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Abstract. This paper aims at firstly evaluating the correspondence between Normalized Difference Vegetation 

Index (NDVI) products from Formosat-2 (F2) and SPOT sensors and then to perform a comparative analysis of 

two methods for retrieving Green Area Index from high spatial and temporal resolution satellite data (F2 and 

SPOT). For this purpose, an empirical approach using NDVI plus field data and a Neural Network approach 

using the PROSAIL model are compared over four different crops: wheat, sunflower, maize and soybean. The 

performance of both methods were evaluated and compared with in-situ direct (destructive) and indirect 

(hemispherical photos) measurements. Results suggest better performances for the empirical approach (R², 

RMSE). Still the physically-based method leads to good results (R², RMSE). The latter seems to be more 

promising due to its portability and independence from field measurements. 

 
Keywords: Green Area Index (GAI), Normalized Difference Vegetation Index (NDVI), Formosat-2, SPOT, 

Crops. 

 

1. Introduction 

 

Green Area Index (GAI) is an important vegetation variable used for different ecological, 

agronomical and meteorological applications. In agriculture and crop monitoring domains, 

GAI has a key role linking Earth observation imagery with crop models. 

The estimation of biophysical variables such as GAI and also Fraction of Absorbed 

Photosynthetically Active Radiation (Fapar) and Fraction of Vegetation Coverage (Fcover) 

from remote sensing observations have been studied since the first space missions (e.g. 

Landsat in 1972).With the advances in technology, new missions such as Sentinel-2 

[Martimor et al. (2007)] and Venµs [Dedieu et al. (2006)] will provide new perspectives for 

land surfaces monitoring. The data from these satellites will combine both the high spatial 

resolution and high revisit frequency. These characteristics are essential for an accurate 

cartography and modeling of croplands, which have often small area and frequent temporal 

changes (due to plant development stages and management practices). 

For this study, the need of continuous time series of high resolution images led to the 

combined use of data from Formosat-2 and Spot satellites. For this reason, the compatibility 

between these two datasets was investigated, aiming at having a complementary and 

homogeneous set of remote sensing data.  

Many methods have been developed to relate GAI to optical remote sensing signal [Baret 

and Buis (2008)]. The main objective of this work is to perform a comparative analysis of two 

methods for retrieving GAI from high spatial resolution and high temporal frequency satellite 

data. The first approach consisted in an empirical method, linking NDVI time series with 

ground measurements. The second approach was based on the application of neural network 

inversion of a radiative transfer model (PROSAIL [Baret et al. (1992)] ). Further studies will 

integrate the estimated GAI (from the best performing method) into a simple crop model for 

estimating biomass and yield over complete cultural cycles. 
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2. Data  

 

2.1. Site description 

The study was carried out in the southwest France, within a 24 km x 24km² area (1°10’E, 

43°27’N). The climate is temperate mild, characterized by warm and dry summers, sunny 

autumns, soft winters and by rainy and stormy springs. Annual precipitation is about 656 mm 

and annual mean temperature is 13°C.  The study area is mainly covered by arable lands 

(around 60%). 

 

2.2. Field data 

The study was carried out from 2006 to 2010, in the area around two 3km × 3km 

experimental sites (called Lamasquère and Auradé [Béziat et al. (2009)], and where 

meteorological measurements and flux studies have been performed). Destructive and non-

destructive measurements of GAI were done over four types of crops: winter wheat, 

sunflower, maize and soybean.  

Each non-destructive GAI value was estimated from digital hemispherical photographs 

(DHP) taken using the VALERI protocol [http://w3.avignon.inra.fr/valeri/]. An amount of 13 

DHPs were taken from above the canopy over a 20m × 20m sampled area called Elementary 

Sampling Unit (ESU). The photographs were taken with a Nikon Coolpix 8400 camera 

having FC-8 fisheye lens. The DHPs were processed using the imaging software CAN-EYE 

V.5.1 [http://www4.paca.inra.fr/can-eye], providing estimates of effective and true GAI. The 

latter takes into account the clumping effect [Demarez et al. (2008)]. GAI was also measured 

using a destructive method by cutting the entire plant and measuring the surface of the green 

organs (leaves and stem) with a planimeter (LI3100, LiCor, Lincoln, NE, USA). 

 

2.3. Remote sensing data 

 

2.3.1. Formosat-2 & Spot data 

Formosat-2 (F2) satellite provides images with spatial resolution of 8 m in four reflective 

bands centered at 488, 555, 650 and 830 nm. The sensor has a footprint of 24 km × 24 km and 

an orbital cycle of one day. Images are taken at near constant viewing angles (around 29°). A 

set of 112 images is available from 2006 to 2010 over the study area.  

The SPOT images were taken by SPOT 2, 4 and 5 satellites. Data have spatial resolution 

of 20m (SPOT 2 and 4) or 10m (SPOT 5) in the green, red and near infrared spectral bands 

for SPOT 2 plus short-wave infrared band for SPOT 4 and 5. The field of view is 60 km. The 

viewing angles varied between +/- 27°. A total of 52 SPOT images were acquired over the 

five years period. 

  

2.3.2. Remote sensing data pre-processing  

SPOT and FORMOSAT images were processed with the KALIDEOS processing chain 

[http://kalideos.cnes.fr]. It provides valuable atmospheric, radiometric and geometric 

corrections required for accurate time series studies (detailed information is available in 

Lafrance et al. (2012) ). 

 

2.4. Land use map 

The cultivated plots were identified by means of the RPG (Registre Parcellaire 

Graphique). The RPG is a detailed land use database describing the cultivated fields (surface, 

location, crop species and management). 
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3. Methods 
 

3.1. Comparison of Formosat-2 and Spot data 

To allow crop monitoring for winter and summer crops, continuous time series of high 

resolution satellite data are required. The use of multi-sensor data is then strongly 

recommended. However, there are several differences between the sensor systems in addition 

to their spectral bands responses differences. These additional differences are primarily due to 

differing orbital characteristics and spatial resolution. In this study, Formosat-2 data are 

compared with Spot data. 

The NDVI products of F2 and SPOT were firstly compared. For that purpose, the SPOT 

pixels were re-sampled to the F2 pixels size of 8m × 8m, permitting a pixel to pixel 

comparison (not shown). A field scale comparison was performed as well, by calculating the 

average NDVI of each field over the study area. The mean NDVI was calculated based on the 

fields contours determined by the RPG. 

Because of the difficulty of having SPOT and F2 acquisitions exactly on the same day, 

images acquired for time intervals of +/- 3 days between the sensors were accepted (Table 1).  

View and solar angles of the pair image differed. Crop characteristics were assumed to be 

unchanged during the period between the paired acquisitions (3 days). No rain event was 

observed between the acquisitions.  

The NDVI products were compared for the different crops encountered in our area of 

study. Only the dates within the period of vegetative development were used, from 2006 until 

2010. Considering the Formosat-2 NDVI as the standard NDVI, a linear correction of the type 

baxy  was applied to the SPOT NDVI to match the standard F2 [Steven et al. (2003)]. 

This intercalibration aims at obtaining a homogeneous NDVI dataset, regarding future 

application in GAI estimates. The same could be done to establish a SPOT standard product. 

This step allowed having an estimate of the correlation between the two sets of NDVI values. 

We evaluated afterward the influence of the different view angles on the residual errors 

between NDVI products.  
 

Table 1 :  Specifications of Spot and Formosat-2 

paired dates of acquisitions: view and solar zenith  

(θv ,θs) and azimuth (φv , φs) angles. 

Date Sensor θv(°) θs (°) φv(°) φs(°) 

04/04/06 SPOT -28 98 41 149 

05/06/06 F2 22 349 27 133 

23/06/06 SPOT 20 -75 21 152 

23/06/06 F2 22 348 27 130 

17/07/06 SPOT -29 98 27 135 

17/07/06 F2 22 348 28 131 

23/11/06 SPOT -1 101 64 168 

23/11/06 F2 23 346 65 161 

15/02/07 SPOT -24 99 59 155 

15/02/07 F2 26 226 60 153 

06/07/07 SPOT 27 -72 22 150 

07/07/07 F2 28 233 26 133 

11/02/08 SPOT 21 -75 59 163 

11/02/08 F2 34 245 61 155 

20/06/08 SPOT -16 103 25 134 

19/06/08 F2 31 240 26 133 

28/06/08 SPOT -16 100 26 133 

26/06/08 F2 31 240 26 132 

19/03/09 SPOT -22 99 48 150 

17/03/09 F2 29 236 51 145 

24/06/09 SPOT 26 -74 22 149 

23/06/09 F2 29 236 29 124 

Figure 1. Neural Networks architecture 
[Weiss and Baret (2010)]. 
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3.2. Retrieving GAI from remote sensing data 

A wide range of methods have been developed to estimate biophysical variables from 

remote sensing data [Baret and Buis (2008)]. Two methods were chosen for this study: an 

empirical approach, linking biophysical variables and NDVI and a physical approach based 

on the application of neural network inversion of a radiative transfer model. 

 

3.2.1. Empirical method 

NDVI is often used to characterize vegetation. The use of this index reduces the 

anisotropic effects from the surface because the directional signatures are similar in its 

wavebands (red and infrared). NDVI, however, remains sensitive to changes in the 

observation geometry [Bacour et al. (2006)]. The empirical is one of the first and simpler 

approaches for retrieving GAI and other biophysical variables such Fapar and Fcover. 

Nevertheless a large and representative amount of field data is needed, which is a drawback 

for up-scaling studies. 

 

The relationship between NDVI and GAI can be easily established. For this study, the 

following equation was used (Eq.1).  

)( sNDVINDVI
eeGAI                          (1) 

where NDVIs is the bare soil NDVI. It was fixed to 0.13. The parameters α and β were 

calibrated using ground truth GAI measurements, by minimizing the Root Mean Square Error 

(RMSE) between estimated and observed GAI. 

 

3.2.2. Physical method 

This method is based on the inversion of the radiative transfer model PROSAIL using 

neural networks (NNT). This approach relies on three main steps: a) creation of a learning 

database, b) training the neural networks and finally c) applying the created networks for 

estimating the requested biophysical variables. This approach is also denominated as BV-NET 

tool (Biophysical variable neural network [Baret et al. (2007)]. 

 

a) Creation of a learning database 

The learning database consists of a table linking the input variables, which are the canopy 

reflectances simulated by PROSAIL model, with the output variables. This paper focuses on 

the GAI as main output variable, but estimates of Fapar and Fcover were accomplished too. 

 

PROSAIL Model [Baret et al. (1992)] 

PROSAIL is a combination of PROSPECT [Jacquemoud et al. (2009)] and SAIL models. 

The first one simulates leaf reflectances and transmittances, which are used as input variables 

for SAIL model. PROSPECT requires input parameters describing leaf properties: the 

mesophyll structure parameter (N), chlorophyll content, both a and b (Cab), water content 

(Cw), brown pigment content (Cbp) and dry matter content (Cdm). SAIL model provides 

directional reflectances, Fapar and Fcover variables. It is based on canopy extent. Input 

parameters describing structure of canopy and background soil reflectance are: green area 

index (GAI), average leaf angle (ALA), hotspot and brightness coefficient (Bs). The 

distribution of input parameters and variables used in this step is shown in Table 2. 

 

b) Neural networks training  

A different network is generated for each one of the sensors. SPOT satellites have two 

kinds of sensor instruments on board (HRG1 and HRG2). The analysis of their spectral 

responses showed that differences between instruments of a same satellite are not significant. 
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For computing-time gain, paired-sensors were considered as one, counting a total of four 

networks.  

The neural network is characterized by the type of neurons (the transfer function) and 

their architecture. In this paper a back-propagation network with two hidden layers is applied. 

The first layer has five neurons with sigmoid transfer function and the second layer has one 

neuron, with linear transfer function (Figure 1). The combination of sigmoid and linear 

functions is capable of fitting any type of function [Weiss and Baret (2010)]. The neural 

network input layer is composed of a) the angles characterizing the observation geometry 

(view and solar zenithal angles, cos(θv) and cos(θs), and the relative azimuth angle cos(Δϕ)) 

and b) the top of canopy reflectances in the different wavebands of the satellite sensor. The 

Levenberg-Marquadt optimization algorithm is used in the training process to obtain the best 

agreement between the output simulated by the network and the correspondent value of the 

training database.  

 
Table 2 : Input variables distribution of PROSAIL model, used for the learning database creation. 

  Variable Minimum Maximum Mode Std  Class Law 

Canopy 
strucutre 

GAI 0 8 2 2 8 Gauss 

ALA (°) 5 80 40 20 5 Gauss 

Hotspot 0.1 0.5 0.2 0.5 1 Gauss 

Leaf optical 

properties 

N 1.2 2.2 1.5 0.3 4 Gauss 

Cab  20 90 45 30 5 Gauss 

Cdm 0.003 0.011 0.005 0.005 4 Gauss 

Cw 0.6 0.85 0.75 0.08 4 Uniform 

Cbp 0 2 0 0.3 4 Gauss 

Soil background 

property 
Bs 0.16 1.3 0.586 0.14 4 Log-Normal 

 
c) Applying the neural networks 

 After the training step, where a relationship is established between inputs and outputs, 

the neural networks are applied to the Formosat-2 and SPOT images. Output products are the 

images of the estimated biophysical variables (GAI, Fapar and Fcover), having the same 

resolution as the input satellite images.  

 

4. Results and Discussion 
 

4.1. Comparison of Formosat-2 and Spot data 

Figure 2(a) shows the scatter-plot of the Formosat-2 and SPOT NDVI products over 3957 

crop fields (wheat, rapeseed, sunflower, maize and soybean), for 11 different dates. A 

consistent linear relationship is observed. Some points appear more dispersed, but as it can be 

seen on the related density plot in Figure 2(b), they represent a quite insignificant percentage 

of the dataset. The comparison of F2 and SPOT vegetation indices presented a strong 

correlation and low errors (R
2
=0.98, RMSE = 0.034 and RRMSE = 6.76%).The results 

suggest there is no particular crop effect on the relationship.  Slope a and interception b of the 

linear relationship found are 1.001 and -0.018, respectively. These coefficients can be applied 

to adjust the NDVI of SPOT to match the standard NDVI of the F2 satellite (or vice versa), 

aiming to obtain a relatively uniform NDVI dataset. 
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Figure 2. (a) Comparison of F2 and SPOT NDVI products over 11 different paired dates and 3957 
plots cultivated with wheat, rapeseed, maize, sunflower and soybean crops; (b) Density plot of NDVI 
Formosat-2 vs NDVI SPOT.  

 

These results revealed that despite the differences in geometrical (solar and view angles) 

configuration of the acquisitions, NDVI from F2 and SPOT sensors are quite similar. Figure 3 

shows the relationship between NDVI residual errors and view angles differences. No 

significant correlation (R²=0.0136) was found, suggesting a poor effect of observation 

geometries on these NDVI products.  

 
 

 

 
 

4.2. Empirical method 

The effective GAI data, obtained from the in-situ measurements performed over the two 

study area, allowed establishing a NDVI-GAI relationship for F2 and calibrated SPOT data 

(Figure 4). 

45.031.0
85.2 NDVI

eGAI                            (2) 
 

A single relationship was used for all crop types. 

Only the remote sensing images acquired concurrently to ground measurements 

(hemispherical photographs) were used for establishing the empirical relationship (dates 

different from those cited on section.4.1). The empirical GAI was then calculated by applying 

this equation to the NDVI values of validation plots.  

Figure 5(a) shows the scatter-plot of the empirical estimated GAI and the effective GAI 

obtained from hemispherical photographs. A strong correlation is observed (R²=0.86). As 

expected, this approach yields good results. More accurate performance could be retrieved by 

establishing a different law for each crop type. However, a much larger set of field data would 

be necessary for this purpose. 

018.0001.1 xy
(a) (b) 

Figure 4. NDVI-GAI exponential 
relationship for SPOT and F2 data. 

 

Figure 3. Residues plotted against 
difference between F2 and SPOT view 
angles (θv). 
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4.3. Physical method 

Figure 5(b) shows the GAI retrieved by Neural Networks approach compared with the 

effective GAI estimated by CAN-EYE. The performances in terms of correlation, bias, 

absolute and relative root mean square errors are indicated. We observe that larger values of 

GAI (superior than 2 m
2
.m

-2
) are overestimated by this method. However, different trends for 

the investigated crops can be distinguished. Note that for wheat and maize (blue and red 

symbols) the simulations agree very well with observations. For sunflower and soybean 

(green and black symbols), results suggest the simulations are biased, especially for greater 

values of GAI. The hemispherical photographs are taken at the same height during all the 

season. Consequently, when the vegetation is well developed the distance between the camera 

and the top of the canopy is shorter (than in the beginning of the season). It probably 

generates a saturation effect, resulting in lower estimations of effective GAI. As a result, there 

would be an underestimation of the GAI estimated with CAN-EYE, and not an overestimation 

of NNT estimates.  

Furthermore, the GAI simulated by BV-NET tool was also compared to ground destructive 

measurements (Figure 5(c)). We observe that NNT retrievals are underestimated regarding the 

ground data. This was expected since remotely sensed products do not take into account the 

aggregation of the leaves (known as clumping effect), and the ground destructive samplings 

consider all the green organs of collected plants.  

 

  

Figure 5. (a) Estimated effective GAI (with CAN-EYE) against GAI estimated trough the empirical 

approach using NDVI from F2 and Spot satellites; 
(b) Estimated effective GAI (with CAN-EYE) against GAI estimated by the physically-

based approach (NNT); 

(c) Comparison of GAI simulated through the NNT method against ground destructive 
GAI measurements. 

 

5. Conclusion 

 

In this study, NDVI derived from F2 and Spot satellites were compared. The results 

revealed a strong correlation between them and low influence of observation geometries. Thus 

with appropriate atmospheric and geometrical corrections, linear intercalibration is valuable 

and vegetation indices issued from the two sensors could be combined, increasing the 

opportunity of having cloud-free acquisitions for continuous crop monitoring.  

When comparing the investigated methods for GAI retrieval, it is noticeable that the 

empirical approach yields better results (R
2
, RMSE). It requires however a large amount of 

field data, which is a common constraint. Besides, as the relationship NDVI-GAI is site-

dependent, it has to be calibrated when applied to different landscapes. The physical-based 

method leads to good performances as well despite slight stronger errors (RMSE and 

RRMSE). Therefore this method is quite promising as it does not depend on any field 

(a) (b) (c) 
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measurements, and offers great perspectives to regional scale applications.  

The availability of accurate, homogeneous and complete series of GAI estimates over the 

study area will allow the assimilation of these products into crop models. It will potentially 

lead to better performances in crops biomass and yield estimates.  
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