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Motivation

To propose a new supervised classifier based on
optimum path forest

Support Vector Machines (SVM)
binary classifier
high dimensional space

Artificial Neural Networks with Multilayer Perceptron
(ANN-MLP)

unstable classifier
slow convergence
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Optimum Path Classifier - OPF

Watershed computed by the Image Foresting Transform
(IFT) with markers obtained from Z1 (training set) in the
feature space

Modeling the problem
samples are the nodes of the graph
adjacency relation: complete graph

arc weight w(s, t) = d(~s,~t)

path-cost function fmax

prototypes (markers) set S.
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Optimum Path Forest - OPF

Supervised pattern classifier with 2 phases:

Training: forest computation

Unseen test: nodes are added to the forest, classified
and removed

Main question in the training phase: how to choose the
prototypes set S?

random choice

density choice

minimum spanning tree (MST) choice
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Training phase

Goal: to achieve zero error in the training set. How ??

Problem region

To put prototypes inside the problem region! How can we

identify them?
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Training phase

MST approach

sum of the weights of the edges is minimum

each pair of nodes is connected by an optimum path

(a) MST (b)Prototypes chosen by the MST

OPF nodes classification result
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Test phase

unseen samples are tested individually

(a)Optimum path forest (b)Test sample (c)Classification result.
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Experimental Results

We performed tests in 16 databases:

MPEG-7: shape database containing 1400 objects equally distributed in 70 classes.

Fish 1 Fish 2 Chicken 1 Chicken 2

Corel: database containing 1607 images of several objects distributed in 49 classes.

Ski 1 Ski 2 Pumpkin 1 Pumpkin 2
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Experimental Results
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Learning approach

How can we make sure that a classifier can learns with its
own errors without increasing the training set size?

Z2: evaluation set

ISMM’07 - 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil – p.13/18



Learning approach

How can we make sure that a classifier can learns with its
own errors without increasing the training set size?

Z2: evaluation set

Learning algorithm: to identify more informative
samples

ISMM’07 - 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil – p.13/18



Learning approach

How can we make sure that a classifier can learns with its
own errors without increasing the training set size?

Z2: evaluation set

Learning algorithm: to identify more informative
samples

Replacements between samples and errors

ISMM’07 - 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil – p.13/18



Learning approach

How can we make sure that a classifier can learns with its
own errors without increasing the training set size?

Z2: evaluation set

Learning algorithm: to identify more informative
samples

Replacements between samples and errors

OPF is designed in Z1 (training set) and Z2 (evaluation
set) and tested in the unseen Z3 (test set)

ISMM’07 - 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil – p.13/18



Learning approach

How can we make sure that a classifier can learns with its
own errors without increasing the training set size?

Z2: evaluation set

Learning algorithm: to identify more informative
samples

Replacements between samples and errors

OPF is designed in Z1 (training set) and Z2 (evaluation
set) and tested in the unseen Z3 (test set)

ISMM’07 - 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil – p.13/18



Test phase

unseen samples are tested individually

relevance number

irrelevant nodes

+|−

+|−

+|−

+|−

(a)Optimum path forest (b)Test sample (c)Reward/Penalty.
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Learning algorithm

Algorithm:
1.For I from 1 to N do

2. Build the classifier using the OPF algorithm (MST in Z1).

3. Classify samples in Z2 and compute the relevance number for each sample in Z1.

4. Replace misclassified elements in Z2 by irrelevant (not prototypes) in Z1.

5. If there exists irrelevant elements in Z1, replace them by random samples from Z2.
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Execution Times
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The OPF was 47.21 times faster than SVM, 98.71 times faster than ANN-MLP and 7.81 times

faster than KNN.
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Conclusion and future works

OPF is a new promising tool for supervised pattern
recognition

Faster than the tested approaches

Similar to SVM (at least)

Descriptor combination by genetic programming

New path-cost functions
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