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Abstract

Statistical data assimilation systems require the specification of forecast and observation
error statistics. Forecast error is due to model imperfections and differences between the ini-
tial condition and the actual state of the atmosphere. Practical four-dimensional variational
(4D-Var) methods try to fit the forecast state to the observations assuming that model error is
negligible. Here with a number of simplifying assumption, a framework is developed for iso-
lating the model error given the forecast error at two lead-times. Two definitions are proposed
for the Talagrand ratio� , the fraction of the forecast error due to model error rather than initial
condition error. Data from the CPTEC Eta Model running operationally over South America
are used to calculate forecast error statistics and lower bounds for� .

1 Introduction

Data assimilation systems combine satellite data and other measurements with a first guess coming

from a predictive model to produce an analysis or estimate of the state of the atmosphere. This

estimate can be used as an initial condition for numerical weather prediction, or a sequence of

estimates can be used to study Earth Science phenomena. In statistical data assimilation methods

the analysis is a weighted average of the model forecast and current observations. The weighting

is determined by the specification of forecast and observation error statistics. For instance, where

forecast error is large, more weight is given to observations. Forecast error statistics also determine

how observations correct forecast errors in a neighborhood of the observation.
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Forecast error has two distinct sources: (i) model deficiencies and (ii) inaccurate initial condi-

tions. In principle, the forecast error is found by solving a Fokker-Planck equation (Epstein 1969)

or in the absence of model error a Liouville equation (Ehrendorfer 1994). However, such ap-

proaches are infeasible for realistic weather prediction models with a large number of degrees

of freedom, and approximations are necessary. In the linear-tangent framework, forecast error

growth due to initial condition error is characterized by the singular vectors of the dynamics

(Farrell 1990, Ehrendorfer & Tribbia 1997). Monte Carlo or ensemble methods provide a means

of calculating the nonlinear growth of forecast error due to differences between the model initial

condition and the actual state of the atmosphere (Leith 1974, Houtekamer & Mitchell 1998).

Determination of the forecast error due to model imperfections is conceptually considerably

more difficult, since the model error is unknown and potentially unknowable (Cohn 1997). Ad-

vanced sequential data assimilation methods based on the Kalman filter and its generalizations

require that the model error be specified. Misspecification of model error can have a substan-

tial detrimental effect on data assimilation performance (Dee 1995). Variational methods also

require the specification of observation and model error statistics (Bennett 1992, Ghil & Malanotte-

Rizzoli 1991). Practical adjoint variational methods, like those used operationally, force the model

to fit the observations and assume that model error is negligible (?). This “perfect model” hy-

pothesis is a weakness of four-dimensional variational (4D-Var) methods and can lead to serious

problems (Miller et al. 1994)

In this work we develop a framework for separating the forecast error into components due

to error in the initial condition and due to errors in the model. We show that given the forecast

error at two lead-times, the model error can be obtained. To arrive at this result requires substantial

assumptions and simplifications. First, ensemble averages are replaced by time-averages and the

error statistics assumed stationary. In this framework, average properties of the model error can be

estimated given bounds on the growth properties of the dynamics. Detailed model error properties

can be calculated if the dynamics sufficiently is simple that it can be applied to an error covariance

matrix. Here, we use a forecast-anomaly Markov model to approximate the dynamics. Perhaps the

most serious assumption is to assume access to the forecast error. Here we approximate forecast

error by the difference of forecast and analysis. In the Concluding Remarks we suggest some

alternatives.

The method is applied to forecast and analysis data from the CPTEC Eta Model running oper-

ationally with a resolution of 40 km over South America (Black 1994, Chou 1996) at 00 UTC and
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Figure 1: Contour plots at 500 mb of the forecast height error bias at (a) 24 hours (b) 48 hours and
of the forecast height error standard deviation at (c) 24 hours and at (d) 48 hours; units are meters.

12 UTC. The CPTEC Eta Model forecast error is approximated by the difference of the forecast

and the NCEP operational analysis. We note that quality of the 00 UTC and 12 UTC NCEP anal-

yses is likely different since the number of observations tends to be greater at 12 UTC. The NCEP

analysis, interpolated onto the Eta grid, is also the initial condition for the operational CPTEC Eta

model. We calculate forecast error statistics for the period during August of 1998 using a subset of

the complete set of predicted variables, namely the height fields at three levels 300, 500 and 700

mb on the region 85W to 30W and 45S to 10S interpolated onto a0:4�� 0:4� grid. This resolution

gives a total of90� 137� 3 grid points; all calculations show here are three-dimensional and use

this grid. The forecast error mean and standard deviation are shown at the 500 mb level in Fig. 1.

Much of the systematic difference between forecast and analysis is related to the spectral to-

pography representation of the analysis. The spectral topography of the NCEP analysis is very

different from the mountain-step coordinate representation of the Eta model near the Andes. As

a consequence, the NCEP analysis fields interpolated onto the Eta model grid are incompatable

with the Eta model topography forcing. Therefore the Eta model 24-hour and 48-hour forecasts
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Figure 2: Eigenvalues of the 24-hour (plus signs) and 48-hour (circles) forecast error covariance
matrices.

present systematic differences from the NCEP analysis near the Andes. Additionally, the forecast

bias contains wave structures. Since this characteristic is less prominent in the 48-hour forecast

bias, we hypothesis that it is a residual effect of the incompatability of the initial condition with

the Eta topography near the Andes. The bias maxima located in the lower right-hand corner of the

domain is likely related to the large natural variability of the height field there. This feature is also

present in the forecast error standard deviation. The standard deviation shown has been filtered

by performing an eigenvalue decomposition of the forecast error covariance and retaining 90% of

the total variance. This means retaining 24 and 18 eigenmodes respectively of the 24-hour and

48-hour forecast error covariances matrices. The eigenvalues of the forecast error covariance ma-

trices at the two lead times are shown in Fig. 2. The 48 hours forecast errors are larger than the 24

hours error. Calculation of the principle angles (see Appendix) between subspaces spanned by the

leading eigenvectors of the 24-hour and 48-hour forecast error covariances show that although the

first three modes project well onto each other additional modes do not; no simple modal relation is

observed between 24-hour and 48-hour forecast errors.

There are two sources of 48-hour forecast errors: (i) error already present in the 24-hour fore-

cast and (ii) deficiencies of the forecast model. Forecast model error includes imperfectly repre-

sented physical processes and errors in the boundary conditions. The lateral boundary conditions

provided by the CPTEC/COLA GCM are one source of model error (Gustafsson et al. 1998), as are

lower boundary conditions (Yang et al. 1994). We would like to know the fractions of the 48-hour

forecast error due to propagated 24-hour forecast errors and due to model error. The assumption

used in 4D-Var data assimilation methods is that the ratio� of model error to propagated error is
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small. Here we will refer to� as the Talagrand ratio. In the following section we will suggest some

precise definitions for� .

2 Methodology

In the context of linear dynamics, we can obtain the model error covariance given the forecast

error covariances at two lead-times, for instance given the 24-hour and 48-hour forecast error

covariances. Define forecast error�k;k+1 to be the error of the forecast starting at timek and valid

at timek + 1. We use time-steps of 24-hours. The 24-hour forecast error�k;k+1 is the difference at

timek + 1 of the 24-hour forecast and the true statewt
k+1,

�k;k+1 =Mk;k+1w
a
k � wt

k+1 ; (1)

wa
k is the analysis at timek andMk;k+1 is the linear operator that advances the state from timek to

time k + 1. Likewise, define the 48-hour forecast error�k;k+2 to be the difference of the 48-hour

forecast and the true statewt
k+2 at timek + 2,

�k;k+2 =Mk;k+2w
a
k � wt

k+2 : (2)

The 48-hour forecast error is due to the propagated 24-hour forecast error and the model error

as shown by

�k;k+2 =Mk;k+2w
a
k � wt

k+2 =Mk+1;k+2(Mk;k+1w
a
k � wt

k+1)� �tk+2

=Mk+1;k+2�k;k+1 � �tk+2 :
(3)

The model error�tk+1 is defined by

�tk+1 = wt
k+1 �Mk;k+1w

t
k : (4)

The 24-hour and 48-hour forecast error covariancesPk;k+1 andPk;k+2 satisfy

Pk;k+2 �


�k;k+2�

T
k;k+2

�
=Mk+1;k+2Pk;k+1M

T
k+1;k+2 +Qk+1 ; (5)

where we have taken


�tk(�

t
k)

T
�
= Qk; we use the notationh�i to denote ensemble average. There-

fore, the model error covarianceQk+1 can be obtained given the dynamicsMk+1:k+2 and the fore-

cast error covariancesPk;k+1 andPk;k+2.
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There are difficulties with the method presented above. First, the true state, and hence the

forecast error, is unknown. Therefore, we make the approximation of replacing the true state by

the verifying analysis, i.e., instead of (1) we take

�k;k+1 =Mk;k+1w
a
k � wa

k+1 : (6)

Another difficulty is that even if the true state were known and the forecast error could be calcu-

lated, the single realization of the forecast error available at each time-step would not be sufficient

to calculate the ensemble averages that define the forecast error covariance matrices. Therefore,

we replace ensemble averages by time averages and take the model dynamics and model error

covariance to be stationary. In this case, (5) becomes

P48 =MP24M
T +Q (7)

whereP24 andP48 are respectively the 24-hour and 48-hour forecast error covariances.

The 48-hour forecast error covariance is the sum of the propagated 24-hour forecast error co-

varianceMP24M
T and the model error covarianceQ. To calculate these two contributions to

the 48 hour forecast error, a linear approximationM of the dynamics must be applied to the 24

hour forecast error covariance matrix. Such an approximate linear dynamics might come from

the tangent linear dynamics linearized about a mean background-state. Here we will use asM a

forecast-anomaly Markov model.

However, before discussing details of this dynamics we suggest some precise definitions for the

Talagrand ratio� and derive some estimates. These definitions and estimates are quite general and

depend only on limited information about the forecast error covariance and the linear dynamics.

We define the variance Talagrand ratio�var by

�var =
trQ

trP48

= 1�
trMP24M

T

trP48
; (8)

i.e., the fraction of the 48 hour forecast error variance due to model error;tr denotes trace. Under

the perfect model assumption�var = 0; on the other hand, whenQ is very large� = 1. This

definition is invariant under orthogonal transformations of the state-space. A lower bound for�var

can be obtained if the total variance of the 24 and 48 hour forecast errors and the maximum possible

amplification by the dynamics is known, namely

�var � 1� �2
1(M)

trP24

trP48

; (9)
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�1(M) is the largest singular value of the 24-hour dynamicsM, here the largest factor by which

height errors can grow in 24 hours. This lower bound reflects a worst-case situation where all

the variance of the 24 hour forecast error projects onto the fastest growing singular vector of the

dynamics.

Another lower bound for�var depends on the variance�1(P24) associated with the leading

eigenvector of the 24 hour forecast error covariance and the quantitytrMMT , namely:

�var � 1�
�1(P24)

trP48

tr(MMT ) : (10)

This lower bound reflects a worse-case situation where spectrum of the 24 hour forecast error

covariance is flat. Recall that

trMMT =
nX

i=1

�2
i (M) ; (11)

and is the expected amplification of the variance of an uncorrelated, homogeneous random initial

condition (Tippett 1999). Therefore, given the singular values ofM and the eigenvalues of the 24

and 48 hour forecast error covariance, lower bounds for�var can be obtained.

Another measure of the model error is the volume Talagrand ratio�vol defined as (Schneider &

Griffies 1999)

�vol =

�
detQ

detP48

�1=n

=

�
det(P48 �MP24M

T )

detP48

�1=n

; (12)

n is the dimension of the state-space. This definition has the following geometric interpretation.

For a Gaussian random variable with zero mean and covarianceP, the ellipsoidEp(P) that encloses

some fraction0 < p < 1 of the cumulative probability distribution has a volume proportional to

(detP)1=2. Therefore, the Talagrand ratio�vol is the square of the geometric mean of the semiaxis

lengths of the model error ellipsoidEp(Q) over the square of the geometric mean of the semiaxis

lengths of the 48-hour forecast error ellipsoidEp(Q). We note that this definition is invariant under

general nonsingular transformations of the state-space. As a consequence,�vol does not depend on

the choice of inner product. A lower bound for�vol is

�vol � 1�

�
(detM)2

detP24

detP48

�1=n

: (13)

Special care in calculating�vol must be taken when the covariance or dynamics matrices are sin-

gular. The simplest remedy and the one we use here is to compute the determinants on a reduced

spaces where the matrices are nonsingular.

7



(a)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

σ
1
(M)

τ va
r

(b)

0 5 10 15 20
−0.5

0

0.5

1

tr MMT

τ va
r

(c)

0 2 4 6 8
−0.5

0

0.5

1

(det M)2/n

τ vo
l

Figure 3: Talagrand ratio� lower bounds as a function of (a)�1(M), (b) trMMT and (c)
(detM)2=n.

In Fig. 3 we plot lower bounds for�var and�vol as functions of the dynamics for the Eta model

forecast error covariance matrices calculated here. If the model dynamics does not amplify the

24-hour forecast error, the 48-hour forecast error is due mainly to the model errorQ and�var =

�vol = 1. As the amplification ability of the dyanmics is increased, that is as the singular values

of the dynamics become larger, the lower bounds for�var and�vol decrease; the lower bounds give

no information when they are less than zero. We calculate�vol in a conservative fashion, using

only 3 modes of the error covariance matrices; using more modes produces larger lower bounds.

Figure 3(a) shows that for modest error growth rates, i.e.,� 1:5/day the lower bound in (9) gives

no information. Figure 3(b) shows that (10) gives a nonzero lower bound for� if trMMT � 15

which is equivalent to random uncorrelated perturbations being amplified by a factor less than

3:87/day. Figure 3(c) shows that (13) gives a nonzero lower bound for� if the geometric mean

of the singular values ofM is less than2:45/day. These last two results mean that in the absence

of relatively strong dynamics to amplify errors, model error is a non-negligible source of forecast

error.

3 Results

To investigate the question of dynamical error amplification we calculate a Markov model for the

forecast anomaly evolution using data from the same period. The 48-hour forecast anomalywf
48 is

assumed to be related to 24-hour forecast anomalywf
24 by

wf
48 =Mwf

24 + b ; (14)
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Figure 4: The standard deviations of the (a) 24-hour and (b) 48-hour forecast anomaly height fields
plotted at 500 mb. Units are meters

where the residualb is modeled as a random forcing term; the anomolies are defined by subtracting

the time-averages. The dynamicsM is found by calculating

C �
D
wf
48(w

f
24)

T
E

and P
f
24 �

D
wf
24(w

f
24)

T
E

(15)

and solvingC = MP
f
24. The matrixPf

24 is singular since the number of samples is less than

the number of degrees of freedom. We deal with this problem by computing the eigenvalue de-

composition ofPf
24 and setting the trailing eigenvalues to zero. Then we replace

�
P

f
24

�
�1

by the

Moore-Penrose inverse (Golub & Van Loan 1996). The number of modes to be retained in the

calculation is arbitrary. Keeping modes associated with small eigenvalues increases the singular

values ofM since retaining more modes makesPf
24 increasingly close to being singular. However,

modes associated with small eigenvalues are likely to suffer from sampling error. On the other

hand, keeping too few modes produces dynamics that does not produce growth. Here we choose to

retain 5 modes ofPf
24 explaining 85% of its total variance. Later we show how the lower bounds

for � depend on the number of modes retained.

Figure 4 shows the standard deviation of the 24 and 48 hour forecast height anomaly fields.

As expected there are only slight differences between the standard deviation of the 24 and 48 hour

height anomaly fields; both should approximate the natural variability of the height field during

this period. The variability of the model shown in Fig. 4 can be different from that of the model

error shown in Fig. 1. For instance, model error may be a result of the model not presenting the

same variability observed in nature. However, it is reasonable to expect model error variablity to

have some relation with model error variability and there are some similarities between the two

here though the model error has much more small-scale structure. Calculation of the principle
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Figure 5: Panel (a) shows the singular values ofM. Panel (b) shows the eigenvalues of the forecast
anomalies covariancesPf

48 andPf
24 (solid lines with plus signs), eigenvalues ofMPf

24M
T (dotted

line with circles) and eigenvalues of the residual


bbT

�
(dashed line with circles).

angles show that the leading eigenmodes ofP
f
24 andPf

48 span approximately the same subspaces.

Figure 5(a) shows the singular values ofM. Although the dynamics is stable by construction

with all eigenvalues inside the unit circle, there are singular values greater than one, indicating

nonmodal growth. Figure 5(b) shows the extent to which the Markov model dynamics is able

to propagate the 24 hour forecast height anomaly. The deterministic part of the signal is not

substantially larger than the random component. The covariance of the residual


bbT

�
is computed

in the full-space and is larger than the truncated part of the anomaly covariances.

Figure 6 shows the leading right and left singular vectors ofM. Their structure is related to the

entrance of fronts and cyclogenesis in the Atlantic; 9 fronts passed through the region during the

period. Using the singular values of the Markov modelM in (9) and (10) gives as lower bound for

the Talagrand ratio�var � 0:37 and�var � 0:76 respectively; (13) gives�vol � 0:70 where we have

conservatively used only 3 modes to compute determinants. Using more modes in the calculation

of the Markov dynamics increases the singular values and decreases the lower bound as shown in

Fig. 7. Of the three lower bounds, (9) is the most sensitive to the number of modes retained since

it depends only on the size of the largest singular value�1(M) ofM.

The lower bounds for� come from assuming that the 24-hour errors project favorably onto

the growing modes of the dynamics. However, the dimension of both the subspace of dominant

forecast errors and of the subspace of dynamically growing modes, around 10, is small compared

to the dimension of the full space 36,990. The likelihood that two arbitrarily chosen subspaces

intersect is therefore small. We first compare the subspaces spanned by the forecast errors and by
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Figure 6: Contour plots of the leading right singular vector at (a) 500 mb and (c) latitude = -40.2
and of the leading left singular vector at (b) 500 mb and (d) latitude = -40.2.
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Figure 7: The lower bounds in Eq. (9) (solid line), Eq. (10) (dashed line) and Eq. (13) (dotted
dashed line) as function of the numberk of modes used in the Markov model calculation.
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Figure 8: Plots of
 (solid line) and� (dashed line) (defined in the Appendix) shown as a function
of the dimensionp. The subspaces spanned by the (a) 24 and (b) 48 hour forecast errors and
forecast anomaly fields are compared.

the forecast anomalies by comparing their principle angles (see Appendix). Figure 8 shows that

there is reasonable correspondence between the subspaces spanned by the forecast error and the

forecast anomaly. The correspondence is less at 48-hours than at 24 hours. At both lead times there

are principle angles of about80� indicating that there are forecast errors that project very weakly

onto the subspace spanned by the forecast anomaly.

For the forecast anomaly dynamics to be able to amplify efficiently 24-hour forecast errors into

48-hour forecast errors, there must be a favorable relationship between the leading subspaces of the

error covariance and the singular vectors of the dynamics. Namely, the 24-hour forecast errors must

project onto the leading right singular vectors of the dynamics and the 48-hour forecast errors must

project onto the left singular vectors of the dynamics. In Fig. 9 we compare the subspaces spanned

by the errors and by the singular vectors of the Markov model. In Fig. 9(a) we observed that the

leading modes of the 24-hour forecast errors do not project onto the leading right singular vectors

of the forecast-anomaly Markov dynamics and hence are not amplified. Likewise in Fig. 9(b)

the 48-hour forecast error do not project well onto the left singular vectors, suggesting that the

dominant 48-hour forecast errors are not related to this dynamics.

The calculations of the subspaces associated with forecast anomaly and forecast error suggest

that the forecast anomaly dynamics are insufficient alone to evolve 24-hour forecast errors in 48-

hour forecast errors. This indication is confirmed in Fig. 10 where the eigenvalues of the 24 and 48

hour forecast errors are shown along with those of the propagated error covarianceMP24M
T . The

Markov model dynamics are not able to amplify 24-hour forecast errors since the forecast error
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Figure 9: As in Fig. 8 but for the subspaces spanned by the (a) 24-hour forecast errors and the right
singular vectors and by the (b) 48-hour forecast errors and left singular vectors are compared.
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Figure 10: As in Fig. 2 with the addition of the eigenvalues ofMP24M
T (solid line with x’s).

are not amplified by the growing modes of the forecast anomaly dynamics. Comparing Fig. 1 with

Figure 11 where the standard deviation ofQ andMP24M
T are shown demonstrates that the model

error dominates the propagated forecast error and is little different from the 48-hour forecast error.

4 Concluding Remarks

Characterization of prediction model error is important for understanding the performance of data

assimilation systems. Advanced sequential data assimilation methods capable of calculating the

propagated analysis error require specification of the model error. Operational 4D-Var adjoint

methods assume that the model error is negligible.

A measure of the relative size of the model error is the Talagrand ratio� , the fraction of the
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Figure 11: Contour plots of the standard deviation of (a)Q and (b)MP24M
T shown at 500 mb.

Units are meters.

forecast error due to model error. We have proposed two definitions for� . The first is simply the

ratio of the model error variance to forecast error variance; the underlying norm is the RMS one.

The second is related to the volume in phase-space where errors are likely to be found. This second

definition is invariant under nonsingular linear transformations; it does not depend on the choice of

norm. Given the forecast error at two lead-times, the model error can be calculated. In particular,

lower bounds for the Talagrand ratio can be calculated given only limited information about the

dynamics.

Using data from the CPTEC Eta model and approximating the forecast error by the difference

of forecast and analysis we calculated the 24-hour and 48-hour forecast height error statistics. From

that information we calculated lower bounds for� that depend on the amplification properties of

the dynamics. As a linear proxy for the model dynamics we calculated a Markov model for the

forecast anomaly evolution. The growth rates of this model suggest that� is not negligible. A

detailed comparison of the Markov model and the forecast errors show that they project on different

subspaces and that the Markov model is not able to produce significant growth of forecast errors.

The results come with a number of caveats. First, using the analysis as a proxy for the true state

when calculating forecast error is a significant assumption. Also, the NCEP analysis presents sys-

tematic and persistent differences with Eta model forecast. It would be better to use as a verifying

field one whose error characteristic are better known and are stationary, for instance, observations.

Second, our estimates for the model error suffer from an inconsistency between the calculated

forecast error covariance and the linear dynamics. The Markov model dynamics are a poor ap-

proximation of the anomaly evolution. Perhaps a better model could be obtained by using a larger
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set of variables or smaller time-steps. These alternative approaches will be investigated in future

work.

Appendix

If Z1 2 R
n�p andZ2 2 R

n�p are orthogonal bases for two different subspaces, then there arep

principle angles�i between the subspaces0 � �i � �=2, 1 � i � p (Golub & Van Loan 1996,

p. 603). The cosine
 of the largest principle angle is


 = min
i
fcos �ig = �p

�
Z
T
1Z2

�
; (16)

and the average� of the cosines of the principle angles is

� =
1

p

pX
i=1

cos �i =
1

p

pX
i=1

�i
�
Z
T
1Z2

�
: (17)
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