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Abstract Due to the growing volume of image data from planned and existing sensors,
new data-processing techniques are required to allow the information to be processed
promptly and accurately. Although the range of image processing techniques has greatly
expanded in recent years, from classical statistical approaches to neural network
methods, there is no single classification algorithm capable of deriving generic products
from remotely sensed data that can be used with confidence. The performance of these
algorithms is strongly dependent upon the selected data set and on the efforts devoted to
the design phase. In this paper, we report a more systematic investigation into the
problem of combining multiple classifiers in the context of land cover mapping using
remotely sensed data. Four approaches are proposed, based on voting principles,
Bayesian formalism, evidential reasoning, and artificial neural networks. Preliminary
results indicate that improvements can be obtained in difficult pattern recognition
problems by combining or integrating the outputs of complementary multiple classifiers.

Keywords: combining classifiers, remote sensing, classification, neural network, image
data, land cover mapping.

1 Introduction
In many real-world classification problems, the categories of interest are not fully separable in
terms of their measured characteristics. With such problems, it is unrealistic to expect a perfect
classification, with 100% accuracy. The objective of a pattern recognition system is to achieve
the “best possible” performance. The obvious question that arises, of course, is how to determine
the optimum classification rate.

The concept of combining the outputs of several classifiers is investigated here as an
alternative to the development of new classification algorithms more complex than the present
ones (Roli et al. 1997). Combined classifiers have led to improved classification performance in
the context of handwriting recognition (Xu et al. 1992), signal processing (Ghosh et al. 1995),
and recently in remote sensing (Roli et al. 1997, Wilkinson et al. 1995, Kanellopoulos and
Wilkinson 1997). The number of classification algorithms available and the increasingly
sophisticated types of features able to be used to represent and recognise patterns justify the
growing interest in this topic (Xu et al. 1992). Selecting the “best” individual classifier is not
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necessarily the ideal choice, since discarding the results of less-successful classifiers may waste
potentially valuable discriminatory information (Tumer and Ghosh 1996). The premise of this
approach is that independent classifiers may provide increased interpretation capabilities and
more reliable results due to the fact that different classifiers produce different decision
boundaries in feature space. However, despite the increasing body of experimental results
showing classification improvements due to combining classifiers, there has been no analytical
study that can quantify the achievable gains, and examine the statistical validity of these gains.
This paper provides an overview of methods of combining multiple classifiers such as the voting
principle, Bayesian formalism, evidential reasoning, and artificial neural networks, and also
presents results that quantify the improvements due to multiple classifier combination.

2 Standard Methods for Combining the Output of Multiple Classifiers

Four techniques for combining the output of multiple classifiers (i.e., voting principle, Bayesian
formalism, evidential reasoning and neural network) are reviewed in this paper. The first three
are reviewed by Xu et al. (1992) in the context of handwriting recognition. These methods
require that classifiers be trained independently. The fourth method, using an artificial neural
network, was introduced by Wilkinson et al. (1995) in the context of remote sensing. The
combination process begins with each classifier being individually trained, under some set of
different conditions (e.g., using independent sets of discriminant variables). Each trained
classifier is then presented with an identical set of inputs for which it determines its own
prediction. These individual predictions combine to form the overall (final) prediction.

A significant problem when trying to combine classifiers is the different output information
that various classification algorithms supply. Assume an image classification problem consisting
of M mutually exclusive classes C1 ∪ C2 ∪… ∪ CM with each of Ci, ∀i ∈ Λ = {1, 2,.., M}
representing a set of specified label patterns called a class (e.g., M = 10 for a problem of numeral
recognition). Consider also that each class represents a set of specific patterns, and that each
pattern is characterised by a feature vector X. According to Xu et al. (1992), the output
information can be divided into three levels.

• The abstract level, where a classifier outputs a unique label. Combinations based on this
output level can be formulated as follows. Given K individual classifiers εk, k = 1,..,K each of
which assigns input pattern X to a class label jk, i.e., produces an event εk(X) = jk then the
problems is to use these events to build an integrated classifier E, which gives to X a single,
definitive label j, i.e., E(X) = j, j ∈ Λ∪{M+1}, where j = M+1 denotes that X is rejected by ε,
and is left unlabelled.

• The rank level, where classifiers rank all possible labels in the mutually exclusive sets in a
queue Lk ⊆ Λ with the label at the top being the first choice. In this case, the problem is to
use these events ε(X) = Lk, k =1,..,K to build an E with E(X) = j, j ∈ Λ∪{M+1}; and,

• The measurement level, when a classifier attributes for each label a measurement value (e.g.
probability P) to address the degree that a feature vector X belongs to that class. Thus, for an
input X, each εk produces a real vector Mε(k) = [Pk(1), .. ,Pk(M)]t (where Pk(i) denotes a kind
of degree that εk considers that X has label i), the problem is to use these events ε(X) = Mε(k),
k = 1,..,K to build an E with E(X) = j, j ∈ Λ∪{M+1}.
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It is reasonable to postulate that measurement vectors of different kinds can be transformed
into the same kind of measurement. The combination problem studied by Xu et al. (1992) and
Roli et al. (1997) belongs to abstract level combination. In this paper, we also study the problem
of combining classifiers at the measurement level.

2.1 Voting
It can be appreciated that there are areas in which different classifiers may agree on the class to
be assigned. Given that there is no contradiction (or conflict) and that the independently trained
classifiers agree on the outcome, there is good evidence that samples lying in such an area of
feature space should be classified according to the joint agreement. However, the main problem
in classification integration is then to decide what to do with those samples for which the
classifiers do not agree.

Some researchers have investigated the possibility of combining classifier outputs using
voting schemes ( Xu et al. 1992, Battiti and Colla 1994, Roli et al. 1997). The abstract level
seems to be the most common way of combining classifiers under this scheme, since any kind of
classifier will at least supply output information at the abstract level.

As indicated in the preceding section, the problem is to produce a new event E(X) = j from
the given events εk(X) = jk, k = 1,…,K where conflicts may exist among the decisions of K
classifiers. A simple rule for resolving conflicts of this kind is voting by majority. The decision is
made such that the label that receives more than half of the votes is taken as the final output. A
conservative voting rule is the one that the combined classifier E decides that X comes from Cj if
all K classifiers decide that X comes from Cj simultaneously, otherwise it rejects X. Xu et al.
(1992) describe a variant of the voting principle and a more general version in which, for
convenience, they represent the event the event εk(X) = i in the form of a binary characteristic
function:
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Note that voting by majority is a special case of Equation 2 with α = 0.5. The conservative
voting rule is equivalent to a special case of Equation 2 with α = 1.0. However, in Equation 2,
the threshold operation only considers that the maximal votes of the final selected label must be
large enough. There may be cases in which there are more than two labels that receive the
maximal vote, or the vote of maximal are not considerably larger that the vote of the second
maximal. In these cases, even though the maximal vote of the selected label may be quite large,
the decision still may not be reliable since there exists an opponent that may also receive a large
vote. To tackle this problem, a new comparative majority-voting rule is proposed in Equation 3:
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where 0 < α < 1. And, max1 = maxi∈Λ TE(X ∈ Cj) and max2 = maxi∈Λ-{j} TE(X ∈ Cj).
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2.2 Bayesian Formalism

Currently, the most popular way of combining multiple classifiers using Bayesian formalism is
via simple averaging of the corresponding output values (Perrone and Cooper 1993, Tumer and
Ghosh 1995). For a Bayes classifier ε, its classification of an input X is actually based on a set of
post-probability measurements, denoted by Pk(X ∈ Ci/X), i = 1,…,M, k = 1,…,K. This formula
derives an approximation to the probabilities that X comes from each of the M classes under the
condition X. We can use this approximation of the post-probabilities for combining classification
results on the same X by all K classifiers. One simple approach is to use the following average
value as a new estimation of combined classifier E:
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that is, a Bayes decision is based on these estimated post-probabilities. We call such a combined
E an average Bayes classifier. Moreover, we could use an additional threshold 0 ≤ α ≤ 1 in
Equation 5 to take into account the trade-off between the substitution rate and the rejection rate.

An alternative way to combine classifiers using the Baysian formalism is by considering the
available prior knowledge of the error of each classifier (Xu et al. 1992), as represented by its
confusion matrix. For the kth classifier εk, the confusion matrix can provide estimates of the
conditional probabilities that propositions X ∈ Ci, i = 1,…,M are true under the occurrence of the
event εk (X) = j, that is:
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where nij are the elements in the confusion matrix, in which row i corresponds to class Ci and
column j correspond to the event εk (X) = j. On the basis of these conditional probabilities
(Equation 6), the combination can be carried out using the follow belief function:
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Finally, depending on these bel(i) values, X can be classified according to the decision rule:
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where 0 < α < 1.0 is a threshold.
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2.3 Evidential Reasoning
Evidential reasoning allows a number of data sources to be combined to generate a joint
inference concerning labelling (Lee et al. 1987). Details on development of the theory of
evidence can be found in Shafer (1979), Garvey et al. (1979).

Consider the measurement level in which a classifier attributes for each label a measurement
value (e.g. probability P) to address the degree to which that feature vector X belongs to that
class. Thus, for an input X, each εk produces the basic probability assignments - bpa - [Pk(1), ..
,Pk(M)], where Pk(i) denotes a kind of degree that εk considers that X has label i. These bpa can
be multiplied  by  the individual classifier’s confidence to generate the mass of evidence k

Am ({
Pk(1),…, Pk(M), θ}) for each classifier, where the symbol θ is used to represent uncertainty (1 –
classifier’s confidence). An estimation of the individual classifier confidences are easily obtained
by testing the classifiers with an independent sample set, and they can be derived either from the
overall accuracy or by computing the kappa coefficient from their respective confusion matrices.

Once two masses of evidences 1
Am  and 2

Am , representing independent opinions, are expressed
relatively to the same frame of discernment AΘ  that corresponds to specific types of crop classes
(e.g., potatoes, sugar beet), they can be combined. The combination is made based on
accumulating all of the mass of evidence. The aggregation of the multiple evidences is called
Dempster’s orthogonal sum, or rule of combination. Dempster’s rule pools masses of evidence to
produce a new composite mass of evidence 3

Am  that represents the consensus of the original
disparate opinions. In other words, this produces a new mass of evidence that leans toward points
of agreements between the original opinions and away from points of disagreement (Garvey
1987). If )(3

cA Am denotes the new aggregated bpa, the combination rule can be specified by:
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and φ means null intersection. The procedure continues combining the mass of
evidence )(3

cA Am with other independent classifier opinions and so on. Because Dempster’s rule
is both commutative and associative, multiple (independent) bodies of evidence can be combined
in any order without affecting the result.

After accumulating all of the masses of evidence in )( c
k
A Am  the final belief function can be

computed bel(Ai) = ∑
⊆ ic AA

c
k
A Am )( and the value of bel(¬Ai), which also contain useful information for the

final decision.
The combined classifier E using this theory can be defined using the following rules:
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where 0 < α1,α2< 1 are predefined thresholds that take into consideration respectively the bel(Ai)
and  the bel(¬Ai)’s.
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2.4 Artificial Neural Networks (ANN)

In this section, we describe a variant of the approach suggested by Wilkinson et al. (1995) and
Kanellopoulos and Wilkinson (1997). The different classifiers are trained using independent data
sets. These classifiers are tested with another set of independent sample data. A second training
set is then built up from the output test data on which the initial classifiers were tested. This new
training set is then used to train a classifier in the second stage of the classification, for instance
using an ANN. This ANN is implemented having M classes times K classifiers neurones in the input
layer, corresponding to the outputs of all classifiers and it has one output layer with M neurones,
corresponding to the M classes in study. The purpose of this approach is to be able to apply
different models to the data in the classification stage and to highlight samples for which the
models disagree. These patterns are then passed to the second stage of classification that has
been specially trained to deal with such classes.

3 Data and Methods

A SPOT (14 June 1994) High Resolution Visible (HRV) multispectral image and two Landsat TM
images (27 June and 20 July - 1994) of a region of flat agricultural land located near the village of
Littleport (E. England) are used in this study. Field Data Printouts, which contain the official record
of the crop being grown in each field, are also available for the summer of 1994 and were used to
generate the reference image. Six crop categories were selected for these experiments (potatoes,
sugar beet, wheat, fallow, onions, and peas). Registration of the image to the Ordnance Survey (GB)
1:25,000 map was performed using 17 ground control points and nearest neighbour interpolation.
The RMS errors were 0.462, 0.477 and 0.438 pixels for the SPOT HRV and Landsat TM images
respectively.

Since the proposed methodology requires the analysis of pixels from different geographic
locations and on different dates, radiometric corrections must be applied for atmospheric variability,
i.e., each satellite scene requires independent correction to give accurate surface reflectivity values.
Generally, modelling radiometric correction comprises three steps: firstly, the DN are corrected to
radiance, then radiance is converted to apparent reflectance (the reflectance recorded at the sensor)
and finally an atmospheric correction is performed to convert apparent reflectance to surface
reflectance. The first of these steps uses the calibration coefficients obtained for each spectral band
from the header file supplied with the SPOT scene, while the Landsat sensor can use either fixed pair
calibration coefficients for each channel, or time-variant coefficients, as indicated in (Teillet and
Fedosejevs 1995). The third step uses an inversion of the 5S (Simulation of the Satellite Signal in the
Solar Spectrum) model with detail of images and atmospheric conditions, in order to obtain the
surface reflectances (Tanré et al. 1990).

Extensive experiments have been carried out in order to test the performance of the proposed
approach for combining classifiers in section 2, and the effect of independence on the classification
accuracy. These experiments can be divided into three groups as described in the following
subsections.

(i) Experiment 1: Using the same features and different classifiers trained by independent data sets.

In this experiment the same features (i.e., the three multispectral SPOT bands) and standard
classifiers (e.g., maximum likelihood, minimum distance rule and artificial neural networks) trained
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by independent data sets were used. Six sample sets were selected using stratified random sampling
based on the reference image (ground truth), which was generated using the same scale and
projection system as the remotely sensed data. Each sample had 200 patterns per class (total 1200
pixels). Four independent sample sets were used to train the classifiers and two independent sample
sets (selected at random) were reserved respectively as the testing set to check the performance, and a
set to generate the prior knowledge on the error of each classifier. The four training sample sets were
individually used as input to each of four classifiers: Maximum Likelihood (ML), Minimum
Distance Rule (MDR) method and two variants of an Artificial Neural Network (ANN and ANNT).
The Gaussian maximum likelihood and minimum distance rule methods are well-known
classification algorithms (e.g., Mather 1999). Both artificial neural network architectures chosen are
multilayer perceptrons using the backpropagation algorithm (Lippmann 1987, Benediktsson et al.
1990, and Civco 1993). The only difference between the models is in the input layer. The first ANN
model was implemented having one neurone per spectral band in the input layer. Therefore, this
neural network had three nodes in the first layer. The alternative ANNT was modelled using a 3 x 3
window of pixel data from each band of the image, giving a total of 27 nodes in the input layer, as
the input (Paola and Schowengerdt, 1995). This input modification takes local texture information
into account.  All neural network configurations tested had an output layer with six nodes,
corresponding to the six crop classes. The number of hidden layers and the number of hidden nodes
were found (1 hidden layer and 10 nodes) using the Hirose et al. (1991) procedure. The learning rate
and momentum were kept constant at 0.2 and 0.9, respectively.

(ii) Experiment 2: Using different features and different classifiers trained by independent data sets.

The previous experiment has taken a step in the direction of combining the output of different
classifiers using the same features. It is possible that using qualitatively different sets of feature
variables that provide the lowest correlation among classifiers may produce more promising results.
Therefore, the approach outlined in this study should be replicated using an independent set of
features (e.g., different multispectral bands) and on several images (e.g. Landsat). In Experiment 2,
two multispectral Landsat images were split into four independent sets of three features (i.e., three
multispectral bands) each. Thus, bands 1, 2 and 3 of the Landsat image (27 June 1994) were used as
discriminating variables in an ML classifier. The remaining bands (i.e., 4, 5 and 7) of this image were
used as input to an ANN classifier. A MDR classifier was trained using the three first bands (i.e.,
bands 1, 2 and 3) of the second Landsat image (20 July 1994) as features, and the three remaining
bands (i.e., bands 4, 5 and 7) of this image were used as input features to train the ANNT. All the
classifiers were also trained by independent data sets. Six sample sets were also selected using
stratified random sampling based on the reference image. Each sample has 120 patterns per class
(total 720 pixels). Four independent sample sets were used to train the classifiers and two
independent sample sets (selected at random) were reserved as the testing set to check the
performance and to generate the prior knowledge on the error of each classifier, respectively. The
second test data set was used to train the 2ANN, before the final accuracy assessment. The four
independent training sample sets were individually used as input to each of four supervised
classifiers: ML, MDR, ANN, and ANNT, as described above.

(iii) Experiment 3: Using different features and the same classifiers trained by independent data
sets. An intuitive way to improve the classification accuracy would be to combine the best
individual performance classifier (i.e., the one having the high accuracy for the four independent
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sets of features) from the previous experiments. For instance, in this final experiment an ANNT
classifier was selected, since this algorithm had the best individual accuracy when it was applied
for the four independent sets of features. Moreover, several researchers (e.g., Tumer and Ghosh
1996, Kanellopoulos and Wilkinson 1997) argue that different neural networks (of the same
type) also yield different class separation surfaces, depending on the network architectures and
the starting weight sets of the network concerned. Thus, the two multispectral Landsat images
were again split into four independent sets of features, each with three multispectral bands, as
described in the previous subsection. Then, each group of three features was used as the set of
discriminant variables to be input to four independent ANNT classifiers. The ANNT classifiers
were also trained by four independent sample sets, and two independent sample sets (selected at
random) were used as the testing set to check the performance and to generate the prior
knowledge on the error of each classifier. Each sample has also 120 patterns per class (total 720
pixels).

Standard accuracy measures derived from a confusion matrix were computed. The measures
based on the confusion matrix were overall accuracy, individual class accuracy, producer's
accuracy and user’s accuracy. The calculations associated with these measures are described in
standard textbooks (Mather, 1999). However, the major interest in these experiments is to verify
the performance of individual independent classifiers and the performance of the combined
classifiers, so it is the Kappa coefficient (Ka), variance, and test Z statistics that are most important,
rather than the individual accuracy of the classes, which are reported here.

In addition, a pairwise test statistics for testing the significance of the classifiers (represented here
by their respective confusion matrices) were performed utilising the Kappa coefficients. These
results are summarised in form of a significance matrix , in which the major diagonal elements
indicate if the respective classification result is meaningful. In this single confusion matrix case, the Z
value can be computed using the formula:

)var(KaKaZ =                                                         (12)
where Z is standardised and normally distributed and var is the large sample variance of the Kappa
coefficient K.  If Z ≥ Zα/2 the classification is significant better than a random classification, where
α/2 is the confidence level of the two-tailed Z test and the degrees of freedom are assumed to be
infinity. On the other hand, the off diagonal elements give an indication, again if Z ≥ Zα/2, that the
two independent classifiers are significantly different. The formula used to test for significance
between the two independent Kappa coefficients is:

)var()var( 2121 KaKaKaKaZ +−=                                 (13)

where the Ka1 and Ka2 are the two Kappa coefficients in comparison. Congalton and Green
(1999) present a comprehensive review of these formulations.

4 Results

In Table 1(a), the classification results are evaluated using Kappa analysis and are summarised
in the form of a significance matrix for the first experiment. In this table, the Kappa and variance
values for accuracy assessment were obtained using Maximum Likelihood (ML), Artificial
Neural Networks (ANN), Minimum Distance Rule (MDR) and Artificial Neural Networks
Texture (ANNT) classifiers, respectively. The effects of combining or integrating the outputs of
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these four classifiers using conservative vote (C. Vote), majority vote (M. Vote), comparative
vote (Cmp. Vote), Bayesian Formalism using average (F.B.(ave)), Bayesian Formalism using
belief (F.B.(bel)), evidential reasoning (ER), and a second Artificial Neural Network (2ANN),
are displayed. The first set of independent test data was used as the test set to validate the
performance of the classifications. The second test data set was used to generate the prior
knowledge of the error of each classifier, and for training the second Artificial Neural Network
(2ANN). Independent of the method or algorithm used, the pixels received the label of the output
class having the highest probability or minimum distance.

It can be seen from Table1(a) that the ANNT (Kappa = 0.64) gives the best performance of
the four individual classifiers. The performance of the combined classifier using 2ANN (Kappa
= 0.766) is superior to ANNT (and thus to all other individual classifiers) in all aspects. The
major diagonal elements (representing the single error matrices) show that all the classifications
are significantly better than random results, at the 95% confidence level (Z > 1.96, the critical
value Zα/2).

It is important to determine whether combining the classifier outputs can improve on
individual classification accuracies. In order to determine this, consider the pairwise test of
significance utilising the Kappa analysis in the significance matrix. Comparing the classifier
performances (off diagonal elements), as expected, there are “positive” significant improvements
for the individual classifier performances (yellow classifier pairs). However, there are some
combination methods that reduce the accuracy of the individual classifiers (e.g., using the
conservative vote principle). The majority of experiments suggest that the use of a second
artificial neural network (2ANN) strategy is able significantly to improve the classification
performance when using the same set of features (i.e., three spectral bands) and independent data
sets. As might be expected, the conservative vote (C. Vote) was the worst strategy, due to the fact
that, using this method, there needs to be an agreement between all the classifier outputs,
otherwise the pattern is rejected. In addition, the majority and comparative vote methods present
some significant improvement only in relation to MDR classifier performance, which suggests that
the integrated method is not guaranteed to generate improved results for all situations, especially
when using the same set of discriminant variables as input into the classification process.

With the exception of the ANNT, there are significant positive improvements using
evidential reasoning (ER) and Bayesian Formalism using belief (F.B.(bel)) strategies.
Predictably, the combination of these independent classifiers is significantly better than the
individual use of an MDR algorithm in remote sensing data.

It must be emphasised that the previous observations are obtained from a case study on 1200
patterns (pixels) using the same three features as discriminant variables and considering
independent sample sets and different classifiers. The combined error rates depend not only on
the error rates of individual classifiers but also on the correlation between the feature variables
used. Therefore, it is necessary to perform the whole process for different feature sets that would
provide the lowest correlation between classifiers and on several images (e.g., Landsat).

In order to determine whether combining the classifier outputs using independent sets of
features as discriminant variables can improve on individual classification accuracies
(Experiment 2), a pairwise test of significance utilising Kappa analysis was performed and the
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results are presented in the Table 1(b). This table shows that the ANNT (Kappa = 0.725) gives
the best individual performance of the four individual classifiers. The major diagonal elements
show that all the classifications are significantly better than a random allocation, at the 95
percent confidence level (computed Zdiagonal > 1.96).

From the evaluation of the results, it is noteworthy that the accuracy of the combined
classification in relation to individual performance levels was improved significantly. Since each
classifier uses different sets of feature variables, the correlation between them is reduced. Therefore,
using the combination method of Bayesian Formalism, using both average and belief, evidential
reasoning, or a second neural network is able significantly to improve the individual performances
of ML, MDR, ANN or ANNT classifiers, since independent features are used as discriminant
variables. Thus, clearly, the combined use of four different mathematical models in the
classification process yields useful dividends, as proposed by Wilkinson et al. (1995).

The combination rule of majority vote can also be used to significantly improve the
individual performance of ML, MDR, or ANN, but this fusion method gives a lower accuracy
than the one achieved by the performance of an individual ANNT classifier. There are also some
accuracy improvements in using the comparative vote combination rule in relation to individual
performances (e.g., ML and MDR). However, Equation 3 was set up with an arbitrary α value of
0.5; it is possible that if an appropriate value for α is used, the results could be improved for the
comparative vote rule. It is important to mention that the determination of an “appropriate” value of
α is case dependent. Therefore, this value must be determined experimentally. For instance, Xu et al.
(1992) found that α equal to 0.51 gives better results for the comparative vote rule when applied in
the context of handwriting recognition. However, for remotely sensed data as used in this
experiment, α should be 0.1 or 0.2 in order to ensure higher accuracy with a lower rate of
unrecognised pixels.

Finally, the ANNT classifier was selected to perform the third experiment in order to
examine whether classification accuracy can be improved by using the best individual
performance classifier for the four independent sets of features. The results are presented in
Table 1(c). There are some improvements on the individual classifier accuracy using this data
set, as expected. However, some interesting results are exhibited by the choice of classification
fusion (or combination) procedure. Using the combination method of majority vote, Bayesian
Formalism - using both average and belief - evidential reasoning or a second neural network is
able to significantly improve the performance of individual classifiers.

5 Conclusions

This article reviews the standard techniques of combining the outputs from different classifiers,
and summarises recent results that statistically quantify such improvements. Preliminary results
indicate that significant improvement can be obtained in difficult pattern recognition problems,
such as those that involve a large amount of noise, limited number of training data pixels, or
unusually high dimensional patterns (Tumer and Ghosh 1996).

On balance, combining different types of classifiers using an independent training data set
can provide modest improvements in classification accuracy for remotely sensed data. However,
combining the classifier outputs using independent sets of features as discriminant variables can
significantly improve on individual classification accuracies. Moreover, high levels of accuracy
can be reached when classifiers like ANNT are combined using qualitatively different feature
sets and independent data sets, which provide the lowest correlation among classifiers. The
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ANNT classifier has the advantage of implicitly incorporating local spatial variance into the
classification process. In addition, a variant of the 2ANN approach has proven to be effective in
combining the output of several classifiers before making the classification decision for all the
experiments carried out in this research. The 2ANN fusion method is motivated by its ability to
extract the valuable amount of information from individual classifiers.

This study has taken a step in the direction of combining the output of independent
classifiers in the context of remote sensing. This is an area that would merit further research in
order to determine its reliability and optimise its use. There are also many other problems to
study, as pointed out by Xu et al. (1992), for example: how to generalise these approaches to
combine dependent classifiers? How many classifiers are appropriate for a special problem?
How to distribute a given number of feature variables to each classifier?

It is possible that by tackling these questions, new insights into the subject of pattern
recognition and remote sensing could be added to the literature. Previously, the main effort
focused on the design of one good classifier and the reduction of the high-dimensional feature
vector in order to obtain high classification accuracy. Now, the focus can be changed and the
variety of classifiers developed up to date should be seen not as competitors but as vital and
complementary methods (Wilkinson et al. 1995). Nevertheless, a number of classifiers can be
designed, which use low dimension feature vectors of different and complementary types, as
argued by Xu et al. (1992). Although each classifier may not have an optimal performance, the
appropriate combination of these individual classifiers may produce a high quality overall
performance.
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a) Significance Matrix for Experiment 1.

b) Significance Matrix for Experiment 2.

c) Significance Matrix for Experiment 3.

Table 1: Significance matrices for comparison of classifiers using Kappa Analysis. The tables
also present the Kappa coefficients and variance of each classifier. The Z values along the major
diagonal and the other Z values (off diagonal elements) were computed using the Equations 12
and 13 respectively. Painted classifier pairs indicate significant improvements in the
performance of the classifiers at 95% confidence level (Z critical value = 1.96).

Classifiers       ML      ANN      MDR     ANNT   C. Vote   M. Vote   Cmp. Vote  F.B.(ave)  F.B.(bel)       ER     2ANN

KAPPA 0.462 0.587 0.417 0.725 0.163 0.721 0.536 0.812 0.833 0.808 0.833
VAR   0.000472 0.000451 0.000491 0.000352 0.000174 0.000332 0.000325 0.000264 0.000239 0.000268 0.000239
ML 21.27
ANN 4.11 27.64

MDR 1.45 5.54 18.82
ANNT 9.16 4.87 10.61 38.64

C. Vote 11.76 16.96 9.85 24.50 12.36
M. Vote 9.13 4.79 10.60 0.15 24.81 39.57

Cmp. Vote 2.62 1.83 4.17 7.26 16.70 7.22 29.73
F.B.(ave) 12.90 8.42 14.38 3.51 31.01 3.73 11.37 49.98

F.B.(bel) 13.91 9.37 15.40 4.44 32.97 4.69 12.51 0.94 53.88
ER 12.72 8.24 14.19 3.33 30.68 3.55 11.17 0.17 1.11 49.36
2ANN 13.91 9.37 15.40 4.44 32.97 4.69 12.51 0.94 0.00 1.11 53.88

Classifiers ML ANN MDR ANNT C. Vote   M. Vote Cmp. Vote   F. B. (AVE) F.B.(BEL) ER 2ANN

KAPPA 0.578 0.568 0.428 0.64 0.379 0.615 0.563 0.619 0.647 0.623 0.766
VAR   0.000268 0.000271 0.000293 0.000251 0.000175 0.000261 0.000219 0.000257 0.000247 0.000225 0.000188
ML 35.31
ANN 0.43 34.50

MDR 6.33 5.90 25.00
ANNT 2.72 3.15 9.09 40.40

C. Vote   9.45 8.95 2.27 12.65 28.65
M. Vote 1.61 2.04 7.94 1.10 11.30 38.07

Cmp. Vote   0.68 0.23 5.97 3.55 9.27 2.37 38.04
F. B. (AVE) 1.79 2.22 8.14 0.93 11.55 0.18 2.57 38.61

F.B.(BEL) 3.04 3.47 9.42 0.31 13.05 1.42 3.89 1.25 41.17
ER 2.03 2.47 8.57 0.78 12.20 0.36 2.85 0.18 1.10 41.53
2ANN 8.80 9.24 15.41 6.01 20.31 7.13 10.06 6.97 5.71 7.04 55.87

Classifiers  ANNT(1)  ANNT(2)  ANNT(3)  ANNT(4)   C. Vote   M. Vote   Cmp. Vote  F.B.(AVE)  F.B.(BEL)       ER     2ANN

KAPPA 0.62 0.667 0.695 0.728 0.36 0.799 0.773 0.842 0.863 0.853 0.878
VAR   0.00043 0.0004 0.000378 0.000349 0.000285 0.00027 0.000275 0.000298 0.000202 0.000214 0.000182
ANNT(1) 29.90
ANNT(2) 1.63 33.35

ANNT(3) 2.64 1.00 35.75
ANNT(4) 3.87 2.23 1.22 38.97

C. Vote 9.72 11.73 13.01 14.62 21.33
M. Vote 6.77 5.10 4.09 2.85 18.64 48.63

Cmp. Vote 5.76 4.08 3.05 1.80 17.45 1.11 46.61
F.B.(AVE) 8.23 6.62 5.65 4.48 19.96 1.80 2.88 48.78

F.B.(BEL) 9.67 7.99 6.98 5.75 22.79 2.95 4.12 0.94 60.72
ER 9.18 7.51 6.49 5.27 22.07 2.46 3.62 0.49 0.49 58.31
2ANN 10.43 8.75 7.73 6.51 23.97 3.72 4.91 1.64 0.77 1.26 65.08
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