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ABSTRACT

A simple and easily implemented method is developed to keep the vertical velocity equal to zero at the
bottom and top of hydrostatic incompressible numerical models. The pressure is computed at the top by correcting
its value given in the previous time step so that the vertical integral of the horizontal divergence is zero at each
column. Numerical experiments that exhibit small time variations of pressure at the top are able to simplify
the algorithm and save computer time. Numerical simulations illustrate the method effectiveness for a horizontal

deformation-induced frontogenesis.

1. Introduction

Several problems in fluid dynamics require solutions
that describe the flow bounded by two rigid lids. In
meteorology, many numerical experiments have been
designed 1o maintain vertical velocity zero or nearly
zero at the top, attempting to include one tropopause
feature without its explicit simulation (Perkey and
Kreitzberg 1977; Ballentine 1982; Ross and Orlanski
1982). The control of the vertical velocity at the top
usually demands an extra equation for the pressure,
which depends on the approach and vertical coordinate
adopted, in addition to the primitive equations.

Over complex topography, a normalized terrain-fol-
lowing coordinate has been preferred. Anthes and
Warner (1978) describe a hydrostatic numerical model
using g~ p coordinate. In this coordinate the compress-
ible continuity equation takes the form of that for in-
compressible fluids. The surface pressure tendency is
derived to satisfy w = dp/dt = 0 at the top and bottom,
and the hydrostatic equation determines the pressure
profile from the density. Although the numerical pro-
cedure is simple and satisfies the requirement w = 0 at
both boundaries, the upper lid is not rigid.

A type of o~z coordinate (time independent) is pro-
posed by Ballentine ( 1982) in a hydrostatic compress-

* Current affiliation: Instituto de Pesquisas Meteorolégicas,
UNESP, Sdo Paulo, Brazil.

Corresponding author address: Dr. Valdir Innocentini, Instituto
de Pesquisas Espaciais-CPTEC, Av. dos Astronautas, 1758, Caixa
Postai 515, 12201-S3o José dos Campos, S@o Paulo, Brazil.

© 1993 American Meteorological Society

ible model. He obtains a tendency equation for the
pressure at the top so that the vertical velocity is zero
at both boundaries. However, the system of equations
includes the fast-moving sound waves and requires
considerable computer time to solve his Eq. (15).

For a nonhydrostatic compressible flow, an elliptic
partial differential equation with the same dimension
of the domain must be solved for the pressure. Its finite-
difference form with several boundary conditions, in-
cluding rigid lids, can be found in Harlow and Welch
(1965). A discussion on numerical methods usually
employed to solve this equation is presented by Mees-
ters (1992).

In many problems a hydrostatic incompressible
model can be applied. Its main attractions are the sim-
plicity of the numerical code and the shorter computer
time required. In its simpler form, the pressure is pre-
scribed at the top and the profile is obtained by the
hydrostatic equation, while the vertical velocity is
diagnosticated from the vertically integrated continuity
equation using the given bottom velocity.

Ross and Orlanski (1982), hereafter RO, proposed
a method to be used in hydrostatic incompressible
models that maintains the vertical velocity zero at both
boundaries. In fluid problems where the vertical prop-
agation of internal gravity waves is equally important
as advective processes, an open lid is more suitable
(Klemp and Durran 1984). Here, we merely discuss
the RO algorithm and propose a computationally faster
and simpler numerical method. Section 2 considers
the formulation of the method. Section 3 presents the
numerical model and the initial conditions of a hori-
zontal deformation-induced frontogenesis experiment
designed to test the effectiveness of the method. Section
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FIG. 1. Initial field of the potential temperature (K) used in
experiments El, E2, E3, and E4. Contour interval is 3.77 K.
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4 compares the results using the proposed algorithm
and those obtained with the RO method. Finally, the
main conclusions are summarized in section 5.

2. Derivation of the method

The RO method may be presented by considering
the two-dimensional set of equations consisting of the
x-momentum, hydrostatic, and continuity equations,
written in terrain-following coordinates:

Uy "
where
o= ZZ—*Z’, z*¥ =z, — z,

2, and z, are the surface and top heights, respectively,
¢ = do/d!, and = is the Exner function. The term F
in (1) represents local sources and/or sinks of x mo-
mentum other than the term explicitly indicated. All
variables have the usual meaning. The y-momentum
and thermodynamic equations should also be consid-
ered in order to complete the system, although they
are irrelevant in the following discussion. The conti-
nuity equation defines the streamfunction ¢ by 6y /do
= z*y and Y /0x = —z*g¢.

The foregoing equations can be integrated with three
possibilities: (i) a boundary condition for = and other
for o, (ii) two boundary conditions for , and (iii) two
boundary conditions for ¢. Alternative (i) integrates
the equations the easiest but the vertical velocity can
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TABLE 1. Summary of the main characteristic
of each numerical experiment.

Experiment Main characteristic
El , constant
E2 m, in geostrophic balance
E3 , computed by solving Eq. (8)
E4 #, computed by solving Eq. (10)

be controlled at only one horizontal boundary. Alter-
natives (ii) and (iii) permit the control of = and ¢ at
both boundaries, respectively. The focus of this paper
is boundary condition (iii).

Although any numerical time scheme can be
adopted to solve (1), we will apply the leapfrog, for
simplicity. In this case (1) results in

X 100 Km

x 100 Km

FIG. 2. Streamlines (continuous lines with arrows) and isotherms
(broken lines) for experiments (a) E3 and (b) E4. In (a) contour
intervals are 5508.1 m®s~' and 3.68 K, and in (b) 5694.3 m?s~!
and 3.77 K.
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FIG. 3. Vertical velocity at each 1-h interval at the top as a function
of x distance for experiments (a) E1, (b) E2, (¢) E3 in centimeters
per second, and (d) E4 (1072 cm s™'). Heavy continuous lines rep-
resent the zero contour.

o
u"tt -yt = 2At(—0 z + F) R (4)
ax

where the upper index denotes the time level (# on the
right-hand side is omitted for simplicity ). Multiplying
(4) by z*, applying d/dx, integrating vertically from
g = 01to ¢ = 1, and using (3), we get

8(z* ™1y — 8(z*" )

) or\ 9z*F
- _ *g 22
2At[ ax(zgé}x)+ o ] (5)
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where 6§ is the difference of the variable between the
levels ¢ = 1 and ¢ = 0, and the bar denotes the vertical
integration. If one wants 86"%! = 0, then (5) becomes
a diagnostic equation for :

i} or dz*F 1 —_—

—\z¥—| = + — §(z*™ ).

ax(z ax) ax FaadEFe). (6)

a. The RO method
Defining the hydrostatic pressure ;, by
4 *
wilo) = [ & o, (M)

o 0

from (2) we have © = n;, + m,, where =, is the pressure
at the top. Then (6) takes the form

9 [—=dm\ _ a " any,
8x<Z o ax) 8x(2 b ax) *
where the last term of (6) has been neglected by RO.
This assumption seems reasonable if 6 = 0 at the initial
time step. The spatial discretization of (8) leads to a
tridiagonal matrix that can be solved by triangulating,
provided the lateral boundary condition for =, is spec-
ified. Supposing that all variables are known in the
time steps # and (7 — 1), the numerical procedure can
be carried out in the following sequence.

0z*F
ax ’

(8)

(i) Equation (1) provides u"*'. At the same time
one can compute the second term of the rhs of (8).

(ii) The valuesof #"*! and 7 %*! computed from the
thermodynamic equation and (7), respectively, are
used to complete the computation of the rhs of (8).

(iii) The value of =*! is obtained by solving (8),

thus determining the total pressure.

Note that if ¢ is set to zero at the bottom in every
time step, (8) ensures that 67! — 77! = 0 (&, is the
vertical velocity at the top), and ¢, = 0 must be made
in the initial field in order to maintain this condition
throughout the period of integration. However, if g,
becomes slightly different from zero, this tendency will
be present in the forthcoming time steps. This is some-
thing to worry about, when one notes that in (8) all
the terms should be referred to the same time level and
the numerical code implementation is not straightfor-
ward due to practical constraints imposed by program-
ming procedures. The second term in the rhs of (8)
(namely, Coriolis force, advection, diffusion, and
—godz*/ dx related to the horizontal gradient of the
topography) is determined using variables from the
previous time step #. This may imply in some error,
and its accumulation during the time integration may
cause a degradation of the rigid-lid conditions. The
method proposed here removes this difficulty.
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b. The method proposed
Suppose that the pressure = is used to compute ©”*!
in an arbitrary time step. Thus, we have
dz*u"t dz*yn!
ax  ox

= 2At

d 0 (—— 0 0z*F
| =0 (,xg 0mn\ _ 9 (55 9m)

ox 0x ox ox ox
We suggest that the quantity m, used in the computation
of u™*! be corrected so that its new value = satisfies

.(9) with the first term equal to zero. Then, 7 {°" is given
by

I p— e 1 dz*u™t 9 [—_ dm,
R Al LI CAL L A0
6x(z ax) 2ar ax o ox\® " ox

(10)

which can be solved similarly to (8). To maintain the
balance in the x-momentum equation, the value of
u™*! should be evaluated again according to (1) with
the corrected pressure gradient force. With o, = 0 at
any time step, note that =" implies in 67! = 0, while
(8) implies in 67+ — 771 = 0.

Computer time can be saved if 7" is considered as
7 7*1 thus avoiding a repeated calculation of u"*!. Al-
though this assumption produces an imbalance in the
X-momentum equation, it will not result in significant
inaccuracies, provided =, has a small time variation. It
is clear that the computation of 7 {°" using ( 10) is much
easier to implement and demands less computational
storage than (8). Another advantage is that (10) re-
quires only two vertical integrations, decreasing sub-
stantially the accumulated truncation errors. The next
two sections present the numerical model, the exper-
iments, and the results discussion.

]. 9)

3. Numerical model and initial conditions

The numerical model is the two-dimensional set (1),
(2), and (3), in addition to the thermodynamic and
the y-momentum equations. The Euler-backward time
scheme, a second-order approximation in the spatial
derivative, and the Arakawa C grid (Mesinger and Ar-
akawa 1976) are used. At the bottom and top, nonslip
and stress-free boundary conditions are used, respec-
tively. The vertical velocity ¢ is given by (3) integrated
from the bottom, where ¢ = 0. At the lateral bound-
aries, the radiational scheme (Orlanski 1976) is em-
ployed for the prognostic variables, and for the diag-
nostic variables, ¢ = 0, and 7 is obtained from the
hydrostatic equation. The domain is 2400 km wide
with Ax = 60 km and 10 km high with A¢ = 0.1. The
time step is 300 s and the Coriolis parameter is that of
—45° latitude. No horizontal diffusion or damping
procedure is included (except that implicit in the tem-
poral scheme used), since the main objective here is
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to emphasize the simplicity and effectiveness of the
method proposed. Further details of the numerical
model can be found in Innocentini (1986).

The initial conditions are an adaptation from Wil-
liams (1972): a steady barotropic horizontal defor-
mation is imposed on a baroclinic field initially in geo-
strophic balance. They are given by

u(x, o,t) = Dx + u'(x, o, 1),
v(x, 0,1) = Dy +v'(x, 0, 1),
o(x, o, 1) = o'(x, 0, 1),
0(x, o,1) = 0'(x, 0, 1),
7r(‘x’ a" t) = ﬂ',(x5 O" t)’

where the primed variables refer to the baroclinic field
and D = 2.5 X 1073 s7! is the deformation constant
factor. To balance the steady horizontal deformation,
the o coordinate is used in the form
z—z—Ax, )
cC=s——"—",
Z*

where the function A has the analytical form

_ fDxy
—~

The initial baroclinic field is in hydrostatic balance
with 8’ given by

DZ
Alx,y) = - 22 (x* = yH)

2 2
0'(x. o) = B(0) + 2 tan—l(—x - 1) ,
T L

where 05(c) = 288 + (2.5 X 1073)(oz* + z) K, L
= 2400 km, and —1200 km < x < 1200 km. This field
is shown in Fig. 1. Note that the horizontal potential
temperature gradient is constant with height and de-
creases toward the lateral boundaries.

4. Numerical tests

Four numerical experiments were carried out. Table
1 provides their main characteristics; except for the
procedure to obtain =, they are exactly the same. In
E1 the top pressure is kept constant and equal to the
initial value. In E2, after having computed v"*! at the
top, m7*! is calculated to maintain the geostrophic bal-
ance. In both experiments the hydrostatic equation is
integrated from the top to the bottom. Experiment E3
uses the method proposed by RO, while E4 employs
the one described here. Equations (8) and (10) are
derived from the finite differencing that is analogous
to the model equations. In solving these equations the
top pressure is assumed constant at both upper bound-
ary corners. It must be stressed that in E1 and E2 there
is no control on the vertical velocity at the top, and
they are included just for comparison.

Figures 2a and 2b show the streamlines and the iso-
therms for the experiments E3 and E4, respectively,
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after a 30-h model integration. Note that both exper-
iments have similar behavior near the surface. The
horizontal potential temperature gradient is about 4 K
(30 km) ™! at x = 400 km. The frontogenesis that starts
at x = 0 km shifts toward the warm sector with a ve-
locity of about 4 m s™!. A direct transversal circulation,
with the ascending motion stronger than the descend-
ing, is observed. At this time, this circulation presents
a maximum ascending (descending) velocity of about
30 cm s~! (12 cm s7!) in both experiments.

The main distinguishable feature between E3 and
E4 appears in the high-level frontogenesis. Note that
around x = —600 km, E3 presents a potential temper-
ature horizontal gradient of about 4 K (120 km) ! in
contrast.with that of 4 K (60 km) ™! for E4. Also, the
transversal circulation associated with the high-level
frontogenesis is better defined in E4. This is a conse-
quence of the fact that E4 has smaller vertical velocity
at the top than E3 (as will be shown in the following),
enhancing the upper-level frontogenesis.

Figures 3a, 3b, 3c, and 3d present the vertical velocity
at the top for E1, E2, E3, and E4 at each 1-h interval,
respectively. Experiments E1 and E2 have very high
velocities at the top and suggest the development of
numerical instability. Experiment E3 should have ver-
tical velocity zero but due to the accumulation of trun-
cation errors and also to the different time levels in-
herent in the application of (8 ) as pointed out in section
2, values slightly greater than —4 cm s ™' and +2 cm s~
are observed. On the other hand, E4 hardly presents
vertical velocity larger than 0.04 cm s™!, revealing the
superiority of this algorithm in meeting the require-
ment of nearly zero vertical velocity at the top.

5. Conclusions

A simple scheme is developed for incompressible
and hydrostatic numerical models to maintain the ver-
tical velocity zero at the bottom and top of the domain.
The pressure is computed at the top by correcting its
value given in the previous time step so that the vertical
integration of the divergence of the horizontal velocity
is zero. Like the method proposed by RO (Ross and
Orlanski 1982), it is based on the removal of the mean
barotropic divergence in each vertical column. While
in RO the difference in the vertical velocity between
two alternated time steps is set to zero on the upper
lid, in the proposed method the vertical velocity at each
time step is exactly zero. The method proposed in this
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paper decreases the computational cost because it de-
mands fewer vertical integrations and consequently
smaller truncation errors.

In numerical experiments exhibiting small time
variation of pressure at the top, the method proposed
here can be simplified to avoid computing the hori-
zontal velocity twice at each time step. The results of
an experiment with a horizontal deformation-induced
frontogenesis using the simplified method show vertical
velocity at the top two orders of magnitude smaller
than that of the RO method.

Although the method suggested is a numerical ar-
tifice, it meets more effectively the requirement ¢ = 0
at the top than the RO method, and is easier to im-
plement.
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