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Abstract. The spatial join operation is both one of the most important and  
expensive  operations  in  Geographic  Database  Management  Systems 
(GDBMS). This paper presents a set of rules to optimize the performance of  
the filtering  step of  spatial  joins  operations.  First,  a  set  of  expressions to  
predict the number of I/O operations and CPU performance is presented. The 
rules are based on expressions to predict the performance of algorithms and 
tests  performed  with  synthetic  and  real  data  sets.  Fos  some  cases,  the 
optimized algorithm can execute the same operation 10 times faster than the  
original, non-optimized version.

1. Introduction

The spatial join operation combines two sets of spatial features,  A and  B, based on a 
spatial predicate [Rigaux et all, 2000]. Combining such pairs of spatial features in large 
data sets implies the execution of both Input/Output (I/O) and a large number of CPU 
operations.  Therefore,  it  is  both  one of  the most  important  and the most  expensive 
operations in geographic databases systems (GDBMS). 

As an example, consider a geographical data set describing rivers and another 
one  representing  counties.  Many  applications,  like  transport  planning,  agricultural 
production and flood prevention, must know which counties are crossed by rivers. To 
answer the query "find every county that is spatially crossed by a river" a user can apply 
a spatial join over the two feature sets with the topological predicate "crosses".

Traditionally,  a  user  submits  a  query  to  the  Database  Management  System 
(DBMS),  using  a  high  level  language,  such  as  SQL.  After  lexical  and  syntactic 
validation, the query is transformed into a relational algebra expression, to be processed 
by the query optimizer module. The query optimizer, based on a set of statistical data 
stored in the data dictionary, defines an execution plan. The evaluation engine performs 
the query according to the execution plan over the user data. 

The main contribution of this work consist  of  a set of rules to optimize the 
performance  of  some  well-known  algorithms:  Partition  Based  Spatial  Merge  Join 
(PBSM) [Patel and De Witt, 1996], Iterative Stripped Spatial Join (ISSJ), Synchronized 



Tree Transversal (STT) [Brinkhoff et all, 1993] and  Histogram-based Hash Stripped 
Join (HHSJ) [Fornari and Iochpe, 2004]. 

The goal is to reduce the response time of spatial join algorithms, changing some 
basic  parameters.  We  must  address  two  main  problems:  (1)  which  parameters  are 
relevant  for  the  algorithm´s  performance and  (2)  what  is  the  best  value  for  each  
important parameter? 

The text is structured as follows. In the section 2 the expressions to predict the 
number of I/O operations and CPU performance are introduced. The section 3 explains 
the system architecture of  the software implemented to carry out the tests using real and 
synthetic data sets. The set of rules are described and justified in the fourth section. 
Section 5 presents some conclusions and suggestions.

2. Spatial Join Algorithms
The algorithms that perform the filtering step of the spatial join operation manipulate 
object  descriptors,  defined  by their  object  identifier  (OID),  the  minimum  bounding 
rectangle (MBR) and a pointer to the geometric description of the object. 

Figure 1 shows a complete set of algorithms that perform the filtering step of a 
spatial join operation. The algorithms are classified according to the file organization 
used to maintain object descriptors.  As mentioned before, we select a representative 
algorithm for each class, except for the nested loops and one-indexed file classes. In 
preliminary tests,  nested  loops  presented  very long  response  time,  being  the  worst 
choice in any situation. The algorithms in the class “one indexed file” are an extension 
of the “pure” algorithms for a special  case, and we expected that the results can be 
extended for them.

Figure 1. Classification of spatial join  filter step algorithms according  to their 
method of  file organization.

2.1  Plane-sweep technique

All spatial join algorithms, in different ways, load objects into memory and  a kind of 
plane-sweep strategy to check if object pairs satisfy the spatial predicate[Rigaux et al., 
2000][De Berg, 2000]. 
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The  plane-sweep  technique  has  a  performance  of  O kn log n ,  where  k 
represents the number of intersections between objects and n is the number of objects 
[De Berg, 2000]. If the technique is used to find intersections between objects of two 
sets, then n=n AnB , where nA and nB is, respectively, the number of objects in sets A 
and B. The value of k can vary a lot, depending on the spatial distribution and the size of 
objects. 

Figure 2. An example of a set of objects where k=0 and c=6.

In order  to  predict  the  algorithm performance in  the most  accurate  way, we 
define the number of pairs for which the spatial predicated is verified, expressed by c, 
independently if the result is true or false. Figure 2 shows an example where the number 
of intersections (k) is zero, but the number of  comparisons (c) is six, because the pairs 
(o2,o1), (o3,o2), (o3,o1), (o4,o3), (o4,o2) and (o4,o1) are tested.

In a first approach, considering the objects uniformly distributed in the space, c 
can be estimated by

c=sx n  (1)

where sx, represent the average size of objects. This technique also works if the objects 
are sorted by their y coordinates. The estimation in this case is c=s y n .

For non-uniform distributions, we divide the space into strips, as can be seen in 
figure 3.  For each strip,  the number of overlapping objects is counted,  and a object 
distribution histogram is built.[Belussi et all, 2003][Belussi et all, 2004]. The estimation 
can be made by the following expression, where   is the number of strips and  n i   is 
the number of objects of sets A and B in strip i, for 1i .

c=∑
1



ni
 (2)

Figure 3. An example of space stripping.
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Although the size of objects might not appear to be important, it has an impact in 
the number of objects in each strip. Figure 3 shows an example of a set of objects in a 
space  divided  by  6  strips.  As  can  be  observed,  the  shape  of  objects  significantly 
modifies the number of objects per slice.

Table 1. The symbols and their meanings.

Symbol Meaning

k Number of intersecting pairs of objects

c Number of pairs of objects tested to verify if attends to the spatial 
predicate

n A , n B Number of objects in sets A or B, respectively

sx
A , s y

A , sx
B , sy

B Average size on axle x or y, for sets A or set B.

b A , bB Number of disk blocks occupied by sets A or B.

M o , M b Memory size on number of objects and number of blocks

t sr , t sw Average time to sequential read/write operations.

t rr , t rw Average time to random read/write operations.

t coord Time to compare two coordinates, in double precision

t inter Time to verify if two objects intersects

t RPM Time to verify if two objects intersects and if attends the 
Reference Point Method (RPM).

h , hA , hB Height of R-Trees.

n i
A , ni

B Number of nodes on  i level of a R-Tree.

sx ,i
A , s y , i

A ,
s x ,i

B , s y ,i
B

Average size of nodes in level i of a R-Tree.

Fanout Fanout of a R-Tree

sx
Strips , sy

Strips Average size on strips that divides the space.

 ,H ,V Number of slices that divides the space

P Number of partitions

 Probability of a certain block to be in the memory buffer .

o Percentage of partitions that overflowed

bo Number of overflow buffers

r Replication factor

The plane-sweep technique is adapted according to the spatial join algorithm. 
These modifications can alter the value of  c, and are described within the respective 
algorithm. Table 1 summarizes the  symbol notation used in this paper.



2.2 Synchronized Tree Transversal
The Synchronized Tree Transversal (STT) [Brinkhoff et all, 1993] algorithm needs that 
both sets are indexed, in advance, for two different R-Trees, named R A  and R B . Nodes 
of  both  R-Trees  are  compared,  in  a  synchronized  way.  The  number  of  nodes 
comparisons was defined in [Huang e Jing, 1997], as 

Comp=∑
i=1

h−1

∑
1

ni
A

∑
1

ni
B

min s x, i
A sx ,i

B  , 1×min  sy ,i
A s y ,i

B  , 1
(3)

Initially, the height of both trees are considered to be equal and is expressed just 
by h. Be n i

A   the number of nodes of set A in level i of the R-Tree R A , and 1ih . 

The average size, in the axis x, of nodes or MBR in level i is represented by sx ,i
A . 

Based on [Theodoridis, 1996][Theodoridis, 1998][Huang,1997], the number of 
I/O operations  when the buffer  size  is  equal  to  zero is  defined as  Zj=22Comp . 
Introducing a buffer,   represents the possibility of a certain node being found in buffer 
memory,  reducing the number of I/O operations to

io STT=nR
AnR

BZj−n R
A−n R

B (4)

The  expression  for  the  CPU  performance  depends  on  the  number  of  nodes 
comparisons  (3).  For  each  node  comparison,  2Fanout objects  are  involved,  at 
maximum, resulting in 

cpu STT=O cSTT2 Fanout log 2 Fanout  (5)

An adequate value for cSTT  is necessary to complete the expression. The R-Tree 
divides  the  space   in  an  irregular  way. Two objects,  aligned on the  x axis,  can  be 
allocated in  different  nodes.  As a  result,  they will  not  be compared to  evaluate  the 
spatial predicate, reducing c. If  let s1

R  be  the average size of leaves, c can be estimated 
by

cSTT ,1=
c
s1

R
(6)

The value of  c, for internal levels, depends on the number and average size of 
nodes of the lower level.

cSTT , i=min sx ,i1
A s x ,i1

B ,1×ni1
A ×n i1

B
(7)

Add the number of comparisons in all levels, the value of c for the entire R-Tree 
is obtained.

cSTT=∑
i=1

h

cSTT , i (8)

2.3 Iterative Stripped Spatial Join
The Iterative Stripped Spatial  Join (ISSJ)  algorithm is  an adaptation of the Iterative 
Spatial Join, proposed by Jacox and Samet [2003]. The main idea is, first, to sort the 
sets of objects separately. Then, the plane-sweep technique is applied, scanning both 



sets  in  sequence.  During the  plane-sweep,  just  the  active  objects  are  maintained  in 
memory. The space is divided in strips to reduce the number of comparisons. When an 
object  is  loaded to memory, it  is  assigned to  one or more strips.  A different  active 
objects list  is maintained for each strip. In this  way, pairs of distant objects are not 
compared. 

Considering a uniform distribution of objects, in each strip the number of objects 
is  r nAnB/ , where  r represents the replication factor. It can be calculated as the 
number  of  objects,  with  replicas,  over  the  original  number  of  objects, 
r=nR

AnR
B/ nAnB , resulting in a value greater than 1. 

The number  of  I/O operations  depends  on  whether  the sorting  is  internal  or 
external. The best case occurs if both sets are sorted using an internal algorithm. Then, 
the number of I/O operations is

ioISSJ=3bAbB           (9)

The worst case occurs if both sets are sorted by an external algorithm. The number of 
I/O operations increases to

ioISSJ=bAbB2bA×⌈ logM b
bA⌉2bB×⌈ logM b

bB⌉ .  (10) 

Due  to  the  space  division  in  the  strips,  the  number  of  pair  comparisons  is 
reduced to

 
c ISSJ=

r c
            (11)

The expected performance of the algorithm is

cpu ISSS=O c ISSJr nAnB log r nAnB



.   (12)

2.4 Partition Based Spatial Method 
As a first step, the PBSM [Patel and DeWitt, 1996] divides the space into a set of cells 
by applying a regular grid to it. A partition is a set of cells and each cell belongs to one, 
and  only one,  partition.  A  spatial  object  may intersect  one  or  more  adjacent  cells, 
belonging to different partitions.  The algorithm replicates the object descriptor in all 
intersecting partitions.  

The objects are loaded to memory, distributed in partitions, and then reloaded to 
memory to  the plane-sweep. For each object, three I/O operations are executed. But,  a 
certain percentage of  partitions, represented by o, overflows, because all objects don´t 
fit in memory at the same time, forcing another read/write operation. Replicas in the 
result set are avoided using the  Reference Point Method (RPM) [Dittrich and Seeger, 
2000]. Thus, the number of I/O operations can be expressed by:

ioPBSM=2 o r 22 r1bAbB .                               (13)

Due to space subdivision, the number of pairs of objects comparisons is reduced. 
If the number of horizontal cells is greater than the number of partitions, as figure 4a 



shows, in a same row, more than one cell can be allocated to the same partition. If the 
number of horizontal cells is smaller, as in figure 4.b, considering just one row, each 
cell is allocated to a different partition. Being the number of horizontal cells represented 

by H , the value for c can be estimated by

c PBSM=
c
H

, PH

cPBSM=
c
P

, P≤H
.  (14)

Figure 4. Cell  allocation, according to the number of partitions, using a round-
robin schema.

In  a  uniform  distribution,  all  partitions  have  the  same  number  of  objects, 
including replicas. In this case, the plane-sweep technique for each partition processes 
r nAnB / P  objects. As the plane-sweep is repeated for all partitions, the total number of 
comparisons is expected to be in an order of

cpu PBSM=O cPBSM r nAnBlog r nAnB
P


. (15)

2.5 Histogram-based Hash Stripped Join
The Histogram-based Hash Stripped Join (HHSJ) [Fornari and Iochpe, 2004] has three 
main characteristics: the object descriptors are stored in a hash file organization; a bi 
dimensional  histogram  of  object  distribution  defines  the  spatial  extension  of  each 
partition; and, when it loads objects to memory, it divides the space by strips. 

The  histogram  is  maintained  in  a  quadtree,  so-called  HistQ.  Each  of  its 
quadrants represents a subdivision (a cell) of the global space. Each node contains a 
counter of the number of objects that intersects the space segment represented by this 
node of the quadtree. Each level of the quadtree represents a different  histogram of 
object distribution, with a different degree of precision.

A hash file is created for each data set. It is organized in buckets, assuming a 
static hash organization. The hash function associates a leaf node of HistQ to a specific 
bucket in the hash file. Therefore, there exists one bucket in the hash file for each leaf of 
the quadtree. If an object transposes quadrants and is counted in two (or more) leaf 
nodes of  HistQ, its descriptor is replicated in two (or more) buckets. The number of 
replicated objects is defined during the creation of the hash file. 

The minimum number of buckets is defined by
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Buckets=⌈ n
Fanout

⌉
.    (16) 

Using (16), the height of the HistQ can be calculated by

h=⌈log 4 Buckets ⌉ .          (17)

In fact, the number of buckets, and, considering a disk block for each bucket, is

b=h4
.      (18)

Because some buckets in the hash file can overflow, some additional disk blocks 
are necessary.

To carry out the test of spatial predicate in pairs of objects, first, the HHSJ loads 
the  HistQ of  both  sets  to  main  memory.  Based  on  them,  partitions  and  respective 
boundaries are defined. Each partition is spatially defined by the corresponding selected 
quadrants in both quadtrees. The space is divided in an irregular way. Regions more 
densely populated  are  divided  into  small  areas,  to  maintain  the  number  of  objects 
pertaining to a partition into the available memory. 

Before, the algorithm processes each partition separately. First it identifies the 
buckets that are covered by the partition. Then, the object descriptors stored in each 
bucket are loaded to memory. 

The  algorithm just  loads  to  memory both  HistQs and  all  buckets,  including 
overflow buckets, of each hash file. So, the number of I/O operations is

ioHSSJ=bA
HistQ4hAboA

HashbB
HistQ4hBboB

Hash
  (19)

The number of comparisons between pairs of objects is reduced by two factors: 
the number of partitions (P) and the number of strips inside each partition (l). As the 
space is divided in an irregular way, we use the mean partition size, expressed by sx

Part  
and a constant number of strips, for all partitions, resulting in

c HHSJ=
c

sx
Part× .                  (20)

the performance in CPU can be estimated by

cpu HHSJ=O cHHSJr nAnBlog r nAnB
p


.        (21)

3. The System Architecture

The performance analysis,  although correct,  simplifies  many cases.  To compare  the 
algorithms in real situations, a software system was implemented to carry out the tests 
between them. The main components of its architecture are shown in figure 5.

To acquire real data sets, one tool converts different data formats to the internal 
files. Another tool generates synthetic data sets. This second type of data is valuable for 
performance tests, because the user can control the parameters that describe the data set 



characteristics,  changing  one  or  two  of  them  in  each  data  set,  and  then  test  the 
algorithms to verify differences in the their performance.

The  main  component  in  the  system  architecture  is  the  join  module,  which 
contains the spatial join algorithms implemented. The design of the join module allows 
one to plug and play other algorithms easily.

When running a test,  the user specifies the desired algorithm and the size of 
main memory. The buffer capacity is measured in number of pages and each page has a 
fixed  size  of  4Kb.  For  the  STT  algorithm,  a  specific  R-Tree  Oriented  Buffer  was 
implemented for better performance. The other three algorithms use a traditional LRU 
buffer.

Figure 5. The main component in the implemented system architecture is the join 
module, containing a set of different algorithms.

For all algorithms, the overall response time and number of I/O operations can 
be obtained. For specific algorithms, other values, like the replication factor or the size 
and height of R*-Tree, can be obtained.

The entire system was implemented in C language, for Linux operating system, 
by us. During tests, the system operating buffer was turned off, so as to not influence the 
result time. All tests were performed on an Intel 2.4GHz, with 512 Mb of RAM and 
SCSI disks.

3.1 Data Sets

The  artificial  data  sets  were  generated  by  the  system,  and  the  real  data  sets  were 
obtained from different sources. Table II shows the name, description, cardinality and 
average size on both axes for each real data set, grouped by its source. As can be seen, 
we  used  a  great  number  of  real  data  sets,  with  very  different  characteristics.  The 
cardinality  has  an  obvious  importance,  because  it  defines  the  workload  for  the 
algorithm. The average size of objects is important because it defines, to a great extent, 
the number of pairs of objects that will be compared. 
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Table 2. Real Data sets Characteristics

Name Description Cardinality #  of  disk 
blocks

% of average 
size on X

% of average 
size on Y

Source: R-Tree Portal (www.rtreeportal.org)

ca_streets Californian streets - multilines 2.249.727 13.157 0,016% 0,013%

ca_streams Californian streams of water - 
multilines

98.451 576 0,184% 0,157%

ge_roads German roads - multilines 30.674 180 0,146% 0,108%

ge_utility German public utility networks 
- multilines

17.791 103 0,236% 0,169%

ge_rrlines German railroads - multilines 36.334 213 0,117% 0,084%

ge_hypsogr German  hypsographic  data  - 
multilines

76.999 451 0,067% 0,048%

gr_roads Greek roads - multilines  23.278 137 0,188% 0,187%

gr_rivers Greek rivers - multilines 24.650 145 0,187% 0,200%

la_streets Los Angeles streets - multilines 131.461 769 0,035% 0,029%

la_rr Los  Angeles  railroads  - 
multilines

128.971 755 0,086% 0,071%

Source:Bureau of Transportation Statistics (USA) – www.bts.gov

usa_countie
s

Counties - polygons
3.236 19

0,0049%
0.01%

usa_rr Railroads - multilines 166.688 981 0,00049% 0,0041%

usa_hydro Rivers - multilines 517.538 2959 0,00049% 0,0009%

4. Rules for Performance Optimization

In this section, the set of rules for performance optimization is presented. Each rule is 
explained and exemplified, showing the results of performed tests.

Rule 1: the DBMS can estimate k for each axle and choose the one with minor 
value of k, optimizing the plane-sweep.

The  rule  proposes  that  the  GDBMS,  first,  must  estimate  the  number  of 
comparisons to be made in each axle, and, after, performed the spatial join algorithm 
sorting the data by the choosen axle.  Two estimation approaches are suggested, one 
based on a single formula (1), another based on histograms (2). 



Figure 6.  Graph of response time varying the shape of objects.

Firstly, we generate a number of synthetic data sets, varying the shape of the 
MBR, from a relation of 5:1 to a relation of 1:5. The cardinality of data sets are, always, 
200.000 objects.  The graph in figure 6 shows the response time for each algorithm, 
sorting by the same axle in all tests, making clear the minimizing possibilities of the 
axle choice.

We run all possible joins between real sets , sorting by both axles to validate 
both alternatives. When the difference between response time was less than 5%, we 
discard the join, because the difference is closed that both sorting alternatives seems to 
be good enough. In this way, we concentrate in greater differences, where the choice are 
relevant. Alternative 1,  based just in mean size, choose the right axle in 29 times, but 
the  wrong  axle  10  times,  because  it  is  a  rough  simplification  of  the  data  sets, 
representing a 74.3% of correct match. Alternative 2 presented a 100% of correct match, 
when the space is divided in 500 strips. The number of correct match is not affected by 
the spatial join algorithm.

This result indicates clearly that the histogram based prediction is superior and 
must be used always that is possible, justifying the necessity to maintain the histograms 
always that an object is inserted or deleted from the data set. But, in a query plan, the 
spatial join can be performed after another operation, like a selection. In this case, the 
histograms are not available. Our suggestion is, during the anterior operation, create the 
histogram, according to the temporary set are written.

Rule 2: The STT algorithm is optimized defining nodes with a low number of 
entries. The total number of nodes will be greater, elevating the value of  Comp, and 
defining a minimum limit for the rule.

The rule 2 intend to optimize the STT algorithm. The construction of R*-Trees 
is performed using the STR algorithm [Leutenegger et all, 1997] to reduce the number 
of  nodes  and  obtain  a  maximum  occupation  of  entries  in  each  node.  This  method 
reduces the number of  I/O operations,  because the size  of R*-Trees  are minimized. 
Second,  the  buffer  algorithm try to  maintain  non-leaf  nodes  in  the  memory buffer, 
because non-leaf nodes are more susceptible to reloads than leaf nodes, also, reducing 
the number of I/O operations. 
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The rule changes the number of entries in a node, called fanout. The number of 
leaf nodes can be calculated as nLeafs=⌈n / fanout ⌉ . The number of non-leaf nodes,  is 
proportional to the number of leaf nodes. So, if  the fanout is reduced, the number of 
nodes are incremented, maybe, adding a new level to the R*-Tree. By expression (3), 
the number of node comparisons are, also, increased, limiting the rule 2. Figure 7 shows 
the response time for three different cases of spatial join, varying the fanout from 10 to 
146, that is the maximum fanout for a node maintained in just one block.

Figure 7. Graph of response time using the STT algorithm, varying the fanout.

Also, the influence of the buffer memory size was verified. The performance of 
STT algorithm is  constant  when  the  memory size  increases,  confirming  the  results 
showed by  [Gatti and Magalhães, 2000]. In fact,  the time to execute I/O operations 
represents a small part, in general, less than 2% of the total time, although the buffer hit 
ratio increases according to the memory size,  reducing the number of I/O operation 
performed, as expected.

Rule 3: The ISSJ algorithm is optimized definining a great number of strips. The 
number  of  objects  in  each strip  will  be  small,  but  the  is  limited  by the adding of 
replicas.

The third rule is to increase the number of strips to optimize the algorithm ISSJ. 
But, this rule increments the replication factor, which penalizes the performance. 

Figure 8. Graph of response time and replication factor, for the ISSJ, varying 
the number of strips.

The graph in figure 8 shows the response time of two different spatial joins, 
varying the number of strips and the replication factor. As can be seen, a small number 
of strips, four to eight, presents an increment in algorithm performance, reducing the 
response time. After this number of strips, the response time almost stabilize or present 

0 10 25 50 75 100 125
0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

Response time varying node fanout

go_soilusage X 
go_hydro
la_streets X la_rr
usa_rr X usa_rivers

Fanout

R
es

po
ns

e 
tim

e 
(s

)

1 2 4 8 16 32 64 128 256 512 1024 2048
0

0,5
1

1,5

2
2,5

3

3,5
4

4,5
5

5,5

6

Algorithm ISSJ - Response time x Number of strips

Number of strips

R
es

po
ns

e 
T

im
e 

(s
)

1 2 4 8 16 32 64 128 256 512 1024 2048
0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

2,50

Algorithm ISSJ - Replication factor x Number of strips

ge_hypsogr X 
ge_roads
la_rr X la_streets

Number of strips

R
ep

lic
at

io
n 

F
ac

to
r



a  small  increment,  because  the  number  of  processed  objects  (original  +  replicas) 
increases exponentially.

Figure 9. Graph of response time for algorithm ISSJ, varying the available 
memory size.

Changing the available memory size, the performance of the algorithm suffers 
great  impact  of  changing  the  sorting  algorithm.  The  number  of  I/O  operations  is 
reduced, as well as, CPU cost. In the graph of figure 9, this fact is clear, with a step 
down according to  the increase of  memory size,  in  the exact  point  where   there is 
enough memory to do an in-memory sorting of one of the joined sets. All operations 
were performed with a constant  number of 8 strips.

Rule 4: The PBSM algorithm is improved setting a high value for the number of 
partitions using a small  size of memory or just  set a lower bound to the number of 
partitions. This rule is limited by the number of replicas, that increase the number of 
processed objects.

Figure 10. Graph of response time for the algorithm PBSM, varying the available 
memory size.

The rule 4 increases the performance of the PBSM algorithm by incrementing 
the number of partitions. In this rule, the replication factor is, also, increased, impacting 
the performance. The GDBMS can allocate less memory to the algorithm to control the 
number of partitions or directly set a value for P. Figure 10 shows the graph of response 
time of three spatial join operations, for which the available memory size was changed, 
to induce different number of partitions. As the memory size increases, the number of 
partitions is reduced, in general, increasing the response time, as expected from (15). In 
all cases, the algorithm uses a 32x32 grid of cells.
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Figure 11. Graph of response time for two cases joined using PBSM algorithm, 
varying the available memory size. 

Two  cases  can  be  seen  in  figure  11:  one  between  real  sets  ca_streets and 
ca_streams;  another between two synthetic data sets. They have the same cardinality of 
the real sets, but objects are uniformly distributed in the space. 

The set ca_streets, with more than 2 millions of objects, is the key to understand 
the  behaviour  of  response  time.  In  small  memory size,  the  number  of  partitions  is 
greater than the number of cells defined by the default grid of 32x32. A redefinition of 
the grid to 64x64 cells is necessary, to map at least one cell for each partition. Using a 
finer granularity grid, the replication factor increases. Also, mapping just a few cells to 
one partition, more concentrated areas result in partitions that overflow, being necessary 
to execute a costly repartition procedure. As the available memory size increases, the 
distribution  of  objects  in  partitions  become  uniform,  avoiding  repartitions.  After  a 
certain memory size, the response time increases. 

Rule 5: The HHSJ is improved setting a large value for the number of partitions 
and for the number of strips. This rule  is limited, also, by the number of replicas, that 
increase the number of processed objects.

The rule 5 is a combination of the strategies 3 and 4, as the HHSJ algorithm 
combines aspects of both the ISSJ and the PBSM algorithms. Replication can occur in 
two moments when HHSJ is executed: during the creation of the hash file; and when 
objects are loaded into memory and divided by strips. As the creation of the hash file 
can be done only once  when the set  is  loaded to  the GDBMS, we concentrate  our 
attention in the second moment, that occurs always when the set is involved in a spatial 
join operation. 
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Figure 12. Two graphs of response time for the algorithm HHSJ, varying the 
available memory size. 

Figure 12 shows two graphs of response time against available memory size. The 
number of partitions varies according to memory size, but we kept in 16 the number of 
strips in all cases. For small sets, the response time is almost constant. For larger sets, 
the  response  time  increases  with  the  available  memory size,  being  constant  after  a 
certain amount of memory. This behavior is different than PBSM, where the response 
time just increase, not stabilizing. In HSSJ, the creation of  strips, in memory, allows the 
stabilization, establishing a maximum value for the response time. For the largest set 
spatial join operation, ca_street and ca_stream, the stabilizing point is achieved just at 
almost 8Mb of memory, and is not visible in the graph.

 Figure 13.  Two graphs of response time and replication factor for the 
algorithm HHSJ, varying the number of strips.

The  graph  in  figure  13  shows  the  effect  of  change the  number  of  strips  in 
algorithm HHSJ, maintaining the available memory size. The behavior of response time 
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is almost the same of the ISSJ: a small number of strips results in an important decrease 
of  response  time;  a  great  number  of  strips  produces  many replicas,  increasing  the 
response time.

If  the  available  memory size  increases,  the  number  of  I/O operations  is  not 
changed, because the algorithm read all buckets only once to perform the operation.

5. Conclusions

This paper first introduce expressions to predict the number of I/O operations and CPU 
performance of each studied algorithm, using an unified notation. After, a set of simple 
rules are established to improve the performance of such algorithms. Using tests with 
real and synthetic, response times were collected to prove the correctness of rules. In 
some situations, for example, spatial joining the sets  ca_streets and  ca_stream  using 
PBSM, the response set varies between 20.3s and 48s, a difference of more than 50%. In 
some extreme cases,  like optimizing the fanout  in  R-Trees,  the STT algorithms can 
perform the spatial join more than 10 times faster.

The study concentrates in spatial join operation using bi-dimensional sets, but 
the proposed strategies can be easily extend to operate in three or more dimensional 
spaces and spatiotemporal data structures. Although tests with real data sets permit the 
evaluation of very different scenarios, we do not expected to cover all possibilities. The 
experiments can be carried out for other system architectures like palmtops, where some 
additional constraints can impact the performance. Another possibility is running in a 
grid  architecture,  but  this  imply  a  significative  change  in  the  code  of  investigated 
algorithms. 

The  goal  of  reducing  CPU  time  can  be  explored  in  many other  areas,  like 
statistic databases, clustering spatial objects and text mining algorithms. Another aspect 
to  investigate  is  the  implications  of  CPU caches  with  2Mb or  more,  in  traditional 
databases algorithms.

Also,  we propose that available GDBMS, like Oracle Spatial  [Oracle, 2003], 
IBM DB2  Spatial  Extender  [IBM,  2005]  and  PostGis  [Refractions  Inc.,  2005]  can 
incorporate the proposed rules and more alternative file organizations, like sorted and 
hash files, and algorithms, like ISSJ and HHSJ. In general, they implement only some 
variation of R*-Trees, reducing the number of spatial join algorithms to just three: STT, 
if both sets are spatial indexed; Scan&Index, if one set is indexed; and nested loops, if 
there  is  no  indexes.  But,  even  for  this  algorithms,  some  rules  can  increase  the 
performance when executing spatial joins, because the differences in response time are 
large.
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