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Abstract. Effective agricultural planning requires basic soil information. In recent decades near-infrared 

diffuse reflectance spectroscopy (NIRS) has been shown to be a viable alternative for rapidly analyzing soil 
properties. We studied 7171 samples of the soil Brazilian spectral library. The aim was to explore the possibility 
of enhancing the performance of NIRS data in predicting organic matter and clay content in this library by 
dividing it into smaller sub-libraries based on their vis-NIR spectra and to compare these results to two nonlinear 
calibration techniques (BT and SVM) applied to the whole library. The general predictive models for clay 
performed well (R2 > 0.79), reflecting the influence of the direct spectral responses of this property in the NIRS 
range. Predictions of OM were reasonably good, especially with clustering, and in view of the very low variation 
in this parameter. Results showed that the division of the large library into smaller subsets based on the variation 
in the mean-normalized spectra was the best alternative for using vis-NIR spectra to quantify soil attributes in 
tropical soils by Partial Least Square regressions. This divided the global data set into clusters that were more 
uniform in mineralogy, regardless of geographical origin, and improved predictive performance. Another 
alternative would be to use boosted regression trees for the whole library. It was also possible to identify regions 
of the vis-NIR spectrum that showed absorption features due to water, iron oxides and clay minerals that their 
variation might be responsible for the cluster divisions. 
 
Palavras-chave: espectroscopia de reflectância difusa, matéria orgânica do solo, argila, regressão PLS, 
regressão de árvores, máquina de vetor.  
 
Key words: diffuse reflectance spectroscopy, soil organic matter, clay, PLS regression, support vector machine 
learning, boosted regression trees 
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1. Introduction 
The efficient use of soils in agriculture requires a good understanding of their chemical, 
physical, mineralogical and biological characteristics. Soil texture and organic matter (OM) 
are two important properties of soils. Methods used to determine texture (Gee et al., 1986) 
and organic matter content (Raij et al., 2001) in conventional soil laboratories in Brazil and 
elsewhere are expensive, time-consuming and can be environmentally hazardous. Thus there 
is a need for more efficient methods to reduce the number of soil chemical analyses and 
generate high-resolution soil property maps over large areas at reasonable costs. Visible and 
near-infrared (vis-NIR) diffuse reflectance spectroscopy (400 - 2500 nm) has received 
increasing attention over the last two decades as a promising technique for soil analysis (e.g. 
Nanni and Demattê, 2006;  Bellinaso et al., 2010; Wetterlind et al., 2008; Stenberg et al., 
2010; Demattê et al., 2010). 

The absorption of vis-NIR light occurs due to overtones and combinations of 
fundamental molecular absorptions in the mid-infrared region and is associated with soil 
moisture, organic materials, and mineralogy. As clay particles consist mainly of clay 
minerals, vis–NIR spectra can be assumed to be of value for predicting clay content (Stenberg 
et al., 2010). OM can be related directly to the absorption of vis-NIR spectra through a 
number of functional groups such as the carboxyl, hydroxyl and amine groups (Clark et al., 
1990).  

It is often suggested that libraries containing smaller soil variation at the field scale 
would result in better OM predictions than more general ones collected over larger geographic 
areas (e.g. Kuang and Mouazen, 2011). However, Stenberg et al. (2010), reviewing published 
predictions, found that variation in the texture or SOC variables themselves accounted for a 
majority of the variation in model accuracy for texture and SOC, respectively, and that the 
size of the geographic area had a small influence. Thus, attempts to improve the prediction 
accuracy of a large global/national spectral library may benefit from dividing the library into 
smaller sub-libraries with more similar soils, regardless of the geographical origin of the 
samples. Because clay minerals and SOC tend to have the largest influence on soil vis-NIR 
spectra (Stenberg et al., 2010), dividing a global library into smaller models based on the 
variation in the spectra is one potential strategy for improving vis-NIR calibrations. 

Partial least square regression (PLSR) is one of the most commonly used techniques to 
analyze this type of data. When dealing with a highly heterogeneous sample set in which 
measured parameters may vary considerably, the precision of linear regression techniques 
tends to decrease due to the non-linear nature of the relationship between spectral data and the 
dependent variable.  

 This study aims to (i) explore the possibility of enhancing predictions of OM and clay 
content in a large Brazilian soil spectral library by dividing it into smaller sub-libraries based 
on their vis-NIR spectra. In the process, we also tested the effect of three different pre-
treatments of the spectra; continuum removal, first derivative, and mean normalization before 
dividing the library; (ii) compare the predictive performance of the sub-models with global 
models using PLSR and two multivariate data-mining techniques: boosted regression trees 
(BT) and support vector machines (SVM). Given the non-linear and contingent relationships 
between VNIR reflectance and soil composition (Clark, 1999), it was expected that BT and 
SVM would perform better than PLSR, since they can incorporate complex, non-linear 
relationships and interactions whereas PLSR is built upon linear, continuous relationships 
between predictors and the target variable of interest. 
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2. Material and Methods 
For this study we used 7172 samples in the soil spectral library of the Remote Sensing 
Laboratory at the Soils Department, University of São Paulo. The soils in this spectral library 
are diverse and represent several orders of the World Reference for Soil Resources (WRB, 
2006). The samples were air-dried and ground to a particle size of <2 mm before being 
submitted to chemical and spectral analyses. Sand (2-0.05mm), silt (0.05-0.002 mm) and clay 
(<0.002 mm) contents were determined by the densimeter-sedimentation method, using 0.1 M 
calcium hexametaphosphate and 0.1 M sodium hydroxide as dispersing agents (Gee et al., 
1986). Organic matter (OM) content was determined by a colorimetric method (Raij et al., 
2001). 
 The spectral reflectance of soils was measured in the vis-NIR (350-2500 nm) range, with 
a spectral resolution of 3 nm (from 350 to 1000 nm) and 10 nm (from 1000 to 2500 nm) using 
a FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, Colorado; 
Hatchell, 1999) (Henderson, 1992). 
 Prior to any model development the spectral library was randomly divided into a 
calibration set (CS) with 5169 samples and a validation set (VS) with 2003 samples, keeping 
the layers of the same soil profile together to ensure independence between CS and VS. The 
general approach in model development was that two major lines of calibration procedures 
were performed and compared. One involved straight forward on the calibration set as a 
whole (global models), and one involved calibrations that were performed cluster by cluster 
after the calibration set had beendivided into spectrally similar clusters(clustered models). The 
first derivative using a 2nd order polynomial Savitzky-Golay smoothing over 11 points was 
applied as spectral pre-processing for all calibrations. This led to improved results for both 
clay and OM as compared to a range of other pre-treatments tested in our preliminary 
evaluation. 

Global models were calibrated on the full, undivided calibration set (CS; n=5161). 
Three different calibration techniques were tested: PLSR, SVM, and BT. The PLSR technique 
is widely used, showing a good capacity for estimating attributes based on the spectral 
behavior of the soil (Vasques et al., 2008). It was performed in Unscrambler v.10.1 software 
on the calibration set using the orthogonalized PLSR algorithm for one Y-variable (PLS-1) 
and full cross-validation. The number of partial least-square (PLS) factors was chosen to 
minimize the root mean square error (RMSE) in the cross validation. 
 For the clustered models three different transformations prior to clustering were 
evaluated. The raw reflectance data were transformed to 1) the 1st derivative Savitzky-Golay 
(2nd order with 11 smoothing points; The Unscrambler v 10.1), 2) mean normalized (dividing 
each spectrum by its mean; The Unscrambler v 10.1), and 3) continuum removal (CR) 
calculated by a convex hull (Envi 4.5, 2008; Clark and Roush, 1984). The main purpose of the 
transformations was to see if they would divide the data differently and to assess what 
influence this would have on predictive performance for OM and clay (Figure 1). 

All predictive models of OM and clay content, both the global ones by PLSR, BT and 
SVM and the clustered models, were validated using the predefined validation set (VS; n = 
1998). 

For the clustered models, the validation sample first had to be assigned to one of the 
clusters. Thus, the success of this assignment step was included in the validation of 
calibrations. Discriminant analysis (Wold, 1982) models, one for each transformation, were 
developed to define the spectral features that separate the clusters. Score vectors from the 10 
first principle components of a PCA based on the calibration set were used. Scores for the 
validation samples were calculated by projecting the transformed spectral data on the PCA 
based on the calibration set. Each validation sample was then assigned to one of the clusters 
for each transformation by the corresponding discriminant analysis model (Figure 1). 

Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Foz do Iguaçu, PR, Brasil, 13 a 18 de abril de 2013, INPE

2433



The coefficients of determination (R2), the root mean square error (RMSE), and the 
ratio of performance to deviation (RPD) were used to compare the results, calculated using 
the following equations: 
 

 and      
 
where n is the number of samples and SD is the standard deviation of laboratory-measured 
values for the property in question.  
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Figure 1.Overview of steps taken during the pre-processing and analyses. To be able to 

allocate unknown samples (the validation set) to one of the spectrally defined clusters, the 
spectral features defining the clusters were identified by discriminant analysis models (DAM). 
 
 
3. Results and discussion 

The validation results of the global predictions produced using the PLS, BT and SVM 
methods are summarized in Figure 2. Different regression methods provided different levels 
of predictive accuracy for OM and clay content. In general, we observed a tendency towards 
better results when using the boosted regression trees technique than SVM and PLSR, but the 
differences were small. These results corroborate Brown et al. (2006), who compared BT and 
PLS techniques for analyzing soil properties with vis-NIR and found BT to be a superior 
modeling approach. Those authors used 4184 compositionally diverse, well-characterized, 
and largely independent soil samples. In our study we also used a large number of samples 
(more than 7000) and a heterogeneous data set with soil properties measured in the topsoil 
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and subsoil in different soil orders. According to Friedman and Meulman (2003), the BT 
technique tends to be resistant to the effects of outliers, handling missing values and 
correlated variables. It also allows the inclusion of a potentially large number of irrelevant 
predictors (Jalabert et al., 2010). However, Viscarra Rossel and Behrens (2010) and Vasques 
et al. (2008) observed that BT and regression trees models produced the worst results among 
many multivariate techniques, including PLSR and SVM, tested to analyze total carbon, 
organic carbon, and clay. Those studies used 1104 samples from four regions in Australia 
(50% of them surface soils) and 554 samples collected to a depth of 180 cm in north-central 
Florida, respectively. The contrasting results reported by these authors may be due to the very 
diverse origin of the data sets. SVM also provided slightly better RMSE and RPD statistics 
than PLSR. 

The spectral library data were divided into spectrally defined clusters with different 
numbers of samples according to the transformation employed (CR, 1st derivative, and mean 
normalized). This division can be attributed to the variation of clay content in the dataset, 
given that soil mineralogy is one of the principal factors influencing soil reflectance 
(Hartmann and Appel, 2006) and that the type and concentration of soil minerals are strongly 
correlated with soil texture through the amount of clay minerals. The key requirement for 
empirical modeling, that validation samples are similar to the calibration samples (Dardenne 
et al., 2000), was fulfilled.  

The validation statistics calculated based on the combined prediction results (CPR) of 
all validation samples in all clusters by the respective pre-transformations (CPR-N, CPR-D 
and CPR-CR, respectively) (Table 1) showed that transforming the data using continuum 
removal and especially mean normalization prior to cluster analysis provided more accurate 
models than transforming the data by applying the 1st derivative. 

Predictive accuracy differed among and within the clustering methods (Table 2). 
Comparing the validation results obtained from the global library and from combined cluster 
predictions, the data that was transformed by normalization before the clustering analysis 
resulted in improved validation results (Table 2).We observed a larger improvement in 
accuracy of models for OM than for clay with clustered models, with a reduction of the 
RMSE of 30 % and 17% for OM and clay, respectively. 

When normalization was used as a pre-processing treatment, the global spectral library 
was divided into 5 clusters. The independent validation results for clusters 2 and 5 presented 
the highest values of RPD and R2, followed by clusters 1, 4, and 3, respectively for clay and 
3, 1, and 4 for OM. 

The results of the RMSE (Table 1) reveal higher values of model errors when the 1st 
derivative was applied before the cluster analysis, with mean values of RMSE of 12.84 for 
clay and 0.59 for OM. According to Brown et al. (2005), the 1st derivative analysis can 
introduce instability and noise to soil reflectance data because of changing spectral 
contributions of soil minerals (Clark and Roush, 1984; Kokaly and Clark, 1999). This may 
have reduced the accuracy of the discriminant analysis of our data.  

The success of assigning the validation samples to the right cluster by discriminant 
analyses on normalized data can be seen in Figure 2, which shows the linear discriminate 
analyses projection of the 5 clusters. The relevance of using normalization transformation is 
in accordance with other authors who found this pre-processing to improve soil property 
calibrations. For example, Kuśnierek (2011), in a study of Polish soils, observed that this 
transformation was the best of several for SOC modeling. 
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Figure 2.Validation scatter plot of laboratory-measured data versus vis-NIR predictions 
obtained from (a)partial least square regression, (b) boosted tree regression and (c) support 
vector machine for organic matter (OM) and clay content. 
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Table 1 - Summary statistics of validation results of calibrations for clay (%) and OM (%) 
using an independent validation dataset 
Preprocessing Cluster Number 

of R2 RMSEv RPD R2 RMSEv RPD
samples

1 512 0.75 9.63 1.96 0.54 0.51 1.47
Normalized 2 238 0.83 10.43 2.37 0.76 0.53 2.02

3 347 0.40 11.13 1.46 0.53 0.47 1.81
4 175 0.68 9.15 1.73 0.40 0.55 1.29
5 726 0.77 7.80 2.07 0.58 0.27 2.85

CPR - N 0.87 9.28 2.74 0.60 0.42 2.07

1st derivative 1 802 0.61 13.34 1.66 0.40 0.56 1.35
2 687 0.79 12.65 2.18 0.62 0.53 1.78
3 195 0.57 11.62 1.19 0.30 0.61 1.24
4 314 0.52 12.75 1.45 0.27 0.76 1.14

CPR - D 0.76 12.84 1.98 0.30 0.59 1.47

CR 1 289 0.53 12.22 1.43 0.60 0.53 1.54
2 312 0.61 13.89 1.54 0.60 0.65 1.55
3 794 0.85 9.90 4.46 0.60 0.30 2.61
4 603 0.76 10.30 2.02 0.59 0.38 2.25

CPR - CR 0.81 10.98 2.31 0.56 0.41 2.12

PLS all 1988 0.79 11.16 2.27 0.52 0.60 1.45

BT all 1988 0.83 10.80 2.35 0.61 0.54 1.60

SVM all 1988 0.81 11.00 2.30 0.55 0.62 1.40

Clay OM

 
The number of samples was based on discriminant analyses. PLS, BT and SVM refer to non-clustered 
models obtained by Partial Least Squares regression, Boosted Regression Trees, and Support Vector 
Machines, respectively; CPR - N,CPR - D, andCPR - CR refer to combined prediction results(CPR) 
with mean normalization (N), 1st derivative (D),and continuum removal (CR) as pre-transformation 
treatments, respectively.  
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Figure 2.  Projection of linear discriminant analysis clusters, obtained with normalized 

transformation, on the corresponding K-means cluster. The letters a, b, c, d, and e refer to 

cluster numbers 1, 2, 3, 4, and 5, respectively. 

 
In our study, the additional step of assigning validation samples to the right class in 

the prediction process did not add substantially to the overall prediction error. We observed 
that cross validation (which does not involve sample-to-cluster assignment) and independent 
validation (which does) results did not differ substantially more for the clustered models as 
compared to the global models. If the assignment of validation samples to clusters added 
substantially to the prediction error, a larger difference for the clustered models would be 
expected.   
 
4. Conclusions 

The general predictive models for clay were good, which reflects the influence of the 
direct spectral responses of this property in the NIR range. OM predictions were reasonably 
good, especially with clustering and in view of the very low variation in OM levels in the data 
set. The division of the large library into smaller subsets based on variation in the mean-
normalized spectra was the best alternative for using vis-NIR spectra to quantify soil 
attributes in tropical soils by Partial Least Square regressions. It divided the global data set 
into more mineralogically uniform clusters, regardless of geographical origin, and improved 
predictive performance. The additional step of assigning the validation samples to the right 
class in the prediction process (clustered models) did not add substantially to the overall 
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prediction error. Another alternative would be to use Boosted regression trees for the whole 
library. Comparing the results of this study and previously published ones indicates that the 
selection of the best performing pre-processing method is dataset-dependent. 
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