
A Rule-Based Optimizer for Spatial Join Algorithms

Miguel Fornari1,3, João Luiz Dihl Comba1, Cirano Iochpe1,2

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – CEP 91.501-970 – Porto Alegre – RS – Brazil

2PROCEMPA - Empresa de Tecnologia da Informação e Comunicação da Prefeitura de
Porto Alegre – Av. Ipiranga, 1200, CEP 90160-091 – Porto Alegre – RS – Brazil

3FATEC-SENAC – Faculdade de Tecnologia-SENAC/RS – Rua Cel. Genuíno, 130 –
CEP 90010-030 - Porto Alegre – RS – Brazil

fornari@ieee.org, {comba, ciochpe}@inf.ufrgs.br

Abstract. The spatial join operation is both one of the most important and
expensive operations in Geographic Database Management Systems
(GDBMS). This paper presents a set of rules to optimize the performance of
the filtering step of spatial joins operations. First, a set of expressions to
predict the number of I/O operations and CPU performance is presented. The
rules are based on expressions to predict the performance of algorithms and
tests performed with synthetic and real data sets. Fos some cases, the
optimized algorithm can execute the same operation 10 times faster than the
original, non-optimized version.

1. Introduction

The spatial join operation combines two sets of spatial features, A and B, based on a
spatial predicate [Rigaux et all, 2000]. Combining such pairs of spatial features in large
data sets implies the execution of both Input/Output (I/O) and a large number of CPU
operations. Therefore, it is both one of the most important and the most expensive
operations in geographic databases systems (GDBMS).

As an example, consider a geographical data set describing rivers and another
one representing counties. Many applications, like transport planning, agricultural
production and flood prevention, must know which counties are crossed by rivers. To
answer the query "find every county that is spatially crossed by a river" a user can apply
a spatial join over the two feature sets with the topological predicate "crosses".

Traditionally, a user submits a query to the Database Management System
(DBMS), using a high level language, such as SQL. After lexical and syntactic
validation, the query is transformed into a relational algebra expression, to be processed
by the query optimizer module. The query optimizer, based on a set of statistical data
stored in the data dictionary, defines an execution plan. The evaluation engine performs
the query according to the execution plan over the user data.

The main contribution of this work consist of a set of rules to optimize the
performance of some well-known algorithms: Partition Based Spatial Merge Join
(PBSM) [Patel and De Witt, 1996], Iterative Stripped Spatial Join (ISSJ), Synchronized

Tree Transversal (STT) [Brinkhoff et all, 1993] and Histogram-based Hash Stripped
Join (HHSJ) [Fornari and Iochpe, 2004].

The goal is to reduce the response time of spatial join algorithms, changing some
basic parameters. We must address two main problems: (1) which parameters are
relevant for the algorithm´s performance and (2) what is the best value for each
important parameter?

The text is structured as follows. In the section 2 the expressions to predict the
number of I/O operations and CPU performance are introduced. The section 3 explains
the system architecture of the software implemented to carry out the tests using real and
synthetic data sets. The set of rules are described and justified in the fourth section.
Section 5 presents some conclusions and suggestions.

2. Spatial Join Algorithms
The algorithms that perform the filtering step of the spatial join operation manipulate
object descriptors, defined by their object identifier (OID), the minimum bounding
rectangle (MBR) and a pointer to the geometric description of the object.

Figure 1 shows a complete set of algorithms that perform the filtering step of a
spatial join operation. The algorithms are classified according to the file organization
used to maintain object descriptors. As mentioned before, we select a representative
algorithm for each class, except for the nested loops and one-indexed file classes. In
preliminary tests, nested loops presented very long response time, being the worst
choice in any situation. The algorithms in the class “one indexed file” are an extension
of the “pure” algorithms for a special case, and we expected that the results can be
extended for them.

Figure 1. Classification of spatial join filter step algorithms according to their
method of file organization.

2.1 Plane-sweep technique

All spatial join algorithms, in different ways, load objects into memory and a kind of
plane-sweep strategy to check if object pairs satisfy the spatial predicate[Rigaux et al.,
2000][De Berg, 2000].

Sorted files

One indexed file

Space
subdivision

Nested loop Nested Loop [Lo and Ravishankar, 1996]

Scalable Sweeping-based Spatial Join [Arge et all, 2000]
Iterative Spatial Join [Jacox and Samet, 2003]

Query loop

File sorting

File indexing
Space
subdivision

Index Nested [Lo and Ravishankar, 1996]

Sort Sweep-Based Spatial Join [Gurret and Rigaux, [2000]
Priority Queue-Driven Process [Arge et all, 1998]
Build & Match [Patel and Dewitt, 1996]
Seeded-Tree [Lo and Ravishankar, 1996]

Slot Index Spatial Join [Mamoulis and Papadias, 2003]

Partition Based Spatial Merge Join [Patel and DeWitt, 1996]
Spatial Hash Join [Lo and Ravishankar, 1996]
Size Separation Spatial Join [Koudas and Sevcik, 1997]

Sequential files

Indexed files Synchronized Tree Transversal [Brinkhoff et all, 1993]
Priority Queue-Driven Process 2 [Arge et all, 1998]

Hashed files Histogram-based Hash Stripped Join [Fornari and Iochpe, 2004]

The plane-sweep technique has a performance of O kn log n , where k
represents the number of intersections between objects and n is the number of objects
[De Berg, 2000]. If the technique is used to find intersections between objects of two
sets, then n=n AnB , where nA and nB is, respectively, the number of objects in sets A
and B. The value of k can vary a lot, depending on the spatial distribution and the size of
objects.

Figure 2. An example of a set of objects where k=0 and c=6.

In order to predict the algorithm performance in the most accurate way, we
define the number of pairs for which the spatial predicated is verified, expressed by c,
independently if the result is true or false. Figure 2 shows an example where the number
of intersections (k) is zero, but the number of comparisons (c) is six, because the pairs
(o2,o1), (o3,o2), (o3,o1), (o4,o3), (o4,o2) and (o4,o1) are tested.

In a first approach, considering the objects uniformly distributed in the space, c
can be estimated by

c=sx n (1)

where sx, represent the average size of objects. This technique also works if the objects
are sorted by their y coordinates. The estimation in this case is c=s y n .

For non-uniform distributions, we divide the space into strips, as can be seen in
figure 3. For each strip, the number of overlapping objects is counted, and a object
distribution histogram is built.[Belussi et all, 2003][Belussi et all, 2004]. The estimation
can be made by the following expression, where  is the number of strips and n i is
the number of objects of sets A and B in strip i, for 1i .

c=∑
1



ni
 (2)

Figure 3. An example of space stripping.

 o1

 o4

 o3

 o2

Slice 1:
3
objects

Slice 2:
5
objects

Slice 3:
4
objects

Slice 4:
5
objects

Slice 5:
5
objects

Slice 6:
2
objects

Slice 1: 2 objects

Slice 2: 2 objects.

Slice 3: 3 objects

Slice 4: 3 objects

Slice 5: 1 objects

Slice 6: 2 objects

Although the size of objects might not appear to be important, it has an impact in
the number of objects in each strip. Figure 3 shows an example of a set of objects in a
space divided by 6 strips. As can be observed, the shape of objects significantly
modifies the number of objects per slice.

Table 1. The symbols and their meanings.

Symbol Meaning

k Number of intersecting pairs of objects

c Number of pairs of objects tested to verify if attends to the spatial
predicate

n A , n B Number of objects in sets A or B, respectively

sx
A , s y

A , sx
B , sy

B Average size on axle x or y, for sets A or set B.

b A , bB Number of disk blocks occupied by sets A or B.

M o , M b Memory size on number of objects and number of blocks

t sr , t sw Average time to sequential read/write operations.

t rr , t rw Average time to random read/write operations.

t coord Time to compare two coordinates, in double precision

t inter Time to verify if two objects intersects

t RPM Time to verify if two objects intersects and if attends the
Reference Point Method (RPM).

h , hA , hB Height of R-Trees.

n i
A , ni

B Number of nodes on i level of a R-Tree.

sx ,i
A , s y , i

A ,
s x ,i

B , s y ,i
B

Average size of nodes in level i of a R-Tree.

Fanout Fanout of a R-Tree

sx
Strips , sy

Strips Average size on strips that divides the space.

 ,H ,V Number of slices that divides the space

P Number of partitions

 Probability of a certain block to be in the memory buffer .

o Percentage of partitions that overflowed

bo Number of overflow buffers

r Replication factor

The plane-sweep technique is adapted according to the spatial join algorithm.
These modifications can alter the value of c, and are described within the respective
algorithm. Table 1 summarizes the symbol notation used in this paper.

2.2 Synchronized Tree Transversal
The Synchronized Tree Transversal (STT) [Brinkhoff et all, 1993] algorithm needs that
both sets are indexed, in advance, for two different R-Trees, named R A and R B . Nodes
of both R-Trees are compared, in a synchronized way. The number of nodes
comparisons was defined in [Huang e Jing, 1997], as

Comp=∑
i=1

h−1

∑
1

ni
A

∑
1

ni
B

min s x, i
A sx ,i

B  , 1×min  sy ,i
A s y ,i

B  , 1
(3)

Initially, the height of both trees are considered to be equal and is expressed just
by h. Be n i

A the number of nodes of set A in level i of the R-Tree R A , and 1ih .

The average size, in the axis x, of nodes or MBR in level i is represented by sx ,i
A .

Based on [Theodoridis, 1996][Theodoridis, 1998][Huang,1997], the number of
I/O operations when the buffer size is equal to zero is defined as Zj=22Comp .
Introducing a buffer,  represents the possibility of a certain node being found in buffer
memory, reducing the number of I/O operations to

io STT=nR
AnR

BZj−n R
A−n R

B (4)

The expression for the CPU performance depends on the number of nodes
comparisons (3). For each node comparison, 2Fanout objects are involved, at
maximum, resulting in

cpu STT=O cSTT2 Fanout log 2 Fanout  (5)

An adequate value for cSTT is necessary to complete the expression. The R-Tree
divides the space in an irregular way. Two objects, aligned on the x axis, can be
allocated in different nodes. As a result, they will not be compared to evaluate the
spatial predicate, reducing c. If let s1

R be the average size of leaves, c can be estimated
by

cSTT ,1=
c
s1

R
(6)

The value of c, for internal levels, depends on the number and average size of
nodes of the lower level.

cSTT , i=min sx ,i1
A s x ,i1

B ,1×ni1
A ×n i1

B
(7)

Add the number of comparisons in all levels, the value of c for the entire R-Tree
is obtained.

cSTT=∑
i=1

h

cSTT , i (8)

2.3 Iterative Stripped Spatial Join
The Iterative Stripped Spatial Join (ISSJ) algorithm is an adaptation of the Iterative
Spatial Join, proposed by Jacox and Samet [2003]. The main idea is, first, to sort the
sets of objects separately. Then, the plane-sweep technique is applied, scanning both

sets in sequence. During the plane-sweep, just the active objects are maintained in
memory. The space is divided in strips to reduce the number of comparisons. When an
object is loaded to memory, it is assigned to one or more strips. A different active
objects list is maintained for each strip. In this way, pairs of distant objects are not
compared.

Considering a uniform distribution of objects, in each strip the number of objects
is r nAnB/ , where r represents the replication factor. It can be calculated as the
number of objects, with replicas, over the original number of objects,
r=nR

AnR
B/ nAnB , resulting in a value greater than 1.

The number of I/O operations depends on whether the sorting is internal or
external. The best case occurs if both sets are sorted using an internal algorithm. Then,
the number of I/O operations is

ioISSJ=3bAbB (9)

The worst case occurs if both sets are sorted by an external algorithm. The number of
I/O operations increases to

ioISSJ=bAbB2bA×⌈ logM b
bA⌉2bB×⌈ logM b

bB⌉ . (10)

Due to the space division in the strips, the number of pair comparisons is
reduced to

c ISSJ=

r c
 (11)

The expected performance of the algorithm is

cpu ISSS=O c ISSJr nAnB log r nAnB



. (12)

2.4 Partition Based Spatial Method
As a first step, the PBSM [Patel and DeWitt, 1996] divides the space into a set of cells
by applying a regular grid to it. A partition is a set of cells and each cell belongs to one,
and only one, partition. A spatial object may intersect one or more adjacent cells,
belonging to different partitions. The algorithm replicates the object descriptor in all
intersecting partitions.

The objects are loaded to memory, distributed in partitions, and then reloaded to
memory to the plane-sweep. For each object, three I/O operations are executed. But, a
certain percentage of partitions, represented by o, overflows, because all objects don´t
fit in memory at the same time, forcing another read/write operation. Replicas in the
result set are avoided using the Reference Point Method (RPM) [Dittrich and Seeger,
2000]. Thus, the number of I/O operations can be expressed by:

ioPBSM=2 o r 22 r1bAbB . (13)

Due to space subdivision, the number of pairs of objects comparisons is reduced.
If the number of horizontal cells is greater than the number of partitions, as figure 4a

shows, in a same row, more than one cell can be allocated to the same partition. If the
number of horizontal cells is smaller, as in figure 4.b, considering just one row, each
cell is allocated to a different partition. Being the number of horizontal cells represented

by H , the value for c can be estimated by

c PBSM=
c
H

, PH

cPBSM=
c
P

, P≤H
. (14)

Figure 4. Cell allocation, according to the number of partitions, using a round-
robin schema.

In a uniform distribution, all partitions have the same number of objects,
including replicas. In this case, the plane-sweep technique for each partition processes
r nAnB / P objects. As the plane-sweep is repeated for all partitions, the total number of
comparisons is expected to be in an order of

cpu PBSM=O cPBSM r nAnBlog r nAnB
P


. (15)

2.5 Histogram-based Hash Stripped Join
The Histogram-based Hash Stripped Join (HHSJ) [Fornari and Iochpe, 2004] has three
main characteristics: the object descriptors are stored in a hash file organization; a bi
dimensional histogram of object distribution defines the spatial extension of each
partition; and, when it loads objects to memory, it divides the space by strips.

The histogram is maintained in a quadtree, so-called HistQ. Each of its
quadrants represents a subdivision (a cell) of the global space. Each node contains a
counter of the number of objects that intersects the space segment represented by this
node of the quadtree. Each level of the quadtree represents a different histogram of
object distribution, with a different degree of precision.

A hash file is created for each data set. It is organized in buckets, assuming a
static hash organization. The hash function associates a leaf node of HistQ to a specific
bucket in the hash file. Therefore, there exists one bucket in the hash file for each leaf of
the quadtree. If an object transposes quadrants and is counted in two (or more) leaf
nodes of HistQ, its descriptor is replicated in two (or more) buckets. The number of
replicated objects is defined during the creation of the hash file.

The minimum number of buckets is defined by

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

(a) (b)

Buckets=⌈ n
Fanout

⌉
. (16)

Using (16), the height of the HistQ can be calculated by

h=⌈log 4 Buckets ⌉ . (17)

In fact, the number of buckets, and, considering a disk block for each bucket, is

b=h4
. (18)

Because some buckets in the hash file can overflow, some additional disk blocks
are necessary.

To carry out the test of spatial predicate in pairs of objects, first, the HHSJ loads
the HistQ of both sets to main memory. Based on them, partitions and respective
boundaries are defined. Each partition is spatially defined by the corresponding selected
quadrants in both quadtrees. The space is divided in an irregular way. Regions more
densely populated are divided into small areas, to maintain the number of objects
pertaining to a partition into the available memory.

Before, the algorithm processes each partition separately. First it identifies the
buckets that are covered by the partition. Then, the object descriptors stored in each
bucket are loaded to memory.

The algorithm just loads to memory both HistQs and all buckets, including
overflow buckets, of each hash file. So, the number of I/O operations is

ioHSSJ=bA
HistQ4hAboA

HashbB
HistQ4hBboB

Hash
 (19)

The number of comparisons between pairs of objects is reduced by two factors:
the number of partitions (P) and the number of strips inside each partition (l). As the
space is divided in an irregular way, we use the mean partition size, expressed by sx

Part
and a constant number of strips, for all partitions, resulting in

c HHSJ=
c

sx
Part× . (20)

the performance in CPU can be estimated by

cpu HHSJ=O cHHSJr nAnBlog r nAnB
p


. (21)

3. The System Architecture

The performance analysis, although correct, simplifies many cases. To compare the
algorithms in real situations, a software system was implemented to carry out the tests
between them. The main components of its architecture are shown in figure 5.

To acquire real data sets, one tool converts different data formats to the internal
files. Another tool generates synthetic data sets. This second type of data is valuable for
performance tests, because the user can control the parameters that describe the data set

characteristics, changing one or two of them in each data set, and then test the
algorithms to verify differences in the their performance.

The main component in the system architecture is the join module, which
contains the spatial join algorithms implemented. The design of the join module allows
one to plug and play other algorithms easily.

When running a test, the user specifies the desired algorithm and the size of
main memory. The buffer capacity is measured in number of pages and each page has a
fixed size of 4Kb. For the STT algorithm, a specific R-Tree Oriented Buffer was
implemented for better performance. The other three algorithms use a traditional LRU
buffer.

Figure 5. The main component in the implemented system architecture is the join
module, containing a set of different algorithms.

For all algorithms, the overall response time and number of I/O operations can
be obtained. For specific algorithms, other values, like the replication factor or the size
and height of R*-Tree, can be obtained.

The entire system was implemented in C language, for Linux operating system,
by us. During tests, the system operating buffer was turned off, so as to not influence the
result time. All tests were performed on an Intel 2.4GHz, with 512 Mb of RAM and
SCSI disks.

3.1 Data Sets

The artificial data sets were generated by the system, and the real data sets were
obtained from different sources. Table II shows the name, description, cardinality and
average size on both axes for each real data set, grouped by its source. As can be seen,
we used a great number of real data sets, with very different characteristics. The
cardinality has an obvious importance, because it defines the workload for the
algorithm. The average size of objects is important because it defines, to a great extent,
the number of pairs of objects that will be compared.

Interface

STT PBSM ISSJ

LRU Buffer

Join Module
Data
 import

Data
Generator

HHSJ

RTO Buffer

Table 2. Real Data sets Characteristics

Name Description Cardinality # of disk
blocks

% of average
size on X

% of average
size on Y

Source: R-Tree Portal (www.rtreeportal.org)

ca_streets Californian streets - multilines 2.249.727 13.157 0,016% 0,013%

ca_streams Californian streams of water -
multilines

98.451 576 0,184% 0,157%

ge_roads German roads - multilines 30.674 180 0,146% 0,108%

ge_utility German public utility networks
- multilines

17.791 103 0,236% 0,169%

ge_rrlines German railroads - multilines 36.334 213 0,117% 0,084%

ge_hypsogr German hypsographic data -
multilines

76.999 451 0,067% 0,048%

gr_roads Greek roads - multilines 23.278 137 0,188% 0,187%

gr_rivers Greek rivers - multilines 24.650 145 0,187% 0,200%

la_streets Los Angeles streets - multilines 131.461 769 0,035% 0,029%

la_rr Los Angeles railroads -
multilines

128.971 755 0,086% 0,071%

Source:Bureau of Transportation Statistics (USA) – www.bts.gov

usa_countie
s

Counties - polygons
3.236 19

0,0049%
0.01%

usa_rr Railroads - multilines 166.688 981 0,00049% 0,0041%

usa_hydro Rivers - multilines 517.538 2959 0,00049% 0,0009%

4. Rules for Performance Optimization

In this section, the set of rules for performance optimization is presented. Each rule is
explained and exemplified, showing the results of performed tests.

Rule 1: the DBMS can estimate k for each axle and choose the one with minor
value of k, optimizing the plane-sweep.

The rule proposes that the GDBMS, first, must estimate the number of
comparisons to be made in each axle, and, after, performed the spatial join algorithm
sorting the data by the choosen axle. Two estimation approaches are suggested, one
based on a single formula (1), another based on histograms (2).

Figure 6. Graph of response time varying the shape of objects.

Firstly, we generate a number of synthetic data sets, varying the shape of the
MBR, from a relation of 5:1 to a relation of 1:5. The cardinality of data sets are, always,
200.000 objects. The graph in figure 6 shows the response time for each algorithm,
sorting by the same axle in all tests, making clear the minimizing possibilities of the
axle choice.

We run all possible joins between real sets , sorting by both axles to validate
both alternatives. When the difference between response time was less than 5%, we
discard the join, because the difference is closed that both sorting alternatives seems to
be good enough. In this way, we concentrate in greater differences, where the choice are
relevant. Alternative 1, based just in mean size, choose the right axle in 29 times, but
the wrong axle 10 times, because it is a rough simplification of the data sets,
representing a 74.3% of correct match. Alternative 2 presented a 100% of correct match,
when the space is divided in 500 strips. The number of correct match is not affected by
the spatial join algorithm.

This result indicates clearly that the histogram based prediction is superior and
must be used always that is possible, justifying the necessity to maintain the histograms
always that an object is inserted or deleted from the data set. But, in a query plan, the
spatial join can be performed after another operation, like a selection. In this case, the
histograms are not available. Our suggestion is, during the anterior operation, create the
histogram, according to the temporary set are written.

Rule 2: The STT algorithm is optimized defining nodes with a low number of
entries. The total number of nodes will be greater, elevating the value of Comp, and
defining a minimum limit for the rule.

The rule 2 intend to optimize the STT algorithm. The construction of R*-Trees
is performed using the STR algorithm [Leutenegger et all, 1997] to reduce the number
of nodes and obtain a maximum occupation of entries in each node. This method
reduces the number of I/O operations, because the size of R*-Trees are minimized.
Second, the buffer algorithm try to maintain non-leaf nodes in the memory buffer,
because non-leaf nodes are more susceptible to reloads than leaf nodes, also, reducing
the number of I/O operations.

 P5:1 P4:1 P3:1 P2:1 P1:1 P1:2 P1:3 P1:4 P1:5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Response time varying the shape of objects

PBSM
ISSJ
STT
HHSJ

Shape - relation between side size

R
es

po
ns

e
tim

e
(s

)

The rule changes the number of entries in a node, called fanout. The number of
leaf nodes can be calculated as nLeafs=⌈n / fanout ⌉ . The number of non-leaf nodes, is
proportional to the number of leaf nodes. So, if the fanout is reduced, the number of
nodes are incremented, maybe, adding a new level to the R*-Tree. By expression (3),
the number of node comparisons are, also, increased, limiting the rule 2. Figure 7 shows
the response time for three different cases of spatial join, varying the fanout from 10 to
146, that is the maximum fanout for a node maintained in just one block.

Figure 7. Graph of response time using the STT algorithm, varying the fanout.

Also, the influence of the buffer memory size was verified. The performance of
STT algorithm is constant when the memory size increases, confirming the results
showed by [Gatti and Magalhães, 2000]. In fact, the time to execute I/O operations
represents a small part, in general, less than 2% of the total time, although the buffer hit
ratio increases according to the memory size, reducing the number of I/O operation
performed, as expected.

Rule 3: The ISSJ algorithm is optimized definining a great number of strips. The
number of objects in each strip will be small, but the is limited by the adding of
replicas.

The third rule is to increase the number of strips to optimize the algorithm ISSJ.
But, this rule increments the replication factor, which penalizes the performance.

Figure 8. Graph of response time and replication factor, for the ISSJ, varying
the number of strips.

The graph in figure 8 shows the response time of two different spatial joins,
varying the number of strips and the replication factor. As can be seen, a small number
of strips, four to eight, presents an increment in algorithm performance, reducing the
response time. After this number of strips, the response time almost stabilize or present

0 10 25 50 75 100 125
0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

Response time varying node fanout

go_soilusage X
go_hydro
la_streets X la_rr
usa_rr X usa_rivers

Fanout

R
es

po
ns

e
tim

e
(s

)

1 2 4 8 16 32 64 128 256 512 1024 2048
0

0,5
1

1,5

2
2,5

3

3,5
4

4,5
5

5,5

6

Algorithm ISSJ - Response time x Number of strips

Number of strips

R
es

po
ns

e
T

im
e

(s
)

1 2 4 8 16 32 64 128 256 512 1024 2048
0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

2,50

Algorithm ISSJ - Replication factor x Number of strips

ge_hypsogr X
ge_roads
la_rr X la_streets

Number of strips

R
ep

lic
at

io
n

F
ac

to
r

a small increment, because the number of processed objects (original + replicas)
increases exponentially.

Figure 9. Graph of response time for algorithm ISSJ, varying the available
memory size.

Changing the available memory size, the performance of the algorithm suffers
great impact of changing the sorting algorithm. The number of I/O operations is
reduced, as well as, CPU cost. In the graph of figure 9, this fact is clear, with a step
down according to the increase of memory size, in the exact point where there is
enough memory to do an in-memory sorting of one of the joined sets. All operations
were performed with a constant number of 8 strips.

Rule 4: The PBSM algorithm is improved setting a high value for the number of
partitions using a small size of memory or just set a lower bound to the number of
partitions. This rule is limited by the number of replicas, that increase the number of
processed objects.

Figure 10. Graph of response time for the algorithm PBSM, varying the available
memory size.

The rule 4 increases the performance of the PBSM algorithm by incrementing
the number of partitions. In this rule, the replication factor is, also, increased, impacting
the performance. The GDBMS can allocate less memory to the algorithm to control the
number of partitions or directly set a value for P. Figure 10 shows the graph of response
time of three spatial join operations, for which the available memory size was changed,
to induce different number of partitions. As the memory size increases, the number of
partitions is reduced, in general, increasing the response time, as expected from (15). In
all cases, the algorithm uses a 32x32 grid of cells.

25 50 75 100 125 150 175 200 250 300 350 400 450 450 500 600 700 800 900 100
0

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Algorithm ISSJ - Response time x available memory size

gr_rivers X gr_roads
ge_hypsogr X ge_roads
la_rr X la_streets

Available memory size (# pages)

Re
sp

on
se

 ti
m

e
(s

)

50 75 100 125 150 175 200 250 300 350 400 450 450 500 600 700 800 900 100
0

0
0,25
0,5

0,75
1

1,25
1,5

1,75
2

2,25
2,5

2,75
3

3,25

Algorithm PBSM - Response time x memory size

gr_rivers X gr_roads
ge_hypso X ge_roads
la_rr X la_street

Available memory size (#pages)

R
es

po
ns

e
tim

e
(s

)

Figure 11. Graph of response time for two cases joined using PBSM algorithm,
varying the available memory size.

Two cases can be seen in figure 11: one between real sets ca_streets and
ca_streams; another between two synthetic data sets. They have the same cardinality of
the real sets, but objects are uniformly distributed in the space.

The set ca_streets, with more than 2 millions of objects, is the key to understand
the behaviour of response time. In small memory size, the number of partitions is
greater than the number of cells defined by the default grid of 32x32. A redefinition of
the grid to 64x64 cells is necessary, to map at least one cell for each partition. Using a
finer granularity grid, the replication factor increases. Also, mapping just a few cells to
one partition, more concentrated areas result in partitions that overflow, being necessary
to execute a costly repartition procedure. As the available memory size increases, the
distribution of objects in partitions become uniform, avoiding repartitions. After a
certain memory size, the response time increases.

Rule 5: The HHSJ is improved setting a large value for the number of partitions
and for the number of strips. This rule is limited, also, by the number of replicas, that
increase the number of processed objects.

The rule 5 is a combination of the strategies 3 and 4, as the HHSJ algorithm
combines aspects of both the ISSJ and the PBSM algorithms. Replication can occur in
two moments when HHSJ is executed: during the creation of the hash file; and when
objects are loaded into memory and divided by strips. As the creation of the hash file
can be done only once when the set is loaded to the GDBMS, we concentrate our
attention in the second moment, that occurs always when the set is involved in a spatial
join operation.

25 50 75 10
0

12
5

15
0

17
5

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

70
0

80
0

90
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Algorithm PBSM - Response time x Memory size

ca_street X ca_rivers
A100K X B2250K

Available memory sizel (#pages)

R
es

po
sn

e
tim

e(
s)

Figure 12. Two graphs of response time for the algorithm HHSJ, varying the
available memory size.

Figure 12 shows two graphs of response time against available memory size. The
number of partitions varies according to memory size, but we kept in 16 the number of
strips in all cases. For small sets, the response time is almost constant. For larger sets,
the response time increases with the available memory size, being constant after a
certain amount of memory. This behavior is different than PBSM, where the response
time just increase, not stabilizing. In HSSJ, the creation of strips, in memory, allows the
stabilization, establishing a maximum value for the response time. For the largest set
spatial join operation, ca_street and ca_stream, the stabilizing point is achieved just at
almost 8Mb of memory, and is not visible in the graph.

 Figure 13. Two graphs of response time and replication factor for the
algorithm HHSJ, varying the number of strips.

The graph in figure 13 shows the effect of change the number of strips in
algorithm HHSJ, maintaining the available memory size. The behavior of response time

25 50 75 100 125 150 175 200 250 300 350 400 450 450 500 600 700 800 900 100
0

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

Algorithm HHSJ - Response time x Memory size

gr_roads X gr_rivers
ge_hypsogr X
ge_roads
la_rr X la_street
go_soilusage X
go_hydro

Available memory size (#pages)

R
es

po
ns

e
tim

e
(s

)

25 50 75 100 125 150 175 200 250 300 350 400 450 450 500 600 700 800 900 100
0

0

2,5
5

7,5

10
12,5

15
17,5

20
22,5

25

27,5
30

Algorithm HHSJ - Response time x Memory size

ca_stream X
ca_street
usa_rr X usa_rivers

Available memory size (#pages)

R
es

po
ns

e
tim

e
(s

)

1 2 4 8 16 32 64 128 256 512 1024 2048

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

Algorithm HHSJ - Response time x # of strips

Number of strips

R
es

po
ns

e
tim

e
(s

)

1 2 4 8 16 32 64 128 256 512 1024 2048
0,000

0,250

0,500

0,750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750

Algorithm HHSJ - Replication factor x # of strips

ge_hypsogr X
ge_roads
la_rr X la_streets

Number of strips

R
ep

lic
at

io
n

fa
ct

or

is almost the same of the ISSJ: a small number of strips results in an important decrease
of response time; a great number of strips produces many replicas, increasing the
response time.

If the available memory size increases, the number of I/O operations is not
changed, because the algorithm read all buckets only once to perform the operation.

5. Conclusions

This paper first introduce expressions to predict the number of I/O operations and CPU
performance of each studied algorithm, using an unified notation. After, a set of simple
rules are established to improve the performance of such algorithms. Using tests with
real and synthetic, response times were collected to prove the correctness of rules. In
some situations, for example, spatial joining the sets ca_streets and ca_stream using
PBSM, the response set varies between 20.3s and 48s, a difference of more than 50%. In
some extreme cases, like optimizing the fanout in R-Trees, the STT algorithms can
perform the spatial join more than 10 times faster.

The study concentrates in spatial join operation using bi-dimensional sets, but
the proposed strategies can be easily extend to operate in three or more dimensional
spaces and spatiotemporal data structures. Although tests with real data sets permit the
evaluation of very different scenarios, we do not expected to cover all possibilities. The
experiments can be carried out for other system architectures like palmtops, where some
additional constraints can impact the performance. Another possibility is running in a
grid architecture, but this imply a significative change in the code of investigated
algorithms.

The goal of reducing CPU time can be explored in many other areas, like
statistic databases, clustering spatial objects and text mining algorithms. Another aspect
to investigate is the implications of CPU caches with 2Mb or more, in traditional
databases algorithms.

Also, we propose that available GDBMS, like Oracle Spatial [Oracle, 2003],
IBM DB2 Spatial Extender [IBM, 2005] and PostGis [Refractions Inc., 2005] can
incorporate the proposed rules and more alternative file organizations, like sorted and
hash files, and algorithms, like ISSJ and HHSJ. In general, they implement only some
variation of R*-Trees, reducing the number of spatial join algorithms to just three: STT,
if both sets are spatial indexed; Scan&Index, if one set is indexed; and nested loops, if
there is no indexes. But, even for this algorithms, some rules can increase the
performance when executing spatial joins, because the differences in response time are
large.

References

Arge, L., O. Procopiuc, O. et al. (2000) “A Unified Approach for Indexed and Non-
Indexed Spatial Joins”. Proc. of 7th Int´l. Conf. on Extending Database Technology,
p. 413-429, 2000.

Arge, L., Procopiuc, O. et al. (1998) “Scalable Sweeping-Based Spatial Join” Proc. of
VLDB, 1998, p.570—581, 1998.

Belussi, A.; Bertino, E. and Nucita, A. (2003), “Grid Based Methods for Spatial Join
Estimation” Proc. of 11TH Symp. of Advanced Databases Systems, p.49-60, 2003.

Belussi, A.; Bertino, E. and Nucita, A.(2004). “Grid Based Methods for Estimating
Spatial Join Selectivity” Proc. of 12th ACM GIS, 2004.

Brinkhoff, T.; Kriegel, H.P. and Seeger, B. (1993), “Efficient processing of spatial joins
using R-trees” Proc. of ACM SIGMOD, p. 237-246, 1993.

Dittrich, J.P. and Seeger, B. (2000), “Data Redundancy and Duplicate Detection in
Spatial Join Processing” Proc. of Int´l. Conf. on Data Engineering, p. 535-543, 2000.

Gatti, S.D. and Magalhães, G.C. (2000), “A Comparison Among Different Syncronized
Tree Transversal Algorithms for Spatial Joins” Proc. of GeoInfo, 2000 - available in
www.geoinfo.info.

Gurret, C. and Rigaux, P. (2000) “The Sort/Sweep Algorithm: A New Method for R-
Tree Based Spatial Joins” Proc. of Statistical and Scientific Database Management,
p.153-165, 2000.

Huang, Y.W. and Jing, N. (1997), “A Cost Model for Estimating the Performance of
Spatial Joins Using R-Trees” Proc. of Int´l Conf. on Information and Knowledge
Management, 1997.

IBM (2005) , “IBM DB2 Spatial Extender- User´s Guide and Reference Version 8”,
2005.

Jacox, E.H. and Samet, H. (2003), “Iterative Spatial Join” ACM Transactions Database
Systems, v.28, n.3, p. 230—256, 2003.

Koudas, N. and Sevcik, K.C.. (1997) “Size Separation Spatial Join”, Proc. of ACM
SIGMOD, p. 324-335, 1997.

Leutenegger, S. T.; Edgington, J. M.; Lopez, M.A. (1997) “STR: A Simple and Efficient
Algorithm for R-Tree Packing”. Technical Report- TR-97-14. University of Denver,
Mathematical and Computer Science Department, Denver: USA.

M-L. Lo and C.V. Ravishankar (1996), “Spatial hash-joins” Proc. of ACM SIGMOD,
1996, p. 247—258, 1996.

M. De Berg, M, M. Van Kreveld, M. Overmars and O. Schwarzkopf (2000),
“Computational Geometry”, 2nd. edition. Springer-Verlag, 2000.

M.R. Fornari and C. Iochpe (2004), “A Spatial Hash Join Algorithm Suited for Small
Buffer Size”, Proc. of ACM GIS, p. 118-126, 2004.

Mamoulis, N. and Papadias, D. (2003), “Slot Index Spatial Join” IEEE Trans. on
Knowledge and Data Engineering, v.15, n.1, p. 211-231, 2003.

ORACLE, “Oracle Spatial User´s Guide and Reference 10g Release 1”, Dec., 2003.

Patel, J.M. and DeWitt, D.J. (1996), “Partition Based Spatial-Merge Join” Proc. of
ACM SIGMOD, p. 259-270, 1996

http://www.geoinfo.info/

REFRACTIONS RESEARCH (2005), “PostGIS Manual.” Disponível em
http://postgis.refractions.net/docs/postgis.pdf.

Rigaux, P.; Scholl, M. and Voisard, A. (2000), “Spatial Databases with Applications to
GIS”. Morgan Kaufmann Pub., 2000.

Theodoridis, Y.; Sellis, T. (1996) “A Model for the Prediction of R-Tree
Performance”. Proc. of 16th. ACM Symposium on Principles of Database Systems,
ACM Press, 1996, p.161-171.

Theodoridis, Y.; Stefanakis, E.; Sellis, T. “An Efficient Cost Model for Spatial Joins
Using R-Trees” IEEE Transactions On Knowledge And Data Engineering,v.12, n.1 ,
p.19-32, January,2000.

http://postgis.refractions.net/docs/postgis.pdf

	73: 73
	74: 74
	cb: VIII Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 19-22, 2006, INPE, p. 3-17.
	75: 75
	76: 76
	77: 77
	78: 78
	79: 79
	80: 80
	81: 81
	82: 82
	83: 83
	84: 84
	85: 85
	86: 86
	87: 87
	88: 88
	89: 89
	90: 90
	sumário:

