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Abstract.  In the context of the European Space Agency’s (ESA) Aurora Programme there are 
two near future robotic missions which will provide surface mobility with wheeled rovers: 
ExoMars and Next Lunar Lander – NLL. These vehicles are the main motivation of this work; 
they are supposed to drive with high performance over rough terrains containing basically rocks, 
sand and inclined slopes. Our contact model aims to describe the interaction between each rigid 
wheel of a rover and three different terrain types: 1) rigid surface, 2) complex-shaped rigid 
objects (representing rocks), and 3) soft soil. Transition among these three “meta-states” is 
permitted for each wheel of a multi-wheeled rover. The uneven terrain is smoothed on the space 
domain giving a continuous three-dimensional surface; the discontinuities are depicted by the 
rigid objects, and its collision is detected by the proper computation of the contact plane and the 
contact forces. The uneven terrain can be as rigid as the rocks (modeled by Coulomb’s friction 
law) or as soft as sand (modeled by Bekker’s equations). Optimization of the mechanical 
structure is a crucial task in the design phase to achieve high performance. However, there are 
three essential features which are required to perform batch simulations with the optimization 
process: stability, robustness and speed of the simulations. These required features have 
guided the selection of the used impact/rolling models. The internal states and its transitions are 
thoroughly explained to clarify the main difficulties in the batch simulations. The contact model is 
partially validated by drawbar-pull experiments in soft soil testbed with a breadboard model of 
the ExoMars rover. Future advanced versions of the contact model are focusing on flexible 
wheel modeling, and first attempts in that direction are also provided and commented. 

Keywords.  Contact modeling, multibody simulation, planetary rover optimization. 

1 Introduction 

In 2001 the European Space Agency (ESA) had initiated the Aurora Programme with its primary 
objective to cover robotic and human exploration of the solar system. The most likely targets are 
Mars, the Moon and asteroids; but a manned mission is only possible after successive robotic 
precursor missions to test technology in-situ and gather sufficient environmental information. In 
this context there are two near future missions which will provide surface mobility with wheeled 
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rovers: ExoMars (Patel et al., 2010) and Next Lunar Lander NLL (Gibbesch et al., 2010). The 
ExoMars Rover and the NLL Rover are powerful rovers with different capabilities under 
development, respectively with six and four wheels. Such vehicles that drive over rocks, loose 
soil and general slippery and uneven terrain often need high mobility capabilities. 

These capabilities are very demanding from the engineering’s point of view. Thus, a designing 
assistance tool is highly desired to relate dynamic behavior and system requirements on a 
consistent way and automatically provide advisable designing choices. The present work 
describes the modeling effort employed to develop a satisfactory dynamic simulation model and 
integrate such tool. 

Section 2 starts with the base of the model, the travelling surface and its mathematical 
description to form an arbitrary landing site. Hence the driving behavior is geometrically 
constrained by the terrain; the calculation of the contact forces is detailed in section 3 to 
complete the model. Section 4 clarifies some emergent problems in the context of variation of 
design parameters of the simulation model into an optimization procedure scheme. Section 5 
presents some results of the modeling effort and locates the present work inside the structure of 
the rover design assistance tool under development. Finally, conclusions and future directions 
to improve and advance the current version of the simulation model are stated in the 6th section. 

 

2 Modeling of the terrain 

In this work a terrain is considered as a continuous surface partially covered by interspersed 
discontinuities. The continuous layer can be a hard (bedrock) or soft (sandy) surface. The 
discontinuities are stones of various sizes, materials and shapes. Based on this abstraction the 
next two subsections describe the cited layers, the contact dynamics involved is discoursed in 
the next section. 

2.1 Relief pattern 

Regarding the relief pattern, it is valid either for rigid or soft soils and defined at the contact 
patch of each wheel of a multi-wheeled planetary exploration rover. A three-dimensional surface 

in the form  ,z f x y  is a scalar field used to compute the orientation of the contact's normal 

vector ne , where  ,x y  are points of the plane and z  the respective terrain elevation, see 

figure 1.  

 
Figure 1. Coordinate system of the contact point, (Zimmer and Otter, 2010). 

The rotation axis of the wheel axise  follows the attitude of the wheel, this is used to determine the 

longitudinal direction ( long n axis e e e ) of the contact point's coordinate system. The right-handed 
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coordinate system is completed with the lateral direction as lat long n e e e . In this way the 

coordinate system of the contact point of the wheel is locally defined as a function of the terrain 
and orientation of the wheel. The normal vector is the direction where the normal force is 
computed; longitudinal and lateral vectors are in the tangent plane, where the traction force and 
motion resistance forces occur. 

2.2 Rocks 

Our main requirement for a rock is an unsmooth surface. The simulated landing site can have 
several rocks with that characteristic avoiding as much deterministic rules as possible; it should 
be accomplished in order to imitate the immanent lack of knowledge about the stones on a real 
landing site. The rocks are generated during a preprocessing stage and can be used in each 
simulation run with new placements. 

Figure 2 illustrates the procedure of creating an unsmooth rock and place it on a terrain. The 
first three steps are performed only once (in a preprocessing stage) and stored for future usage; 
the last step is performed before each simulation run to constitute a new scenario with the 
previously generated/stored rock geometries. 

 
Figure 2. Steps performed to generate rocks (1 to 3) and spread them on a landing site (4). 

In the first step a cylinder is used as a reference bound to the rock dimensions, basically the 
radius of the base and its height are the reference bounding parameters. In the second step a 
vector defined in cylindrical coordinates runs inside the contour surface of the cylinder with 
randomly varying radial distance, azimuth and height generating the cloud of points around the 
reference bounds. A convex envelope (convex hull) for the cloud of points is computed in the 
third step through (Barber et al., 1996), only the vertices and faces of the envelope are stored 
as a DXF file for visualization and contact computations during the simulation. The fourth step 
consists in distributing the rocks to create essentially three scenarios: specific placement for 
simulation tests; specific placement for worst case evaluation and placement following 
(Golombek, 2002) to achieve representative landing sites. 
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One can see in the rendered image (fourth step of figure 2) that assorted shapes and sizes can 
be obtained by the variation of: reference bounding parameters and standard deviations of the 
Gaussian distributions used to generate the cloud of points of the second step. The dimensions 
of the rocks can be controlled by the reference bounding parameters, the smoothness and 
shapes of the rocks can be controlled by changing the standard deviation or even the probability 
density function in step two. Obviously there is the possibility that the shape, smoothness and 
dimension can be further controlled by changing the primitive used as reference bound; instead 
of a cylinder, polytopes composed of hemispheres, cylinders and similar geometric primitives 
could be used. 

Once the rocks are placed in the simulation model, they can assume a specific friction profile 
which depends on the position of the contact point or its velocity over the unsmooth rock’s 
surface. Such aspects are discussed in section 3.2, where the contact between wheel and rock 
is detailed. 

3 Contact Modeling 

3.1 Wheels - rigid surface 

To compute the normal force the penalty method is used. It consists of a compliance system 
giving forces that are proportional to violation of constraints to solve the constraints, the forces 
are computed in the normal and tangent direction by spring-damper model (Kraus et al., 1997), 
which can be linear or non-linear. Equations (3.1) is the general form of the normal force 
computation and equation (3.2) is the general form of the tangential force vector computation. 

   , , , , , ,,N i N i N i N i N i N iF f g      (3.1)

   , , , , , ,,T i T i T i T i T i T if g  F     (3.2)

where the terms  . .N if  and  . .T if  are representing the spring forces, the terms  . .N ig  and 

 . .T ig  are representing the damper forces, ,N i  and T,iδ  are the corresponding displacements 

of the spring-damper system with its respective time derivatives. At this stage we have a 
kinematical problem with additional states, this is justified by the avoidance of the static 
indeterminacy of the normal forces on a multi-wheeled vehicle. This is a reasonably quick and 
accurate solution for normal force calculation (see figure 3a), the forces developed on the 
tangent plane are based on Coulomb's model including pure rolling and slippery behavior. The 
implementation of the Coulomb's friction model is not a simple task in our simulation/modeling 
tool (Dymola), since the order of the system of DAEs (Differential Algebraic Equations) changes 
during the simulation. In other words, it becomes a variable-structure system and can be 
approached in different ways. In (Trinkle et al., 1997) a solution with an approximation of the 
friction cone by a friction pyramid is proposed by means of a Linear Complementarity Problem 
(LCP) formulation, with the assumption that the solution is always possible. A regularized 
Coulomb friction is extensively used (Zimmer and Otter, 2010) to get a continuous and easily 
tractable version of the Coulomb model, the weakness of this approach is in the zero-crossing in 
the region of zero-slip (this is reasonable if one assumes that there is no zero-slip situation). 
Another solution proposed in (Kraus et al., 1997), applied previously in (Sohl and Jain, 2005) 
and also adopted here, uses a compliance system to compute the tangential forces inside the 
friction cone with a little amount of slip allowed between rolling-slipping transitions and vice 
versa. In this approach, the 2-dimensional spring-damper is required to maintain the 
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nonholonomic rolling constraint until the maximum force NF  (   is the Coulomb’s friction 

coefficient) is reached. In this moment the 2D spring-damper can change its direction but its 
displacement is limited by a circle with the radius proportional to NF , see figure 3b. The 

implementation of the compliance system in three dimensions is shown in figure 4. 

(a) Compliance system in normal direction (b) Two dimensional compliance system in 
tangential plane 

Figure 3. Compliance system interacting with soil (a) and Coulomb constraints (b). 

Despite the advantages of the compliance model for the tangential forces, the success of this 
scheme is sensitive to the parameters of the spring, damper and also sensitive to the equation 
used to model the spring-damper system. It would not be a problem for a fixed configuration of a 
planetary rover, i.e. definitive dimensions of the mechanical structure. But since the mechanical 
structure is changed for each simulation run during the optimization procedure, these 
parameters must be suitably changed or even fixed in order to accurately comply with each new 
scenario. Nevertheless there are means to work round unwanted results, the simulation 
conditions can be fixed and greatly contribute to accommodate simulation stability during the 
overall optimization process. 

 
Figure 4. State transitions of the friction contact model. 
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3.2 Wheels - rocks 

The main difference between the rigid contact model of the last section and the present model is 
that in the previous the static surface of contact is analytically defined and in the present case 
not, thus it must be detected by a numerical collision detection procedure. The stones are 
generated as described in section 2.2 and returned in a DXF file accessible by our C API 
Wrapper. This C API uses the information preprocessed in Matlab to represent it in a convenient 
way as an input to the collision detection library (SOLID 3.5.6). SOLID takes the description of 
the stone in vertices and faces and the shape of the wheel is described by a support mapping of 
a cylinder. Figure 5a shows the main task performed by SOLID inside Dymola, locate the two 
nearest collision points mp  and sp . They are respectively located on the surface of the moving 

object (the wheel) and the static object (the stone). 

(a) Distance points without intersection (b) Intersection and normal vector 
definition through penetration depth 

Figure 5. Computation of closest points (by SOLID) and normal vector in intersection. 

Contact forces are computed only in case of intersection, figure 5b. When intersection occurs 
those points are used to compute the contact normal nc . After that the tangent plane is 

computed as for a conventional relief pattern in section 2.1. The forces can be computed with 
Coulomb behavior as in section 3.1 or with a regularized Coulomb behavior. The user of the 
simulation model can choose the contact force calculation according with its purposes. 

One can ask about the penetration depth, it would not be a realistic assumption for collision 
between rigid bodies. Without the penetration depth, say 0m sp p  , the normal vector is 

undefined and the contact calculation can no longer proceed. The maximal penetration depth is 
also a simulation parameter, this is a tolerance value which impacts in the speed and accuracy 
of the simulation. In the performed tests we used a tolerance value of 5μm  for penetration 
depth. 

If Coulomb behavior is desired the compliance system can assume linear and nonlinear 
equations for the force computation. Usually the nonlinear equation of Hunt-Crossley (Hunt and 
Crossley, 1975) gives the best results because it avoids increasing the penalty on the velocity 
term due to lower penetration depths. 
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3.3 Wheels - soft soil 

Bekker (Bekker, 1956) developed the theory which is the basis of the wheel-soft soil contact 
model in this section. Furthermore our approach allow for a broader range of cylindrical wheel 
designs and complex varying normal and shear stress distributions. Firstly we describe the 
longitudinal forces and then the lateral forces in the following. At last, soft soil driving modes are 
described. The outcome is a model for interaction between a rigid wheel and a sandy surface on 
a specific relief pattern as is illustrated by the screenshot (figure 6) of one of our single wheel 
driving simulations. 

 
Figure 6. Visualization of a single wheel driving simulation on a sandy relief pattern. 

Longitudinal forces 

We start from the drawbar pull equation to clarify which forces are assumed in soft soil. Drawbar 
pull DP  is simply defined as the difference between traction force tF  and motion resistance 

force rF , that is the additional force available to transport the payload and is defined as 

t rDP F F   (3.3)

Traction in soft soil is limited by the available soil thrust, which depends on properties of the soil 
so that the maximum available traction force is considered as a function of the longitudinal 
shear stress x : 

t xP
F dP   

(3.4)

where P  is the surface area of the contact patch and x  is distributed over the entire area P . 

In spite of the cylindrical shape, the contact patch cannot always change in a well behaved way 
as the rover drives and surmount obstacles. We take this into consideration by calculating the 
longitudinal shear stress for each slice of the discretized wheel (see figure 7a-b) as in (Wong, 
2001): 

    tan 1 cosx s xj k
xs s sc e           

(3.5)

where c  is the cohesion module,   the normal pressure distribution and   the internal friction 

angle. The subscript s  denotes the slice in which xs  is integrated along the domain s  of a 
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slice of the discretized wheel. The longitudinal soil deformation  x sj   is defined as in (Ishigami, 

2008). The normal stress distribution is defined individually for each slice, see figure 7c. 

 
(a) One clear-cut discrete slice 

in red along the lateral 
dimension of the wheel 

(b) diagram for each discrete 
slice 

(c) normal stress distribution 
on the contact surface and 

on the slice in red 

Figure 7. Laterally discretized wheel approach illustrated. 

Note that the determination of the stress distribution is relatively complicated and there are 
analytical propositions to represent experimental data as in (Yoshida et al., 2003). Seeing that 
the traction force is computed numerically, we try to take advantage of that procedure by 
defining the normal stress distribution also numerically. The basis of our approach is the 
application of the high-speed Chaikin curve generator (Chaikin, 1974), where “control points” 
are displaced to shape the final curve accordingly. In figure 8a there are six “control points” 
represented as squares following a path to convert the light gray curve into the dark gray one. 
Figure 8b shows that six “control points” can represent experimental data better than an 
analytical proposition like that used in (Ishigami, 2008) and (Yoshida et al., 2003). The 
experimental data of figure 8b were digitized from (Hegedus, 1962). Six “control points” are 
sufficient and give a broad control of the curve’s shape; other quantities were tested without 
significant performance and fitting improvements. 

  
(a) Normal stress 

distribution 
(b) Comparison: analytically defined curve and Chaikin curve generator 

Figure 8. Normal stress distribution shaping based on Chaikin curve generator. 

Motion resistance force rF  is defined as the sum of three resistance forces 
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r c b lF F F F    (3.6)

where cF  is the soil compaction resistance, bF  the bulldozing resistance and lF  the lateral drag 

resistance. The soil compaction resistance occurs in the contact patch when it compresses the 
soil. This can be calculated from the normal pressure distribution: 

c P
F dP   

(3.7)

The bulldozing resistance is a bit more complicated because it is a result of displacement of the 
soil in front and also at the side of the wheel when it slips sideways with the slip angle  : 

, , cosb b front b latF F F    (3.8)

Since the wheel is considered as a cylinder, the bulldozing resistance term ,b frontF  could be 

obtained in a closed form as in (Scharringhausen, 2009). But the term regarding the lateral soil 
displacement depends on the shape of the sides of the wheel, which can be changed by the 
rover’s designer to improve trafficability performance. To compute ,b latF  we represent the lateral 

shape of the wheel as a triangle mesh submerged on a pressure vector field defined according 
with earth passive pressure; see the circular plate in figure 9a-bottom spiked with circular holes 
as the lateral design of the wheel in figure 6. Each triangle a b cT T T , see figure 9a-top, of the 

mesh is hit by a vector p  in its barycenter TB , where p  is defined in the vector field 

according with the sinkage as in (Wong, 2001). 

  

(a) Triangle mesh in the pressure vector field (b) Contact geometry of a mesh element 
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Figure 9. Computation procedure of bulldozing resistance due to side slip 

Each triangle may possess an inclination   relative to the normal direction of the relief pattern, 
regarding the wheel’s construction or traveling conditions during the simulation. The friction 
angle between the rough surface of the wheel and the soil is  . The geometry of contact for 

each triangle is shown in figure 9b. In figure 9b-top the vector p  is normal to the face of the 

triangle and pf  is the correction as a function of the friction angle  . In figure 9b-bottom the 

bulldozing force , ,b lat pF  is given in the horizontal direction for one triangle of the mesh. It 

means that ,b latF  is the sum of , ,b lat pF  distributed over the mesh: 

 
, , ,b lat b lat p

p mesh triangles

F F   
(3.9)

where the index p  stands for the triangles in contact with the soil. The lateral drag lF  (which 

acts on longitudinal direction) caused by the shearing of the soil along the lateral extent of the 
wheel is considered as proportional to the sunk area at that extent. It may be readly estimated 
as: 

l l sF k A  (3.10)

where sA  is the sunk area computed numerically during each integration step of the simulation, 

and lk  is a lateral drag constant which can be determined through experimental data. 

Lateral Forces 

The lateral forces arise in two different cases, steering maneuvers and side slip situation. They 
are computed as functions of lateral shear stress and bulldozing resistance due to soil 
displacement at the side of the wheel: 

, sinlateral ls b latF F F    (3.11)

note that ,b latF  is computed as in (3.9), and the term lsF  is computed similarly as in (3.4) but 

taking the lateral shear stress y  into account, instead of the longitudinal one. 

    tan 1 y s yj k

ls y sP P
F dP c e dP           (3.12)

There is also a functional dependence of y  for each discrete slice (figure 7a) of the wheel. The 

lateral forces are defined in the opposite direction of the wheel’s lateral velocity. 

Soil driving modes 

We considered basically three modes in soft soil driving: Stuck Mode, Accelerating Mode and 
Breaking Mode. At the start of the mission and when the rover stops in order to steer the wheels 
and drive again, a mathematically indeterminate form takes place. This is the case of 

indeterminate slip ratio (  0, 0, indeterminatev s r v v      ), where   is angular 

velocity of the wheel, v  longitudinal translational velocity and r  its radius. Since the contact 
model in soft soil is a function of slip ratio, the forces can no longer be calculated at that instant. 
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To overcome this problem we assume that the vehicle is in Stuck Mode (i.e. 0r v   ) and the 
maximum force sustainable before occurrence of slippage is the soil thrust at zero slip ( 0)tF s  . 

Still in Stuck Mode we assume that the soil is already prepared when 0   and 0v   occurs, 
and compaction and bulldozing resistance become both exponential (in order to have a 
continuous description) functions of the wheel’s forward velocity as a matter of describing a kind 
of entering phase in unprepared terrain. Each resistance force term in (3.6) is reviewed: 

     1 rv k
r c b lF sign v F F F e     

(3.13)

The velocity constant rk  is suitably determined taking simulation issues and nominal velocity 

into consideration. When the rover leaves the Stuck Mode, there is a transition to the 
Accelerating Mode. In this mode the forces are computed exactly as in the equations above. 
From Accelerating Mode the vehicle can go smoothly to the Breaking Mode (negative slip ratio) 
or Stuck Mode again. However, soil deformation xj  behaves in a different way for negative slip 

ratio values. The shear stress distribution can always easily be shaped (through slippage 
dependent control points) to fit the current slip value. 

To implement this hybrid system we used a similar compliance system approach to that of 
section 3.1, regarding the traction and resistance forces in soft soil. Thus we have 13 discrete 
states in the entire contact model, see figure 10. 

 
Figure 10. Discrete states present in the contact models for each wheel. 

4 Simulation issues 

At this point we obtained a hybrid contact model with: iterative computational procedures 
(normal pressure curve shaping, triangle mesh integration and collision detection); additional 
states for simulation purposes (compliance systems); discrete state event transitions. The most 
important impacts in the simulation results are related with its quality and velocity; they are 
discussed in the next two subsections. 

4.1 Quality of the simulation results (robustness and solvability issues) 

Robustness in the sense of simulation model’s solvability is not an easy task, since there are 
parameters (e.g. velocity constants, stiffness and damping parameters) inherent to the 
simulation model itself. It means that the simulation parameters should be independent of the 
design parameters, or at least known functions of them. Sadly this is not the case in our model, 
maybe it can be approached analytically in future versions of the model. 

It is important to keep in mind that our simulation model must be capable of solving the system 
of equations despite the variation of the design parameters (in distinct simulations). There are 
some sets of design parameters capable of inducing unsolvable iterations which may halt the 
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simulation. Inside our optimization procedure this is not a desired behavior because it can also 
halt the optimization run. To avoid the latter we assign a high value to the related objective 
function, it keeps the optimization procedure away from that undesired region, since it becomes 
a local maximum. 

Currently we adopted the most immediate solution in order to proceed with our main application, 
numerical optimization and sensitivity analysis, which require intensive parameter variation. Our 
current solution is: choose one set of simulation parameters capable of dealing with a broad 
range of design parameters’ variation. However, it can hide a minimum of an objective function 
and obligate the optimization algorithm to keep distance from a ‘good design parameter set’ 
because it is not a ‘good simulation parameter set‘. The idea is illustrated by figure 11: in figure 
11a is a simple objective function immerged on a negative gradient field pointing inward (to the 
minimum of the function); figure 11b shows the same objective function damaged by the local 
maximum created exactly on the minimum of the function, the negative gradient vectors are 
pointing outward (away from the desired minimum). 

(a) Contour lines of a 
hypothetic objective function 

( 2 2
1 2fO p p  ) which depends 

on 2 design parameters ( 1p  

and 2p ). 

(b) Contour lines of the 
objective function impaired by 

solvability constraints. 

(c) Damage in contour lines 
softened by the gridding 

approach. 

Figure 11. Damage of the objective function in the contour lines. 

Although, the amount and area occupied by those peaks can be reduced by using a “gridding” 
procedure. This procedure consists of searching a suitable simulation parameter set to attend 
extremes of a bounded solution space. The result is like that of figure 11c, there are still 
restrictions but they can be softened. 

4.2 Velocity of the simulation runs (stiffness and chattering issues) 

Numerical stiffness is an intrinsic characteristic of our simulation model; this is due to the 
differences in the involved masses, stiffness and damping of the components through the model. 
These characteristics were employed to implement the contact models in a physically 
meaningful way, their values were determined to deal with the robustness in the solvability 
sense as explained in the previous section. Although, we use suitable numerical integration 
tools (LSODAR, numerical integrator with root-finding) to handle this problem and achieve 
acceptable computational savings. 
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The whole model embodies several discrete states for each wheel composing a planetary 
vehicle (which contains usually 4 or 6 wheels), the thirteen discrete states for each wheel raise 
from rigid soil, soft soil and stone collision situations (see figure 10). These discrete states 
express switching between trajectories of continuous states of the whole Differential Algebraic 
Equation’s system. Additionally, we experienced two main difficulties in handling such discrete 
states; they are illustrated in figure 12. 

 

 
Figure 12. Problems with switching between two discrete states. Representing state-space 

trajectories constrained by its respective state domains. 

The first problem is that of figure 12-left, there is a transition to the new discrete state and it 
switches immediately back to the previous one. It indicates an inconsistency; the root-finder is 
not capable of handle this event and the simulation stops suddenly. An unsolvable iteration may 
occur in the case of rigid surface driving change between rolling and sliding modes for several 
wheels and reaching one of the unsolvable configurations detailed in (Trinkle et al., 1997). This 
is rare but still possible and occurs for some configurations of vehicles with certain design 
parameters, we do not try any rigorous attempt to explain and overcome this problem, only 
detect. Previously, in subsection 4.2 some words were spent about our strategy to overcome 
this problem. 

In figure 12-right is the known chattering behavior, where the simulation requires a large amount 
of discrete state transitions in a relatively small amount of time. The main difference between 
the first problem (figure 12a) and the second problem (figure 12b) is that the first case switches 
immediately back, the second case switches back after a little amount of time. It deteriorates the 
speed of the simulation, sometimes this deterioration is prohibitive to go onward in the 
numerical integration. A proper tuning of the simulation parameters eases this inopportune 
behavior. In figure 13 one can see an example of chattering (figure 13b) compared with a case 
without chattering, figure 13a. This example was extracted from one simulation of a single wheel 
falling on a stone, the normal force can be smoothly calculated (figure 13a) with well tuned 
simulation parameters, i.e. stiffness, damping, power factor and tolerances of the wheel-stone 
contact model. However, the result is not so good with poorly tuned simulation parameters (see 
figure 13b). 
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(a) Well tuned case (desired). (b) Unsuitably tuned case (spurious behavior). 

Figure 13. Trajectories showing desired and spurious behavior due to certain simulation 
parameters chosen. 

This example is particularly applicable to the case of wheel-stone contact (where the problem is 
dominant). That is because of the absence of jerk evaluation in its respective state machine to 
accurately accommodate the normal force oscillation after an impact. It means that we handle 
chattering by suitably tuning the simulation parameters of the wheel-stone contact normal 
computation. 

5 Validation and application 

After modeling and implementation of the model in the simulation environment the next step is 
the validation of the model against experimental data to properly proceed towards the main 
application. The procedure and results of partial validation of the model and a hint of the main 
application are given in the next two subsections. 

5.1 Partial validation of the simulation model 

The contact model is rather complex to be completely validated on a few tests, although the 
most important contact model is that of soft soil. A planetary rover will drive the most part of its 
life on such condition, nevertheless sinkage, slippage and traction prediction are key factors to 
the prediction of performance of a rover. Based on this assumption we did a partial validation of 
the soft soil contact model in only one testing condition. The experiment to evaluate the model is 
the drawbar pull experiment, it was conducted by the ETH Zurich (Zurich University, 
Switzerland) at the facilities of the Swiss company Oerlikon Space (Michaud et al., 2008). Only 
the drawbar pull versus slip ratio were compared, states of the joints were not taken into 
account for this comparison due to lack of information at that time. Figure 14a shows the 
visualization of our simulation model driving on sand, and figure 14b shows the breadboard 
model used in the experiments. 
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(a) Simulation model on soft soil. (b) Breadboard model on rigid soil. 

Figure 14. Simulation model and breadboard model (ExoMars phase B1). 

The soil parameter values used for the soil of the experiment are in table 1. 

Table 1. Bekker parameters used for certain soil simulant of type DLR-D2, (Schäfer et al., 2010). 

Parameters and physical dimensions  Values

Cohesive modulus ck   n+1N m  56.67 10   

Frictional modulus k   n+2N m  81.92 10  

Exponent sinkage n   -  1.4  

Cohesion c   Pa  13.0  

Internal friction    deg  32  

The drawbar pull curve versus slippage values with the translational velocity of 0.0108m s  is 
shown in figure 15. The time-domain measurements are strongly compressed and put on the 
graph to give an idea of the drawbar pull variation of the measurements; there are frequency 
components due to the vibration of the experimental payload and grousers’ contribution. Our 
simulation model is not considering wheels equipped with grousers. Note that the simulation 
model with DLR-D2 parameters gave us a very good correlation thanks to the shaping approach 
of the pressure distribution on the contact patch. 
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Figure 15. Drawbar pull as a function of slip: comparison between measurement data (ExoMars 

Chassis Tests) and simulation (Dymola Simulation). 

With our simulation model is possible to achieve even the experimental behavior slightly 
different from the classical exponential behavior known from (Bekker, 1956). 

5.2 Main application – rover design optimization 

The main purpose of our work is to develop an efficient optimization tool to support rover design. 
It is based on dynamic simulation, optimization and clear visualization of the achieved results. 
Figure 16 shows the software packages used to implement such tool and the data flow between 
them. 
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Figure 16 – Data flow in the rover optimization tool among used software packages. 

Contact modeling is conducted in Dymola through a modeling language called modelica and 
external calls to some complex calculations (e.g. collision detection, mesh discretized 
calculations and Chaikin curve generation) coded in C and C++ to increase speed of the 
simulation. The Multibody Simulation (MBS) structure is developed with standard tools of 
Dymola, the landing site is composed of stones’ models generated in Matlab and exported 
as .DXF files, sand and relief pattern are both described in Dymola environment. The simulation 
model is compiled and the executable file can run inside or outside Dymola. On the one hand 
when it runs inside, it provides results for verification and validation of a single structure against 
project specifications and experimental test respectively. This is performed through rough 
animation and numerical simulation data. 

On the other hand, the compiled simulation model can be used by MOPS (an in-house 
optimization tool of DLR) to change the parameters and compute user-defined objective 
functions and find an optimal instance of a planetary rover. The single simulation results can be 
still visualized with a higher quality after proper texturing, lightning and animation of sand 
movement through Blender. This software receives the rough animation model generated by 
Dymola in VRML and integrates sand movement (generated as .OBJ files in Matlab), detailed 
drawings of mechanical connections and proper textures. 

The tool gives three distinct possibilities of usage: modeling improvement, rover design 
optimization and higher quality rover animation of a physical simulation. The three general 
outputs shown in figure 16 constitute the main features of our rover design assistance tool. 

6 Conclusion and outlook 

Modeling is always an ongoing task, primarily because of the simulated system’s needs. In the 
present case the performed validation has shown satisfactory results which explicit the accuracy 
achievable by our model. Despite the good correlation achieved in the drawbar pull experiment, 
other tests must be employed to validate the entire contact model driving over uneven terrain, 
rigid soil and obstacles. The current model is capable of dealing with contact between cylindrical 
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rigid wheels and rigid surfaces with Coulomb friction behavior or Pacejka’s “magic formula”-like 
behavior; complexly-shaped convex/non-convex rigid bodies with the same force computation 
variants as in the case of simple rigid surfaces; and soft surface determined by Bekker 
parameters. Note that further improvements are needed to deal with flexible wheels and 
grousers’ contribution, which will probably be the actual case of the ExoMars rover. The model 
allows such additions; they will be incorporated soon in the contact models. Collision detection 
with flexible wheels would be a difficult task, but this is supported by the employed collision 
detection library (SOLID 3.5.6). 

The model do not need many adjustments during its verification, it means that the process was 
conducted in a consistent way and it is reliable to perform new validation efforts and 
optimization tasks. Since the very beginning of the project, our main purpose was optimization 
and not modeling. But optimization is not meaningful without a good model, and our modeling 
effort was ipso facto indispensable. 
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