
Breeding and predictability in chaotic model 
 

R. S. Cintra1, H.C. Furtado1 and H. F. de Campos Velho1 
1Laboratory for Computing and Applied Mathematics - LAC  

Brazilian National Institute for Space Research - INPE 
C. Postal 515 – 12245-970 – São José dos Campos - SP 

BRAZIL 
E-mail: rosangela.cintra@lac.inpe.br , helaine.furtado@lac.inpe.br ,haroldo@lac.inpe.br 

 
Keywords: data analysis, prediction, dynamical instabilities, bred vector. 

 
The use of ensemble forecasting and data assimilation shows the importance of local predictability properties of 
the atmosphere in space and in time (e.g., Toth and Kalnay, 1993). The local/regionall loss of predictability is an 
indication of the instability of the underlying flow computed from a numerical model, where small errors in the 
initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties 
of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996), and, more recently, 
with bred vectors (Kalnay, 2001). 
The “breeding method” is a well-established and computationally inexpensive method for generating 
perturbations for ensemble integrations. In examination of the local structure of the vectors indicates that there 
may be substantial redundancy when multiple independent breeding cycles are performed in parallel, and the 
vectors can be inefficient in spanning the range of locally growing perturbations. Breeding (Toth and Kalnay, 
1997) was developed as a method to generate initial perturbations for ensemble forecasting in numerical weather 
prediction at the National Centers for Environmental Prediction (NCEP). The method involves simply running 
the nonlinear model used for the control a second time, periodically subtracting the control from the perturbed 
solution, and rescaling the difference so that it has the same size as the original perturbation. The rescaled 
difference (a bred vector) is added to the control run and the process repeated. Their growth rate is a measure of 
the local instability of the flow. Bred vectors (BV) are perturbations, related to Lyapunov vectors that capture 
fast growing dynamical instabilities of the solution of a numerical model. Bred Vectors (BVs) are computed as 
follows (Kalnay et al., 2003). 
1) Start with an arbitrary initial perturbation )t,x(fδ of size A  defined with an arbitrary norm. This 
initialization step is executed only once. The size of is essentially the only tunable parameter of breeding. A
2) Add the perturbation to the basic solution, integrate the perturbed initial condition with the nonlinear model, 
and subtract the original unperturbed solution from the perturbed nonlinear integration  
      )]t,x(f[M)]t,x(f)t,x(f[M)tt,x(f −δ+=∆+δ    (1) 

3) Measure the size AA δ+  of the evolved perturbation )tt,x(f ∆+δ , and divide the perturbation by the 
measured amplification factor so that its size remains equal to A:  

)AA/(A)tt,x(f)tt,x(f δ+∆+δ=∆+δ     (2) 
Steps 2) and 3) are repeated for the next time interval and so on. It has been found that after a short transient 
time of the order of the time scale of the dominant instabilities. In practical applications, bred vectors are are 
intrinsically local in space and time, and they are finite amplitude, finite time vectors. (Figure 1). 
.  
Like an Example to study bred vectors, we reproduce the Research Internships in Science and Engineering 
(RISE) experiment with the 3-variable Lorenz model that indicate that orthogonalizing the bred vectors can 
result in significantly improved performance. This experiment showed that the regime changes in Lorenz’s 
model are predictable. The purpose of this paper is to describe the breeding method that explores chaotic model 
predictability and its results. 
The Lorenz model provides a practical test case with qualitatively realistic properties.  Atmospheric behavior 
involving barotropic and baroclinic instabilities is considered somewhat analogous to Lorenz model behavior 
because of the exponential instability of the model’s trajectories and its abrupt regime changes. Classic Lorenz 
(1963) three-variable model with standard parameter values: σ =10, b = 8/3, and r = 28 result in chaotic 
solutions (Figure 2.). The model was integrated with a 4th order Runge-Kutta numerical scheme. We used two 
sets of the Lorenz equations starting with different initial condition. We first perform breeding on the Lorenz 
model integrated with time steps ∆t=0.01, and a second run started from an initial perturbation  added to the 

control at time t . Every 8 times steps we take the difference
0xδ

0 xδ  between the perturbed and the control run, 
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rescale it to the initial amplitude and add it to the control. We also measure the growth rate of the perturbation 
per time step as1 |)x|/|x|(ln*/ 08 δδ , following Evans et al. (2004). Figure 3a shows the use of  this simple 
procedure it allows us to estimate the stability of the attractor. Moreover, the growth rate measured by breeding 
provides remarkably precise “forecasting rules”, illustrate in Figure 3b, that could be used by a forecaster living 
in the Lorenz attractor to make “extended range forecasts” about when will the present regime end, and how 
long will the next regime last.  The presence of a red star shows bred vector growth in the previous 8 steps was 
greater than 0.064, it can be used to forecast that the next orbit will be the last one in the current regime. The 
blue stars indicate a negative growth rate, meaning that the perturbations are actually decaying. The results 
shown in figure 3a suggested that the bred vector growth would allow estimating of high and low predictability. 
This is only an illustration how breeding scheme can be employed to get a predictability rules for a chaotic 
system. Our objective is to extend such methodology to investigate the predictability for other relevant chaotic 
regimes as the Chua’s system associated to the dynamics in the electric circuits (Alligood et al., 1996), and the 
three coupling waves for solar activities connected to the space weather process (Chian et al.,1999)..  
 
 
 

 
Figure 1-Schematic of the method to generate bred 
vectors (Evans et al, 2004). 

 
Figure 2- Solutions of the Lorenz model equations 
showing two chaotic regimes 
 

Figure 3 – a: The Lorenz classic attractor colored with 
the bred vector growth 

b: X(t) for the classic Lorenz model with red stars 
providing “forecasting rules”. 
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