

Translating WFS Query to SQL/XML Query

Vânia Vidal, Fernando Lemos, Fábio Feitosa

Departamento de Computação – Universidade Federal do Ceará (UFC)
Fortaleza – CE – Brazil

{vvidal, fernandocl, fabiofbf}@lia.ufc.br

Abstract. The purpose of the WFS specification, proposed by the the OpenGIS

Consortium (OGC), is to describe the manipulation operations over geospatial data

using GML. Web servers providing WFS service are called WFS Servers. WFS servers

publish GML views of geographic features stored in data sources such that the user can

query and update data sources through a user defined feature type schema.

In this work, we study the problem of answering WFS queries through a feature type
schema, when the data is stored in a relational database. A feature type is specified by

the feature type schema and a set of correspondence assertions. The feature type's

correspondence assertions formally specify relationships between the feature type

schema and the relational database schema. We define the semantic for WFS query
answering and present an algorithm that translate a WFS query defined over a feature

type schema into a SQL/XML query defined over the relational database schema.

1. Introduction

The mission of the OpenGIS Consortium (OGC) [8] is to promote the development and use
of advanced open system standards and techniques in the geoprocessing area and related
information technologies. Two important OGC's initiatives are: the Geography Markup
Language (GML) [9] and the Web Feature Service (WFS) [11]. The purpose of the WFS
specification is to describe the manipulation operations over geospatial data using GML.
Their objective is to provide queries, updates and exchange of geospatial data as geographic
features instances encoded in GML. According to OGC, a geographic feature is an
“abstraction of a real world phenomenon associated with a location relative to the Earth”. It
is possible to describe the feature form and localization through its geometric attributes,
remaining the other attributes to represent its non-geographic properties. Given that, WFS
servers publish GML views of geographic features stored in data sources such that the user
can query and update data sources through the feature type schema

According to WFS specification [11], the requests supported by a WFS Server must
be as follow: 1. DescribeFeatureType: Retrieves the XML [20] schema of the feature types.

174

2. GetFeature: Retrieves feature instances of a feature type. It is possible to apply selection
filters on the GetFeature request. Those filters are specified by OGC in [7] and enclose
logical, arithmetical and space conditions. 3. LockFeature: Allows blocking a feature type
while it is being updated. It is optional. 4. Transaction: Allows updating feature types. It is
optional. 5. GetCapabilities: Retrieves a list of feature types serviced by the WFS Server
and what operations are supported on each feature type.

In this work, we study the problem of answering WFS queries through a feature
type schema, when the data is stored in a relational database. In this work, a feature type is
specified by the feature type schema and a set of correspondence assertions [13,14,18]. The
feature type's correspondence assertions formally specify relationships [6,14] between the
feature type schema and the relational database schema. We show that, based on the feature
type correspondence assertions, one can efficiently translate WFS query to SQL/XML
query.

SQL/XML [16] is an ANSI and ISO standard that provides support for using XML
in the context of an SQL database system. The SQL/XML standard is being developed
under the auspices of INCITS Technical Committee H2 as a new part (Part 14) of the SQL
standard and is aligned with SQL:2003 [2]. SQL/XML is simple, highly intuitive and, in
some development scenarios, is an ideal way of returning relational data. Moreover, we can
apply XSL transformation on the XML result.

To the best of our knowledge, there is no work on translating WFS query to
SQL/XML query. There is a vast amount of work on XML-to-SQL translation [3,5,15].
Since WFS query is more restricted than XML queries, the approach proposed here is
simpler and more efficient. The Deegree WFS [1], which is an open source implementation
of the WFS Specification, in case where the feature has complex properties, it reformulates
a WFS query into several SQL queries, each of which will compute the value of a complex
property. So, our solution, which translates to only one SQL/XML query, is much more
efficient than Deegree's approach.

The main contributions of the paper are.
 We propose the use of correspondence assertions as the formalism to specify the

mapping between a XML schema and a relational database schema.
 We formally specify the conditions for a set of correspondence assertions to fully

specify a feature type in terms of relational database and, if so, we show that the mappings
defined by the feature type correspondence assertions can be expressed as an SQL/XML
query.
 We propose an algorithm that, based on the feature type’s correspondence assertions,

generates an SQL/XML query that constructs <featureMember> elements from the

175

corresponding tuples of relational database. We note that other mapping formalisms are
either ambiguous or require the user to declare complex logical mappings [4,23].
 We define the semantic for WFS query answering and present an algorithm that

translate, based on the feature type correspondence assertions, a WFS query defined over a
feature type schema into a SQL/XML query defined over the relational database. Moreover,
we formally justify that SQL/XML query generated by the algorithm is a correct
translation.
 The paper is organized as follows. Section 2 presents our mapping formalism.
Section 3 discusses how to specify a Feature Type using correspondence assertions. Section
4 presents the semantic for WFS query answering and present an algorithm that translates a
WFS query to a SQL/XML query. Finally, Section 5 contains the conclusions.

2. Correspondence Assertions

In this section, let R1,...,Rn be relation schemes of a relational schema S. Let R1,...,Rn be
relations over R1,...,Rn, respectively.
Definition 2.1: Let fk be a foreign key of R1 that references R2. Assume that fk is of the
form R1[a1,...,am] ⊆ R2[b1,...,bm].
(i) fk is a link from R1 to R2, and the inverse of fk, denoted fk -1, is a link from R2 to R1.

(ii) Let r1 be a tuple of R1. Then r1/fk = { r2 | r2 ∈ R2 and r1.ai = r2.bi, 1≤i≤m };
(iii) Let r2 be tuple of R2. Then r2/fk -1 = { r1 | r1 ∈ R1 and r1.ai = r2.bi, 1≤i≤ m }. �

Definition 2.2: Let l be a link from R1 to R2, and let r1 and r2 be tuples of R1 and R2,
respectively. We say that:
(i) r1 references r2 through l iff r2 ∈ r1/l.
(ii) l is single occurrence iff a tuple of R1 can reference at most one tuple of R2 through l.

Otherwise, l is multiple occurrence. �

Definition 2.3: Let l1, ..., ln-1 be links. Assume that li is a foreign key of the form
Ri[a1

li,...,ami
li] ⊆ Ri+1[b1

li,...,bmi
li] or the inverse of a foreign key of the form Ri+1[b1

li,...,bmi
li] ⊆

Ri[a1
li,...,ami

li], for 1≤i≤n-1.
(i) ϕ = l1.ln-1 is a path from R1 to Rn, and the tuples of R1 reference tuples of Rn through

ϕ.
(ii) ϕ is single occurrence iff li is single occurrence, for 1≤i≤n-1.Otherwise, ϕ is multiple

occurrence.

(iii) Let r1 be a tuple of R1. Then, r1/ϕ = { rn | (∃r2 ∈ R2)... (∃rn ∈ Rn) (ri.ak
li = ri+1.bk

li, for 1≤k≤mi
and 1≤i≤n-1)}. �

176

Definition 2.4: Let a1,...,am be attributes of R1 and let r1 be a tuple of R1.
(i) r1/ a1 = { v | v = r.a1 and v ≠NULL }.
(ii) r1/{a1,...,am}= { v | v = r. ai where 1≤i≤m, and v ≠NULL }.
(iii) r1/ NULL = { r1}. �

Definition 2.5: Let ϕ be a path from R1 to Rn, a1,...,am be attributes of Rn. Let r1 be a tuple of
R1.
(i) r1/ϕ. a1 = { v | ∃rn ∈ r1/ϕ and v ∈ rn/ a1}.
(ii) r1/ϕ.{a1,...,am} = { v | ∃rn ∈ r1/ϕ and v ∈ rn/{a1,...,am} }. �

 We say that a XML schema type T is restricted iff T is a complex type defined using
the ComplexType and Sequence constructors only. In the rest of this section, let T be a
restricted XML Schema complex type, and let R and R’ be relation schemes of a relational
schema S.
Definition 2.6: A correspondence assertion (CA) is an expression of the form [T/c] ≡ [R/exp]
where c is an element of T, with type Tc, and exp is such that:
(i) If c is single occurrence and Tc is a simple type, then exp has one of the following

forms:
- a, where a is an attribute of R whose type is compatible with Tc.
- ϕ.a, where ϕ is a path from R to R’ such that ϕ has single occurrence, and a is an

attribute of R’ whose type is compatible with Tc.
(ii) If c is multiple occurrence and Tc is an simple type, then exp has one of the following

forms:
- ϕ.a, where ϕ is a path from R to R’ such that ϕ is multiple occurrence and a is an

attribute R’, whose type is compatible with Tc.
- {a1,...,an}, where a1,...,an are attributes of R such that the type of ai is compatible with

Tc, for 1≤i≤ n.
- ϕ.{a1,...,an}, where ϕ is a path from R to R’ such that ϕ is single occurrence, and a1,...,an

are attributes of R’ such that the type of ai is compatible with Tc, for 1≤i≤ n.
(iii) If c is single occurrence and Tc is a complex type, then exp has one of the following

forms:
- ϕ, where ϕ is a path from R to R’ such that ϕ is single occurrence;
- NULL .

(iv) If c has multiple occurrence and Tc is a complex type then exp has the following form:
- ϕ, where ϕ is a path from R to R’ such that ϕ is multiple occurrence. �

Definition 2.7: Let A be a set of correspondence assertions. We say that A fully specifies T
in terms of R iff
(i) For each property c of T, there is a single CA of the form [T/c] ≡ [R/exp] in A, called the

CA for c in A.

177

(ii) For each assertion in A of the form [T/c] ≡ [R/ϕ], where c is of complex type Tc and ϕ is
a path from R to R’, then A fully specifies Tc in terms of R’.

(iii) For each assertion in A of the form [T/c] ≡ [R/NULL], where c is of complex type Tc, then
A fully specifies Tc in terms of R. �

Definition 2.8: Let A be a set of correspondence assertions such that A fully specifies T in
terms of R. Let R be a relation over R.
(i) Let S1 be a set of element of type T, which is a GML abstractGeometry type, and S2 be

a set of geometric objects database. Let g be a function that converts a geometric object
to a GML fragment [12]. We say that S1 ≡A S2 iff, $t∈S1 iff ∃o∈S2 and $t = g(o).

(ii) Let S1 be a set of element of a XML Schema simple type T. Let S2 be a set of SQL
scalar data types. Let f be the function that maps an SQL value to instances of T. We
say that S1 ≡A S2 iff $t∈S1 iff there is v∈S2 and $t/text() = f (v).

(iii) Let S1 be a set of element of a XML Schema complex type T, but not a GML
abstractGeometry type. Let S2 be a set of tuples of R. We say that S1≡A S2 iff $t∈S1 iff
there is r ∈ S2 and $t/node() ≡A r.

(iv) Let r be a tuple of R and let $t be an instance of T. We say that $t ≡A r iff, for each
element c of T such that [T/c] ≡ [R/exp] is the CA for c in A (which exists by assumption
on A), then $t/c ≡A r/exp. If $t ≡A r, we say that $t is semantically equivalent to r as
specified by A. �

3. Specifying Feature Type

In this section, let S be a relational schema, R be a relation scheme of S. Let σs be an
instance of S and R be a relation over R.
Definition 3.1: A feature type F over S is a triple F = < T, R, A > where T is the XML type
for feature instances, R is the name of the master relation (table) of F which contains the
geometric attribute, and A is the set of path correspondence assertions which fully specifies
T in terms of R. �
 In the rest of this Section let F be a feature type as in Definition 3.1.

Definition 3.2: The extension of the feature type F on σs is an XML document σF, where
the root element contains a sequence of <F> elements of type T, such that each <F> element
matches a tuple of R. More formally,

Document("σF")/F = { $f | $f is an instance of T and ∃r ∈ R such that $f ≡A r}. �

Definition 3.3: The extension of F can be computed by the SQL/XML query given by:
 σF = SELECT XMLELEMENT("Extension_of_F ", XMLAGG(
 XMLELEMENT("F", τ[R→T](r))
)) FROM R r.

178

τ[R→T] is a constructor function such that given a tuple r of R, τ[R→T](r) constructs an
instance $f of type T such that $f ≡A r. �

Figure 3.1 presents the algorithm GenConstructor that receives as input a XML
Schema type T, a relation scheme R, a set of correspondence assertions A such that A fully
specifies T in terms of R and an alias r for the relation scheme R and generates the
SQL/XML sub-query τ[R→T]. The proof of correctness of GenConstructor algorithm can be
found in [19].

Example 3.1: Suppose the relational schema in Figure 3.3. Consider, for example, the
feature type F_Station where Station_Rel is the Master Table, and the type TStation, shown in
Figure 3.4, is the feature instance type. Figure 3.5 shows the correspondence assertions of
F_Station, which fully specifies TStation in terms of Station_Rel. These assertions are
generated by: (1) matching the elements of TStation with attributes or paths of Station_Rel;
and (2) recursively descending into sub-elements of TStation to define their correspondence.
The extension of the feature type F_Station is defined by the SQL/XML query shown in
Figure 3.6. The query returns an XML document where the root element contains a
sequence of <F_Station> elements of type TStation, such that each <F_Station> element
matches a tuple of Station_Rel. Figure 3.8 shows the extension of F_Station on the database
state in Figure 3.7.

Input: a XML Type T, a relation scheme R, a set of correspondence assertions A such that A fully specifies T in terms of

R and an alias r for relation scheme R.
Output: Function τ[R→T] such that, given a tuple r of an instance of R, τ[R→T](r) constructs an instance $t of T where

$t ≡A r.
Let I := 1;
Let Q[1..m] an array of string;
For each property pi of T with 1<i<m, where [T/ pi] ≡ [R/ exp] is the CA for pi in A do
 Q[i] = GenSQL/XML(pi, exp, r);
 i := i + 1;
end for;
return Q[1] + "," … "," + Q[m]

Figure 3.1 – Algorithm GenConstructor

179

Input: a property p of type Tp, an expression exp and an alias r for relation scheme R.
Output: a SQL/XML sub-query Q such that, given a tuple r of R, an instance of R, Q returns a set S of <p> elements
of type Tp such that S ≡ r/exp.
 In case of
 Case 1: If p is single occurrence, Tp is an atomic type and exp = a, then
 Q = "XMLFOREST(r.a AS \"p\")";
 Case 2: If p is single occurrence, Tp is an atomic type and exp = ϕ.a, then
 Q = "XMLFOREST((SELECT r n.a FROM Joinϕ(r)) AS \"p\")"
 Case 3: If p is multiple occurrence, Tp is an atomic type and exp = {a1,...,an}, then
 Q = "XMLCONCAT(XMLFOREST(r.a1 AS \"p\")," + …+ "XMLFOREST(\"p\", r.an AS \"p\"))"
 Case 4: If p is multiple occurrence, Tp is an atomic type and exp = ϕ/ {a1,...,an}, then
 Q = "XMLCONCAT((SELECT XMLFOREST(r n.a1 AS \"p\", … , r n.an AS \"p\") FROM Joinϕ(r)))"
 Case 5: If p is multiple occurrence, Tp is an atomic type and exp = ϕ/ a, then
 Q = "(SELECT XMLAGG(XMLFOREST(r n.a AS \"p\") FROM Joinϕ(r))"
 Case 6: If p is single occurrence, Tp is a complex type and exp = ϕ, then
 Q = "XMLELEMENT(\"p\", (SELECT XMLCONCAT(" +
 + GenConstructor(Tp, Rn, A, r n) + ") FROM Joinϕ(r)))"
 Case 7: If p is multiple occurrence, Tp is a complex type and exp = ϕ, then
 Q = "(SELECT XMLAGG(XMLELEMENT(AS \"p\", " +
 + GenConstructor(Tp, Rn, A, r n)+")) FROM Joinϕ(r))"
 Case 8: If p is single occurrence, Tp is a complex type and exp = NULL, then
 Q = "XMLELEMENT(\"p\", " + GenConstructor(Tp, R, A, r) + ")"
 Case 9: If p is single occurrence, Tp is a geometric type and exp = a, then
 Q = "XMLFOREST(SDO_UTIL.TO_GMLGEOMETRY(r.a) AS \"p\")"
 end case;
return Q ;

NOTE: In the Algorithm we have that:
(i) ϕ is a path of the form l1. ln-1 as defined in Definition 3.3. Thus, given a tuple r of R, we have:

 r.ϕ = SELECT r n FROM R1 r 1,..., Rn r n
 WHERE r.akl1= r 1.bkl1, 1≤k≤m1 AND r i-1.akli= r i.bkli, 1≤k≤mi, 2≤i≤n.

(ii) Joinϕ(r) is defined by the following SQL fragments:
 R1 r 1,..., Rn r n WHERE r.akl1= r 1.bkl1, 1≤k≤m1, AND r i-1.akli= r i.bkli, 1≤k≤mi, 2≤i≤n.

Such that, given a tuple r of R, then r.ϕ = SELECT r n FROM Joinϕ(r).
(iii) The SQL/XML function:

- XMLElement() constructs XML elements;
- XMLForest() constructs a sequence of XML elements, dropping eventual null values;
- XMLConcat() concatenates XML elements; and
- XMLAgg() aggregates XML elements.

Figure 3.2 – Algorithm GenSQL/XML

180

FK1

FK3

FK2

STATION_R
CODE

GEOM_POINT
NAME
STREET
ZIPCODE
CODECITY (FK)
CODEAGENCY (FK)

PLUVIOMETRY_R
CODESTATION (FK)
MONTH

VALUE

AGENCY_R
CODEAGENCY

NAME
PHONE
FAX

CITY_R
CODECITY

NAME
AREA

area

Pluviometry* (TPluviometry)

month
value

TStation
code
geometry
name
address (TAddress)

street
city (TCity)

agency

zipcode

name

Figure 3.3 – Relational Schema DB_Station Figure 3.4 – XML type TStation

area (number)

pluviometry (TPluviometry)

month (integer)

value (number)

TStation

code (integer)

geometry (abstractgeometry)

name (string)

address (TAddress)

street (string)

city (TCity)

agency (string)

zipcode (string)

PHONE (varchar2)

CODECITY (number)
CODEAGENCY (number)
FK1 (City_rel)

CODECITY (number)
NAME (varchar2)
AREA (number)

Station_rel
CODE (number)
GEOM_POINT (sdo_geometry)
NAME (varchar2)
OBSERVER (varchar2)
STREET (varchar2)
ZIPCODE (varchar2)

FK3 (Agency_rel)

FAX (varchar2)

FK2-1 (Pluviometry_rel)
CODESTATION (number)
MONTH (number)
VALUE (number)

NAME (varchar2)

PHONE (varchar2)

CODEAGENCY (number)

ψ1:[TStation/code]≡[Station_rel/CODE]

ψ2:[TStation/geometry]≡[Station_rel/GEOM_POINT]

ψ3:[TStation/name]≡[Station_rel/NAME]

ψ4:[TStation/address]≡[Station_rel/NULL]

ψ10:[TStation/pluviometry]≡[Station_rel/FK2-1]

ψ7:[TCity/name]≡[City_rel/NAME]

ψ8:[TCity/area]≡[City_rel/ARE

ψ11:[TPluviometry/month]≡[Pluviometry_rel/MONTH]

ψ13:[TStation/agency]≡[Station_rel/FK3/NAME]

ψ5:[TAddress/street]≡[Station_rel/STREET]

ψ6:[TAddress/city]≡[Station_rel/FK1]

name (string)

ψ12:[TPluviometry/value]≡[Pluviometry_rel/VALUE]

ψ9:[TAddress/zipcode]≡[Station_rel/ZIPCODE]

Figure 3.5 - Correspondence Assertions of F_Station

181

 SELECT XMLELEMENT("Extension_of_F_Station", XMLAGG(
 XMLELEMENT("F_Station",
 XMLFOREST(S.CODE AS "code"), ..from ψ1*
 XMLFOREST(SDO_UTIL.TO_GMLGEOMETRY(S.GEOM_POINT) AS "geometry"),...............from ψ2

 XMLFOREST(S.NAME AS "name"), ...from ψ3
 XMLELEMENT("address", ...from ψ4
 XMLFOREST(S.STREET AS "street"), ...from ψ5
 XMLELEMENT("city", ..from ψ6
 (SELECT XMLCONCAT(
 XMLFOREST(C.NAME AS "name"), ..from ψ7
 XMLFOREST(C.AREA AS "area")) ...from ψ8
 FROM City_rel C WHERE C.CODECITY = S.CODECITY)),
 XMLFOREST(S.ZIPCODE AS "zipcode")), ..from ψ9
 (SELECT XMLAGG(XMLELEMENT("pluviometry", ..from ψ10
 XMLFOREST(PL.MONTH AS "month"), ...from ψ11
 XMLFOREST(PL.VALUE AS "value"))) ...from ψ12
 FROM Pluviometry_rel PL WHERE S.CODE = PL.CODESTATION),
 XMLFOREST((SELECT A.NAME FROM Agency_rel A
 WHERE A.CODEAGENCY = S.CODEAGENCY) AS "agency")from ψ13
)
))
FROM Station_Rel S;
*ψi is the assertion based on the algorithm generated the sub-query

Figure 3.6 – SQL/XML Definition for extension of F_Station

Station_rel

CODE NAME STREET ZIPCODE GEOM_POINT CODE
AGENCY

CODECITY

164 Serragem R. Prinicpal s/n 62755000 -4.45,-38.5 1 2309458

165 Arisco Sitio Penha 62755000 -4.65,-38.55 2 2309458

481 Arruda R. São Francisco,606 62113000 -3.85,-40.66 1 2312908

Agency_rel

CODEAGENCY NAME PHONE FAX

1 FUNCEME 31011088 31011093

2 SUDENE 34339031 34339045

City_rel

CODECITY NAME AREA

2309458 OCARA 1450

2312908 SOBRAL 19820

Pluviometry_rel

CODESTATION MONTH VALUE

164 01 87.8

164 02 171.6

165 01 50.4

481 03 150

Figure 3.7 – An instance of DB_Station

182

<Extension_of_F_Station>
<F_Station>
 <code>164</code>
 <geometry>
 <gml:Point>
 <gml:coordinates cs=","
 decimal="." ts="">
 -4.45,-38.5
 </gml:coordinates>
 </gml:Point>
 </geometry>
 <name>Serragem</name>
 <address>
 <street>R. Principal s/n</street>
 <city>
 <name>OCARA</name>
 <area>1450</area>
 </city>
 <zipcode>62755000</zipcode>
 </address>
 <pluviometry>
 <month>1</month>
 <value>87.8</value>
 </pluviometry>
 <pluviometry>
 <month>2</month>
 <value>171.6</value>
 </pluviometry>
 <agency>FUNCEME</agency>
</F_Station>

<F_Station>
 <code>165</code>
 <gml:Point>
 <gml:coordinates cs=","
 decimal="." ts="">
 -4.65,-38.55
 </gml:coordinates>
 </gml:Point>
 <name>Arisco</name>
 <address>
 <street>Sitio Penha</street>
 <city>
 <name>OCARA</name>
 <area>1450</area>
 </city>
 <zipcode>62755000</zipcode>
 </address>
 <pluviometry>
 <month>1</month>
 <value>50.4</value>
 </pluviometry>
 <agency>SUDENE</agency>
</F_Station>

<F_Station>
 <code>481</code>
 <gml:Point>
 <gml:coordinates cs=","
 decimal="." ts="">
 -3.85,-40.66</gml:coordinates>
 </gml:Point>
 <name>Arruda</name>
 <address>
 <street>R. Sao Francisco, 606</street>
 <city>
 <name>SOBRAL</name>
 <area>19820</area>
 </city>
 <zipcode>62113000</zipcode>
 </address>
 <pluviometry>
 <month>3</month>
 <value>150</value>
 </pluviometry>
 <agency>FUNCEME</agency>
</F_Station>
</Extension_of_F_Station>

Figure 3.8 – Extension of F_Station

4. Translating WFS query to SQL/XML query

The WFS GetFeature operation allows retrieval of features from a web feature service. A
GetFeature request is processed by a WFS Server and an XML document containing the
result set is returned to the client. In this work, a WFS GetFeature request is encoded in an
XML document with a root element whose name is “GetFeature” and type is
“wfs:GetFeatureType” [11]. A <GetFeature> element contains one or more <Query>
elements, each of which in turn contains the description of a query. A <Query> element
contained in a GetFeature request delivers feature instances of a given feature type, where
each feature instance matches a tuple of the Master Table. The results of all queries
contained in a GetFeature request are concatenated to produce the result set. A <Query>
element contains:

(i) A mandatory attribute typeName which is used to indicate the name of a feature type to
be queried.

183

(ii) A sequence of zero or more <wfs:PropertyName> elements which specifies what
properties to retrieve. The value of each <wfs:PropertyName> element is an XPath
[22] expressions that references a property or sub-property of the relevant feature type.

(iii) An optional <Filter> element which is used to define spatial and non-spatial
constraints on a query. Filter specifications shall be encoded as described in the OGC
Filter Encoding Implementation Specification [7].

 Figure 4.1 shows an example of a WFS query over feature type F_Station. In the rest
of this section, consider F = < T, R, A > be a feature type over S as defined in Section 3. Let
σF be the extension of F on the current instance of S.
Definition 4.1: Let QW be a WFS Query over F. The canonical XQuery [21] Qx for QW is
defined as follows:
(i) If QW has no <wfs:PropertyName> elements then
 Qx = FOR $f IN document("σF")/F
 WHERE $f satisfies the filter of QW
 RETURN <gml:featureMember> $f </gml:featureMember>
(ii) If QW has n <wfs:PropertyName> elements as shown in Figure 4.2. Then the canonical

XQuery Qx for QW is the one shown in Figure 4.3. �
Definition 4.2: Let QW be a WFS Query over F and let Qx be the canonical XQuery for QW.
We define the result of QW to be the result of evaluating QX. Notice that QX is evaluated on
σF. Intuitively, this is what a user would see if we are to materialize the extension of the
feature type. �

<wfs:Query typeName="F_Station">
 <wfs:PropertyName>name</wfs:PropertyName>
 <wfs:PropertyName>address/city</wfs:PropertyName>
 <wfs:PropertyName>pluviometry</wfs:PropertyName>
 <wfs:PropertyName>geometry</wfs:PropertyName>
 <ogc:Filter>
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>agency</ogc:PropertyName>
 <ogc:Literal>FUNCEME</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:BBox>
 <ogc:PropertyName>geometry</ogc:PropertyName>
 <gml:Envelope>
 <gml:lowercorner>-5.2 -42.5</gml:lowercorner>
 <gml:upperCorner>-2.5 -38.7</gml:upperCorner>
 </gml:Envelope>
 </ogc:BBox>
 </ogc:And>
 </ogc:Filter>
</wfs:Query>

 <wfs:Query typeName="F">
 <wfs:PropertyName>Path1</wfs:PropertyName>
 <wfs:PropertyName>Path2</wfs:PropertyName>
 …
 <wfs:PropertyName>Pathn</wfs:PropertyName>
 <ogc:Filter>
</wfs:Query>

Figure 4.1 – WFS Query QW1 Figure 4.2 – WFS Query QW

184

FOR $f in document("σF")/F
WHERE $f satisfies the filter of QW
RETURN <gml:featureMember>{
 <F> {
 $f/path1,
 $f/path2,
 …
 $f/pathn
 }</F>
 }<gml:featureMember>

FOR $f in document("σF")/Station
WHERE $f satisfies the filter of QW1
RETURN <gml:featureMember>{
 <F_Station> {
 $f/name,
 $f/address/city,
 $f/pluviometry,
 $f/geometry
 }</F_Station>
 }<gml:featureMember>

Figure 4.3 – Canonical XQuery QX for QW Figure 4.4 – Canonical XQuery QX1 for QW1

<gml:FeatureMember>
 <F_Station>
 <name>Serragem</name>
 <city> <name>OCARA</name>
 <area>1450</area> </city>
 <pluviometry> <month>1</month>
 <value>87.8</value> </pluviometry>
 <pluviometry> <month>2</month>
 <value>171.6</value> </pluviometry>
 <geometry>
 <gml:Point>
 <gml:coordinates cs="," decimal="." ts="">
 -4.45,-38.5</gml:coordinates> </gml:Point>
 </geometry>
 </F_Station>
</gml:FeatureMember>

<gml:FeatureMember>
 <F_Station>
 <name>Arruda</name>
 <city> <name>SOBRAL</name>
 <area>19820</area> </city>
 <pluviometry> <month>3</month>
 <value>150</value> </pluviometry>
 <geometry>
 <gml:Point>
 <gml:coordinates cs="," decimal="." ts="">
 -3.85,-40.66</gml:coordinates> </gml:Point>
 </geometry>
 </F_Station>
</gml:FeatureMember>

Figure 4.5 – XML fragment resulting from QW1

 In our approach, the extension of a feature type is virtual, computed by an
SQL/XML query (see Definition 3.3). Therefore, QW should be translated to an SQL/XML
query defined over the database schema as follows.
Definition 4.3: Let QW be a WFS Query over feature type F, and Qx be the canonical
XQuery for QW. Let QS be a SQL/XML query over S which returns a set of
<gml:featureMember> elements. We say that QS is a correct translation for QW iff for any
instance σs of S if σF is the extension of F on σs, S1 is the set of <gml:featureMember> elements
resulting from evaluating QS on σs, and S2 is the set of <gml:featureMember> elements
resulting from evaluating QX on σF, then S1 = S2. �

185

SELECT XMLELEMENT("gml:FeatureMember",
 XMLELEMENT("Station",
 XMLFOREST(S.NAME AS "name"), --- (TranslatePath(name))
 XMLELEMENT("city", (TranslatePath(address/ city))
 (SELECT XMLCONCAT(
 XMLFOREST(C.NAME AS "name"),
 XMLFOREST(C.AREA AS "area"))
 FROM City_rel C WHERE C.CODECITY = S.CODECITY)),
 (SELECT XMLAGG(XMLELEMENT("pluviometry", (TranslatePath(pluviometry))
 XMLFOREST(PL.MONTH AS "month"),
 XMLFOREST(PL.VALUE AS "value")))
 FROM Pluviometry_rel PL
 WHERE S.CODE = PL.CODESTATION),
 XMLFOREST((TranslatePath(geometry))
 SDO_UTIL.TO_GMLGEOMETRY(S.GEOM_POINT)
 AS "geometry")))
FROM Station_rel S, Agency_rel A
WHERE S.CODEAGENCY = A.CODEAGENCY AND A.NAME = 'FUNCEME' AND
 mdsys.sdo_relate(S.GEOM_POINT, mdsys.sdo_geometry(2003, NULL, NULL,
 mdsys.sdo_elem_info_array(1, 1003, 3),
 mdsys.sdo_ordinate_array(-5.2, -42.5, –2.5, -38.7)),
 'mask=ANYINTERACT querytype=WINDOW') = 'TRUE';

Figure 4.6 – SQL/XML Query QS1

 Consider, for example, the WFS query QW1 shown in Figure 4.1. The canonical
XQuery for QX1 is shown in Figure 4.4. The result of QW1 is defined by the result of
evaluating QX1. Suppose σDB_Station, the instance of DB_Station shown in Figure 3.7, and
σF_Station the corresponding extension of F_Station shown in Figure 3.8. Evaluating QX1 on
σF_Station we obtain the XML fragment shown in Figure 4.5, which is the result for QW1. The
same result can be obtained by evaluating the query QS1 in Figure 4.6 over σDB_Station, as QS1

is a correct translation for Qw1.

 The Algorithm TranslateWFSQuery shown in Figure 4.7 receives as input a WFS
query QW and generates the SQL/XML query QS such that QS is a correct translation for Qw.
The Algorithm uses the functions TranslatePath and TranslateFilter defined in following.
Definition 4.4: Let δF = p1 /…/ pn be a path of T. TranslatePath(δF) returns an SQL/XML sub-
query Q , that computes the value of path δF. More formally, for any instance $t of T if $t ≡A
r, where r is a tuple of R then Q(r) returns a set S of <pn> elements where S = $t/ p1 /…/ pn.
Note that Q has a reference for a tuple r of R. �
 Figure 4.6 shows the SQL/XML sub-query that computes the value of each path
expression of the WFS query QW1 shown in Figure 4.1. Note that each sub-query references
a tuple s of Station_rel.

186

 In our approach, we can generate, at feature type definition time, TranslatePath(δF)
for each path δF of T. TranslatePath(δF) is automatically generated based on the CA of the
proprieties in δF as follows: Let δF = p1 /…/ pn be a path of T where [T/ p1] ≡ [R/ δ1], [Tpi/ pi+1] ≡
[Rpi/ δi+1], are the CA of pi in A, for 1≤i≤n-2 and [Tpn-1/ pn] ≡ [Rpi/ exp] is the CA for pn in A (δi
can be null). Let Q = GenSQL/XML(pn, δ1. …. .δn-1.exp, r) (see Function GenSQL/XML in Figure
3.2). Then, TranslatePath (δF) = Q . Theorem 4.1 below shows that Q is a correct translation
for δF (satisfies Definition 4.4).
Theorem 4.1: Let δF be a path of T as in Definition 4.4, and let Q = GenSQL/XML(pn, δ1. …
.δn-1.exp, r). Let r be a tuple of R and $t be an instance of T such that $t ≡A r. Let S be the set
of <pn> elements returned from Q (r). So we have that S = $t/ p1 /…/ pn. �
Proof: From Algorithm GenSQL/XML in Figure 3.2, we have that S ≡A r/δ1. … .δn-1.exp. Since
$t ≡A r, from definition 2.8 and the CA of pi in A, 1≤i≤n-2, we can show that $t/ p1 /…/ pn ≡A
r /δ1. … .δn-1.exp. Therefore, S = $t/ p1 /…/ pn .
Definition 4.5: Let f be the filter element of a WFS Query. TranslateFilter(f) returns a tuple
<P,L>, where P is an SQL conditional (boolean) expression and L is a list of relations
names required to process the conditions in P, such that for any instance $t of T if $t ≡A r,
where r is a tuple of R then $t satisfies f iff r satisfies P. �

 Due to space limitation, the function TranslateFilter is not discussed here. The
semantics of this function is well specified in [7,10].
 Theorem 4.2 below shows that Algorithm TranslateWFSQuery in Figure 4.7 correctly
translates a WFS query.

Input: WFS query QW.
Output: SQL/XML query QS

Let <P , L > := TraslateFilter(f), where f is the filter of QW;
In case of:
1. If QW has no <wfs:PropertyName> elements then
 Qs = "SELECT XMLELEMENT(\" gml:featureMember \",
 XMLELEMENT("F", τ[R→T](r))
 ")) FROM R r, L WHERE P ";
 2. If QW has n (n>0) <wfs:PropertyName> elements then
 Let Prop[i] := TranslatePath(Pathi), where Pathi is the value of i-th <wfs:PropertyName> element, 1≤i≤n;
 Qs = "SELECT XMLELEMENT(\" gml:featureMember \",
 XMLELEMENT(\" F \", "
 + Prop[1] + ", " + Prop[2] + ", " … + Prop[n] +
 ")) FROM R r, " + L + WHERE P ";
End case
Return Qs;

Figure 4.7 – Algorithm TranslateWFSQuery

187

Theorem 4.2. Let QW be a WFS Query over feature type F, and Qx be the canonical XQuery
for QW. Suppose pi is the property referenced by Pathi on QW, 1≤i≤n. Let QS be a SQL/XML
query over S generated by the algorithm TranslateWFSQuery. Let σs be an instance of S, and
σF be the extension of F on σs. Let S2 be the set of <gml:featureMember> elements resulting
from evaluating QS on σs, and S1 be the set of <gml:featureMember> elements resulting from
evaluating QX on σF. So, S1 = S2
Proof: Suppose: (i) QW has n (n>0) <wfs:PropertyName> elements, where Pathi is the value
of i-th <wfs:PropertyName> element, 1≤i≤n; (ii) pi is the property referenced by Pathi,
1≤i≤n; (iii) $f1∈S1.
(→) We first prove that S1⊃S2.

(1) From QX we have that $f1 has properties p1, …, pn and exists $f∈σF, where $f satisfy the
filter condition f of QW, and $f1/pi = $f/pathi, 1≤i≤n.

(2) From Definition 3.2 and Definition 4.4, exists r∈R such that r ≡A $f.
(3) From Definition 4.5, r satisfy P where <P, L> = TranslateFilter(f).

(4) From (2) and (3) and QS, we have that exists $f2∈S2, where $f2 has properties p1, …, pn
and $f2/pi = TranslatePath(Pathi)(r).

(5) From (2) and Definition 4.3, TranslatePath(Pathi)(r)= $f/Pathi, for 1≤i≤n.
From (1), (4) and (5), we have that $f2/pi = $f1/pi, 1≤i≤n. Thus, $f2 = $f1 and therefore

S1⊃S2.
(←) The proof that S2⊃S1 is similar to the above.
The proof for the case where QW has no <wfs:PropertyName> elements follows from Theorem
3.1. ■

5. Conclusions

We argued in this paper that we may fully specify a feature type in terms of the relational
database by using correspondence assertions, in the sense that the assertions define a
mapping from tuples of the relational schema to instances of the feature type. We defined
the semantics of WFS query answering, and presented an algorithm that translate, based on
the feature type’s correspondence assertions, a WFS query defined over a feature type
schema into a SQL/XML query defined over the relational database. Moreover, we showed
that the TranslateWFSQuery Algorithm correctly translates a WFS query.

We are currently working on the development of GML Publisher [17], a framework
for publishing geographic data stored in relational database as GML. The publication of a
feature type in GML Publisher consists of three steps: (1) The user defines the XML schema

188

of feature type instance. (2) The correspondence assertions of the feature type are generated
by matching the feature type XML schema and the relational database schema. (3) Based
on the feature type correspondence assertions, GML Publisher generates the SQL/XML
query that computes the extension of the feature type, and the SQL/XML sub-query that
computes the value of each feature type path expression.

Acknowledgments
This work is financed by CNPq and project GML Publisher: Um Framework para
Publicação de Feições Geográficas como GML (process no. 478571/2004-6).

References
1. Deegree. http://deegree.sourceforge.net (visited on September 26th, 2005).

2. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E. and Zemke, F. (2004) SQL:2003
has been published. In: SIGMOD Record, v.33, p.119-126.

3. Fernández, M., Kadiyska, Y., Suciu, D., Morishima, A., and Tan, W. C. (2002)
SilkRoute: A framework for publishing relational data in XML. In: TODS, v.27, n.4,
p.438–493.

4. Hernández, M. A., Miller, R. J., Haas, L. M. (2001) Clio: A Semi-Automatic Tool For
Schema Mapping. In: SIGMOD Conference.

5. Krishnamurthy, R., Kaushik, R., and Naughton, J. F. (2003) XML-SQL Query
Translation Literature: The State of the Art and Open Problems. In: XSym.

6. Madhavan, J., Bernstein, P., Rahm, E. (2001) Generic Schema Matching with Cupid.
In: 27th Proceedings of the International Conference on Very Large Databases
(VLDB), p.49–58.

7. OpenGIS Consortium. Filter Encoding Implementation Specification: Version 1.1.
http://www.opengis.org (visited on September 26th, 2005).

8. OpenGIS Consortium. http://www.opengis.org (visited on September 26th, 2005).

9. OpenGIS Consortium. Schema for Geography Markup Language (GML). Version 2.0.
http://www.opengis.org (visited on September 26th, 2005).

10. OpenGIS Consortium. Simple Features Implementation Specification for SQL. Version
1.1. http://www.opengis.org (visited on September 26th, 2005).

11. OpenGIS Consortium. Web Feature Service (WFS) Implementation Specification.
Version 1.0. http://www.opengis.org (visited on September 26th, 2005).

12. Oracle Corporation. Disponível em: http://technet.oracle.com. (Acessado em 24 de abril
2005).

13. Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., Fagin, R. (2002) Translating
Web Data. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), p.598–609.

189

14. Rahm, E., Bernstein, P.A. (2001) A Survey of Approaches to Automatic Schema
Matching. In: VLDB Journal, v.10, n.4, p.334–350.

15. Shanmugasundaram, J., Kiernan, J., Shekita, E., Fan, C., and Funderburk, J. (2001)
Querying XML views of relational data. In VLDB.

16. SQL/XML. http://www.sqlx.org/ (visited on September 26th, 2005).

17. Vidal, V. M. P., Feitosa, F. B. (2004) GML Publisher: Um Framework para Publicação
de Feições Geográficas como GML. In: III Workshop of Theses and Dissertations on
Databases, 19th Brazilian Symposium on Databases. Brasília, Brazil.

18. Vidal, V.M.P., Boas, R. V. (2002) A Top-Down Approach for XML Schema Matching.
In: Proceedings of the 17th Brazilian Symposium on Databases. Gramado, Brazil.

19. Vidal, V.M.P., Casanova, M.A., Lemos, F.C. (2005) Automatic Generation of XML
Views of Relational Data. In: Technical Report (http://lia.ufc.br/~arida). Universidade
Federal do Ceará, November, 2005.

20. World-Wide Web Consortium. XML Schema Part 0: Primer Second Edition.
http://www.w3.org/TR/xmlschema-0/ (visited on September 26th, 2005).

21. World-Wide Web Consortium. XQuery: An XML Query Language. Version 1.0.
http://www.w3.org/TR/xquery/ (visited on September 26th, 2005).

22. World-Wide Web Consortium: XML Path Language (XPath). Version 1.0.
http://www.w3.org/TR/xpath (visited on September 26th, 2005).

23. Yu, C., Popa, L. (2004) Constraint-Based XML Query Rewriting For Data Integration.
In: SIGMOD, p.371–382.

190

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 174-190.

