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Abstract. Although it is well-known that textural features have proved to be the most relevant ones to extract 

human settlements from high spatial resolution (HR) panchromatic remote sensing images, it is still to be 

investigated in details which is the most efficient one. This is especially true when looing for a methodology 

aiming at settlement extent detection and at the same time able to cope with various and different definitions of 

what a “human settlement” is. In this paper we compare two approaches developed for this task and already 

checked at the global level on HR and VHR SAR data, comparing their performances on two complete CBERS-

2B panchromatic scenes. The processing chains, their results and the computational loads of two approaches, one 

based on the co-occurrence contrast feature and one on the occurrence range feature, are introduced, evaluated, 

and discussed. The relevant outcome of this research is that there is no clear winner, and less complex/less 

efficient approaches may still be able to provide suitable results. Detection accuracy and false positives 

(commission errors) varies according to the geographical scale considered and the features used to identify the 

settlement, such as their size, number of built-up stricture, built-up area density and so on. 
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1. Introduction 

The methodologies developed to extract human settlement extents and presented in 

technical urban remote sensing literature are mostly driven by the sensor typology and the 

spatial/spectral resolution of the input data. For coarse spatial resolutions, for instance, 

spectral information is considered as the most efficient way to discriminate between urban 

and rural environments, using for example nighttime lights (Elvidge at al. 2007), spectral 

indexes obtained by combining wideband reflectance values collected at different 

wavelengths (Phinn et al. 2002), or other spectral features (Forster, 1983). With higher spatial 

resolution data, textural features have been considered as equally or even more important 

(Glich, 2002), to the extent that some authors feel they are the only relevant features to be 

considered, like in Pesaresi et al. (2007). We follow this path and would like to use 

panchromatic HR data coming from CBERS-2B and analyze two approaches based on the co-

occurrence (Haralick et al., 1988) or occurrence matrices. 

With respect to existing literature, this paper aims at introducing and validating 

processing chains not only effective in extracting human settlement extents, but also flexible 

enough to accommodate for different definitions of what a human settlement is. Indeed, the 

definition of “human settlement”, and therefore the issue to find consistent ground truth to 

validate approaches aimed at urban remote sensing in wide geographical areas, has been 

consistently one of the main points to be disputed in global urban remote sensing research. 

The approach followed in (Schneider et al. 2010), for instance, although very valuable and a 

the very basis of the MODIS 500 m data set, currently the most widely used global urban 

layer, limits validation to a huge datasets of large cities. It lacks instead, and on purpose, 

because of the resolution of the input data, a validation for small towns and villages: 

Accordingly, the methodology proposed for extracting that layer cannot be applied to higher 

spatial resolution data. The aim of this work is instead to compare two methodologies 
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available for HR data, and see how they could be extended to match different ground truths. 

 

 

2. Tools 

As mentioned in the introduction, the processing chains discussed in this work are 

devoted to HR panchromatic data analysis, and aim at human settlement extent extraction. 

They exploit the important consideration that in this kind of images urban areas may be 

immediately recognized by a human interpreter based on their distinct spatial patterns, due to 

the artificial composition of structures and gaps between (mostly, but not only roads), in a 

more ordered fashion and with higher local contrast within these areas than in any natural 

environment. Accordingly, the two chains proposed in Section 2.1 and 2.2 are based on the 

extraction and exploitation of textural features, that are a powerful way to quantify these 

spatial relationships. 

  

2.1 The “Urban Focus” processing chain 

The first processing chain discussed in this work is based on the “Urban Focus” (UF) 

software tool developed in the framework of the BREC suite, Gamba et al. (2008). It is not 

limited however to the UF tool by itself, but includes a post-processing step aimed at reducing 

the uncertainties due to areas that are not built-up (in the sense that they do not include 

buildings, for instance), but still are part of the human settlement. Examples are urban parks, 

undeveloped areas within the urban boundary or construction sites, both within and around 

the main built-up area. The complete chain is depicted in Figure 1. It must be remarked that 

the data were resampled by a factor of two in order to fit the recommended resolution of the 

input image for the UF tool, in the range if 5 meters. 

 
 

UF implements a slightly generalized version of the PanTeX index, proposed in Pesaresi 

et al. (2007), with improvements discussed in Gamba et al. (2008). It detects ‘built-up areas’, 

under the assumption (validated a posteriori by the excellent extraction results) that buildings 

and other built-up artificial structures have a strong contrast with their background, while 

natural environments are not that contrasted. Additionally, urban features have no peculiar 

direction, and thus exhibit an anisotropic behavior. 

To this aim, UF exploits the contrast co-occurrence textural feature computed from the 

Grey Level Co-Occurrence Matrix (GLCM). The GLCM matrix is a n by n matrix containing 

the relative frequencies with which two pixels linked by a spatial relation (displacement 

vector) occur on a local domain of the image, one with gray level i and the other with gray 

level j, with i,j ϵ [0..n-1], and n is the number of gray-levels of the image. Contrast is thus 

computed as: 
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where n has been substituted by Ng, and Pi,j is the (i,j)-th entry of the co-occurrence matrix. 

After computing the contrast in different directions and combining them into the UF 

index according to their minimum value, the processing procedure performs additional steps, 

aimed at correcting the differences between built-up areas (the output of this first detection 

step) and human settlements. Specifically, under the assumption that urban areas include both 

the built-up structures and the gaps between them, the following steps (see again Figure 1) are 

implemented. 

1. Low-pass filtering: an average moving kernel of size 31x31 pixel was used, to 

smooth the built-up feature extraction in the scale of 100 meters; the net effect is a 

graceful degradation of built-up area both within the human settlements and in the 

urban/rural fringe. An additional result of this step is the reduction of isolated false 

positives caused by small pixel agglomerates in addition to the extraction of more 

homogeneous areas. 

2. Thresholding: a threshold is applied to the smoothed image in order to get the 

instances representing human settlements. This threshold must be selected carefully, 

and the selection of its value is discussed in details in the results section. 

3. “Hole” filling: the extracted areas detected in the previous step could include “holes”, 

that is non built-up areas such as parks, airports, urban water bodies (e.g., ponds). 

This step reduces these false negative by including them into the final human 

settlement extents. Specifically, the algorithm deletes instances (that represent urban 

areas) based on its number of pixel. It counts the number of pixel for every image 

object and, if lower than a defined threshold, deletes it. The instances have value 

‘255’ and the background has value ‘0’. What happens it’s that there are image 

objects with value ‘255’ (urban area) and inside them image objects that have value 

‘0’ that are parts of the background (non built-up areas). The method used, firstly, 

swaps the classes values (negative of the image) and so, the background assumes 

value ‘255’ and the instances representing urban areas assume value ‘0’. 

Consequently, in the new image there are: a huge instance (that was the background) 

and others small instances (representing the non-built up area) with value ‘255’, the 

new background composed by the image-objects representing the urban area. The 

middle step is to apply the algorithm applying a very high threshold (the maximum 

limit is the huge instance) in order to delete the non built-up area in the new parts of 

background; the result is an image with just the huge instance with value ‘255’. In the 

end the method swaps again the classes and the final result is an image which has 

image objects representing the urban area without holes. The threshold value is not 

critical because the histogram of the background has a large gap between the small 

image-objects (representing the non built-up area inside the human settlements) and 

the huge instance representing the effective background (non urban area). 

 

2.2 The range processing chain 

The second processing chain is based on the range textural feature. This feature is 

computed starting from the occurrence (as opposed to co-occurrence) matrix, and is calculated 

as the difference between the maximum and the minimum value of the reflectance in a 5x5 

kernel moving over the image. A graphical representation of the chain, including the range 

extraction and the following post-processing steps, is provided in Figure 2. 

As for the first chain, the computation of the textural feature is only the first step of the 
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chain. The other steps are similar to those proposed in the previous chain, although the values 

of the threshold may be different, as once more discussed in the result section.  

 
 

3. Experimental results 

The data used in this research were acquired by CBERS 2B. The CBERS (Chino-

Brazilian Earth Resource Satellite) Program, Lino et al. (2000), born from a partnership 

between Brazil and China to jointly develop earth observation missions, lead so far to the 

development of three satellites, called CBERS-1/2 and 2B, all of the operated from the 

Brazilian INPE ground segment. Specifically, the CBERS-2B satellite carried three sensors, 

namely the High Resolution CCD Camera (HRCC), the High Resolution Camera (HRC) and 

Wide Field Imager (WFI). The HRCC is an instrument collecting 5 bands (a panchromatic 

image, plus RGB and NIR bands), all of them with a spatial resolution of 20 m and a swath of 

113 km.  

 
 

The HRC is instead composed by a panchromatic sensor with a finer spatial resolution 

(2.36 m) and a smaller swath width (27 km). Finally, the WFI acquired only two bands, in the 

red and near infrared wavelength ranges, with a spatial resolution of 260 m and a swath width 

of 885 km. For our study, only the images acquired by the HRC sensor were used, as they 

match the high spatial resolution we are looking for. The images collected by the satellite and 

freely available through the INPE on-line catalogue, are affected by an imprecise 
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georeferentiation, and had to be manually geometrically corrected using a set of Ground 

Control Points, selected in an uniform way over each of the images. To perform the 

geocorrection, as the terrain effect has been already corrected in the delivered data, only a 

very simple first order polynomial transformation method was adopted to achieve a sub-pixel 

precision level. More specifically, the images used in this work correspond to two scenes in 

the vicinity of the Araçatuba (SP, Brazil) and Ribeirão Preto (SP, Brazil) urban areas, 

respectively. They were collected on 10-10-2008 and 30-07-2008. A first set of ground truth 

data used for comparison (see Figure 3) are based on photo interpretation of Landsat data 

acquired a few years before, in 2004, updated using additional data by the same sensor in  

2009, Pereira et al. (2005), Rudorff et al. (2010).  Accordingly, these reference data have a 

resolution which is lower than the one of the CBERS data used in this work, and thus they 

lack by definition some of the smaller settlements that are instead clearly visible in the 

considered scenes. A second set of ground truth data, available only for a smaller subset of 

each entire image, were extracted manually by photo interpretation of the same data, and 

have, obviously the same spatial resolution. 

Results of the analysis of the first scene are provided in Figure 4. They show that the 

“True Positive Rate” decreases for increasing threshold values for all the cases. The so called 

“False Positive Rate” (i.e., the commission error) decreases as well, because, as the threshold 

increases small agglomerates of buildings, which are not considered as human settlements in 

the available ground truth, are discarded. It’s interesting to note that the best results are 

obtained when the “holes” are filled, because the human settlement definition underlying the 

Landsat-based ground truth data is that they are compact areas. Therefore, the improvement 

related to the “hole filling” procedure is due to the inclusion of small non built-up areas inside 

the human settlements into the final boundary sets.   

 
 

Similarly, results of the analysis of the second scene are provided in Figure 5. They show 

the same behavior of the previous case. In this case, filling the holes improve the results but 

not as much as in the previous case. As mentioned above, this is due to the limited quantity of 
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non built-up area inside the human settlements in this scene. 

 
 

 
 

Finally, we would like to add that, as mentioned in Iannelli et al. (submitted), it is 

possible to improve the results by including information about a very rough estimate of the 

building counts inside each of the human settlements extracted by means of the two 

previously discussed chains. Of course, as the range results are always worse than the ones 
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obtained by means of the UF processing chain, we will concentrate on this, and the results for 

the two scenes are proposed in Figure 6. 

Figure 6 shows that the selection of urban areas according even to a rough estimate of the 

number of buildings improves the detection rate by, once again, reducing the “False Positive 

Rate”. The “True Positive Rate’” value does not decrease as in the previous cases because the 

instances are selected using a model that permits to discriminate the false positives from the 

human settlements. In the Figure 6 it could be also seen that instances with at least 100 

buildings better represents the available Landsat-based ground truth.  

The same set of analyses were performed by using the second set of ground truth data, 

and lead to the results showed in the Figure 7. The curves have the same behavior of the 

previous cases, after a linear decrease of the “False Positive Rate” keeping the “True Positive 

Rate” almost equal, the curves start decrease significantly the values of “True Positive Rate”. 

This happens because raising the threshold, it encounter a value that match the model of the 

ground truth and, after that, start to mismatch again decreasing the “True Positive Rate”. 
 

 
 

Looking at the Figure 7, it could be seen that the instances with at least 10 buildings better 

represent this second ground truth, which is consistent with its finer spatial resolution.  In this 

case its more difficult understands the model because the ground truth is available just on a 

subset and so, with less image objects representing the human settlements.  

 

4. Conclusion 

In this paper we presented a new framework suitable for human settlement extraction 

from VHR data using textural information, and easy to be tuned to ground truths with 

different spatial scales, and possibly corresponding to different definitions of “human 

settlements”. The framework proved to be robust and dependent on parameters clearly 

understandable even from non-technical users, and thus suitable for open-source tools 

available to the public.  
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