of land management.
Understanding how seasonal patterns are driven by var-
iations in weather as well as by innate seasonal rhythms
will be critical for development of reliable models of
ecosystem function.

Development in the Amazon region has been accom-
panied by increasing forest fragmentation and poorly
managed logging activities. Both fragmentation and
logging increase the likelihood of fire escaping from
managed systems into forest, especially during dry
years often associated with El Niño. Fire may represent
the single greatest threat to the forest ecosystem, yet
the extent of burned forest in the region is poorly quan-
tified, and the conditions leading to forest fires are only
beginning to be understood. The spatial extent and
magnitude of forest degradation in the Amazon region
has not been comprehensively quantified. Nonetheless,
the combined use of newly developed remote sensing
techniques coupled with intensive ground studies
shows great promise for quantifying forest degradation
and recovery over vast areas.
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FIG. 4. Two interpretations of the same landscape around Paragominas, Pará. The left-hand diagram shows cleared areas,
burned forest, and unburned forest based on interpretation of multitemporal Landsat images, interviews with land managers,
and field visits (Alencar et al. 2004) while the right-hand image is an automated product of the Auto-MCU algorithm described
by Asner et al. (2004) for a Landsat 7 ETM1 image from 2001. The black areas on the upper part of this image are clouds.

While recent development activities have led to ex-
tensive changes across the Amazon landscape, the eco-
systems of the region, or at least their component spe-
cies, show an ability to react to change. Secondary
forest succession now covers extensive areas and sec-
ondary forests can rapidly achieve certain functions of
primary forest such as the recycling of water in evapo-
transpiration (Brown and Lugo 1990, Nepstad et al.
1995, Hölscher 1997, Sommer 2002). On the other
hand, the vigor of secondary succession may be limited
by the shortage of plant available nutrients left behind
as a legacy of past land-use practices such as over-
grazing and repeated burning.

Geologists and other natural scientists depend on the
uniformitarian principle of James Hutton that the pre-
sent is the key to the past. Can ecologists and social
scientists depend on the present and past as keys to the
future of the Amazon? Frontier expansion in the Am-
azon region is confronting the modern world of instant
communication and globalization. The population of
the Amazon is urbanized and the economy no longer
depends strictly on a mixture of extractive industries,
extensive ranching, and subsistence agriculture. Will

future land cover and land use continue to follow past
patterns or will the future development of the Amazon
region follow a different, and perhaps more sustainable,
path? The answer to that question depends on choices
made by the people of the Amazon region countries
and the governments that they elect. We believe that
LBA will offer new knowledge to decision makers to
allow them to plan for a more sustainable future.
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