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[1] In this study, an object‐based verification method was used to reveal the existence of
systematic errors in three satellite precipitation products: Tropical Rainfall Measurement
Mission (TRMM), Climate Prediction Center Morphing Technique (CMORPH), and
Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN). Mesoscale convective systems (MCSs) for the austral summer
2002–2003 in the La Plata river basin, southeastern South America, were analyzed with
the Contiguous Rain Area (CRA) method. Errors in storms intensity, volume, and spatial
location were evaluated. A macroscale hydrological model was used to assess the impact
of spatially shifted precipitation on streamflows simulations. PERSIANN underestimated
the observed average rainfall rate and maximum rainfall consistent with the detection of
storm areas systematically larger than observed. CMORPH overestimated the average
rainfall rate while the maximum rainfall was slightly underestimated. TRMM average
rainfall rate and rainfall volume correlated extremely well with ground observations
whereas the maximum rainfall was systematically overestimated suggesting deficiencies in
the bias correction procedure to filter noisy measurements. The preferential direction of
error displacement in satellite‐estimated MCSs was in the east‐west direction for
CMORPH and TRMM. Discrepancies in the fine structure of the storms dominated the
error decomposition of all satellite products. Errors in the spatial location of the systems
influenced the magnitude of simulated peaks but did not have a significant impact on
the timing indicating that the system’s response to precipitation was mitigating the effect of
the errors.
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1. Introduction

[2] Estimates of precipitation in fine spatial and temporal
resolutions are required for many hydrological applications.
Until recently, satellite precipitation estimates were only
available at coarse resolutions not suitable for the imple-
mentation of hydrological models in large basins at daily or
subdaily time scales. In the last decade, remotely sensed
rainfall has became increasingly accessible to a wider
population outside the atmospheric community and several

products are available at temporal and spatial scales that are
potentially useful for flood monitoring, flash flood, land-
slide forecasting, and for water resources management, to
name a few. Not only available satellite estimates of pre-
cipitation allow the accurate representation of the hydro-
logical cycle in a basin, in underdeveloped regions of the
world they constitute the only existing source of meteoro-
logical information. However, satellite estimates of precip-
itation are prone to errors and need to be verified using
ground measurements [Ebert et al., 2007; Xie and Arkin,
1995]. There exists a substantial body of literature asses-
sing the agreement between satellite products and ground
based measurements at different temporal and spatial scales
in data‐rich regions of the world [e.g., Bell and Kundu,
2000; Astin, 1997; Huffman, 1997; Salby and Callaghan,
1997]. However, in South America, few studies have
assessed the validity of satellite products at scales of utility
for hydrological applications. de Goncalves et al. [2006]
investigated the reliability of model and satellite estimated
24 h precipitation fields using rain gauge measurements.
They found that satellite estimates of rainfall show diffi-
culties representing the area with precipitation and the
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magnitude of the rainfall event. Su et al. [2008] used a
hydrological model to assess the effectiveness of multi-
satellite precipitation products for hydrologic predictions.
Their results showed a good agreement between satellite and
rain gauge driven simulated flows indicating that multi-
satellite products can efficiently reproduce the seasonal and
interannual variability of flows in the La Plata river basin.
Recently, the land‐surface community has started to com-
bine remotely sensed information with rain gauge mea-
surements to create high‐resolution atmospheric data sets
through assimilation techniques [de Goncalves et al., 2009;
Vila et al., 2009].
[3] All previous studies in South America have measured

the accuracy of rainfall amount or rainfall intensity averaged
over an area using verification statistics such as bias, root
mean square error (RMSE), correlation coefficient and/or
categorical verification statistic, i.e., contingency tables, bias
score, probability of detention and false alarm ratios [Stanski
et al., 1989]. Even though these types of statistics provide
valuable insight on how closely two fields correspond in
time, the hydrology community requires more specific
information about expected errors on rain location, mean
and maximum intensities for specific storm types since the
spatial and temporal distribution of rainfall highly impact
streamflow properties. Storm characteristics, i.e., amount,
intensity and duration of the event, velocity and direction of
the storm, and genesis of the storm, are some of the factors
affecting streamflow generation in a basin. Variations of
these factors in space and/or time affect the magnitude and
the timing of peak flows [Nunes et al., 2006; Singh, 2002a,
2002b, 1997].
[4] An alternative approach to continuous and categorical

verification techniques is the evaluation of rain entities using
an object‐based approach, which allows the verification of
the bulk properties of the satellite estimated rain field
against the bulk properties of the reference field or observa-
tions [Gilleland et al., 2009]. Ebert and McBride [2000]
developed the Contiguous Rain Area (CRA) method in
which the total mean squared error of a rainfall event, i.e.,
storm, is determined by matching the pattern of the esti-
mated and observed fields in a cell‐by‐cell analysis. The
location error is determined by horizontally shifting the
precipitation estimates over the observations until a best fit
is found minimizing or maximizing a user‐defined objective
function.
[5] The southeastern part of South America (SESA) is

susceptible to some of the most intense storm events on
Earth whose heavy precipitation generates numerous cases
of severe weather and flooding [Zipser et al., 2006; Silva
Dias, 1999]. During the warm season the precipitation in
SESA is modulated by the presence of mesoscale processes
associated with the activity of mesoscale convective systems
(MCSs). Their typical organizational structure involves a
deep convective part that can produce high rates of rainfall
in a brief period of time, and a stratiform part with moderate
precipitation but extended durations [Doswell et al., 1996].
Due to their spatial extension and high intensities MCSs are
also capable of generating flash flood events [Teixeira
and Satyamurty, 2007]. MCSs comprise mesoscale con-
vective complexes, squall lines, and precipitation bands
[Hirschboeck et al., 2000].

[6] Studies indicate that in SESA precipitation from
mesoscale convective complexes alone contribute with up to
60% of the total rainfall [Durkee et al., 2009; Durkee and
Mote, 2009]. Using TRMM satellite estimates Mota [2003]
estimated that MCSs produce approximately 80% of the
total precipitation in SESA. However, despite substantial
economic losses, large number of people being displaced,
and flood‐related death toll, there are no standardized pro-
cedures to document and mitigate the impacts of severe
storms in the region [Nascimento and Doswell, 2006]. In
addition to the lack of institutional efforts to anticipate the
occurrence and minimize the impacts of intense rainfall
events in SESA, it is the need for an adequate ground
network of radars and rain gauges that enable the study
and monitoring of such destructive events. Quite clearly,
satellite‐based precipitation estimates are of greatest interest
in this part of the globe where observation networks are
sparse and local inhabitants are most susceptible to hydro-
logic extremes.
[7] The overriding goal of this study is to use the CRA

method to reveal the existence of systematic errors in
remotely sensed precipitation products in SESA during the
warm season. We argue that a significant improvement in
flash flood forecasting and warning systems can be achieved
if the existence of systematic errors in satellite‐estimated
storms can be quantified. A secondary goal is to investigate
how errors in the location of MCSs propagate through the
hydrological cycle and have an impact on the characteristics
of streamflows in a basin.
[8] The paper is organized as follows: section 2 presents a

description of the basin and the data sets used in the study.
The methodological approach is introduced in section 3.
Results of CRA analysis and the case study are outlined in
sections 4 and 5, respectively. Finally, main conclusions of
the study are presented in section 6.

2. Study Area and Data Sets

[9] The La Plata river basin (LPB) is the second largest
river system in South America after the Amazon River
Basin. It covers approximately 3.2 × 106 km2 and is located
between 14°S and 38°S latitude and between 67°W and
43°W longitude (Figure 1). The basin is shared by five
countries: Brazil occupies approximately 46% of its surface,
Argentina 30%, Paraguay 13%, Bolivia 7% and Uruguay
4%. The mean annual precipitation in the LPB shows a
maximum of 1,500 mm in the central eastern portion of the
basin with lesser amounts to the south and west [Berbery
and Barros, 2002]. The annual cycle of precipitation pre-
sents two distinctive precipitation maxima: one along the
northern boundary during the austral summer and the second
one in the southern region of the basin during spring and fall
[Rodriguez and Cavalcanti, 2006]. The atmospheric water
cycle of the LPB is significantly influenced by mesoscale
variability associated with the existence of a low‐level cir-
culation located east of the Andes [Nogués‐Paegle et al.,
2002].
[10] Three satellite‐based precipitation products were

selected for the study. The first two data sets use an
adjustment technique to correct Infrared (IR) cloud top
temperatures using an independent data set such as precip-
itation radar and/or microwave radiometer measurements;
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the third data set exclusively relies on microwave observa-
tions that are spatially propagated using high temporal res-
olution IR values from geostationary satellites [Kidd et al.,
2009]. Microwave data have a strong physical relationship
with the hydrometeors that generate surface precipitation but
their time‐space coverage is quite sparse since the micro-
wave instruments are carried on low‐orbit satellites. Infrared
estimates, on the other hand, have excellent space‐time
coverage but cloud top temperature does not always corre-
late well with rainfall.
[11] The Tropical Rainfall Measuring Mission 3B42v6

research version (TRMM) relies primarily on passive
microwave precipitation estimates (PMW) from the Special
Sensor Microwave Imager (SSM/I), the TRMM Microwave
Imager (TMI), the Advanced Microwave Sounding Unit
(AMSU), and the Advanced Microwave Scanning Radi-
ometer for Earth Observing System (AMSR‐E). The PMW
data are first calibrated using the combined TMI and TRMM
precipitation radar product (PR) and then used to cali-
brate geosynchronous IR inputs. Monthly surface rainfall
observations are used to bias‐correct the multisatellite
product [Huffman et al., 2007]. The TRMM data set covers
the latitude band 50°S to 50°N from 1998 to the present and
is available at 3‐hourly temporal resolution in a 0.25‐degree
box.

[12] The Precipitation Estimation from Remotely Sensed
Information Using Artificial Neural Networks (PERSIANN)
data set is available at the same spatial resolution of TRMM
but every 6 h. PERSIANN uses an artificial neural network
to process geostationary longwave IR imagery to generate
global rainfall. The neural network parameters are regularly
updated using TMI, SSM/I, and AMSU estimates [Hsu
et al., 1997]. This rainfall product covers the latitudinal
range of 50°S to 50°N globally from the year 2000.
[13] The Climate Prediction Center Morphing method

(CMORPH) data set uses exclusively PMW estimates
derived from the low‐orbit SSM/I, TRMM, AMSU and
AMSR‐E satellites. Using a histogram matching method,
the different PMW records are calibrated with TMI and
subsequently their main features are transported to areas
without coverage using spatial information derived from IR
data. This method allows denser space‐time precipitation
coverage. The shape and intensity of precipitation at each
location is calculated using a morphing mechanism that
performs time‐weighted interpolation between two succes-
sive PMW estimates that have been propagated forward and
backward in time. CMORPH data are available every 3 h at
a 0.25‐degree resolution covering a region located between
60°N and 60°S starting in December 2002 [Joyce et al.,
2004].
[14] Daily observed precipitation was obtained from

an extended rain gauge network put in place from
15 November 2002 to 15 February 2003 during the South
American Low Level Jet Experiment (SALLJEX) [Vera
et al., 2006]. During SALLJEX more than 795 rain gauges
where installed in SESA and more than 1500 were made
available for the special network in a region where existing
surface observations are insufficient. The precipitation
database has undergone preliminary quality control by the
Atmospheric Sciences Department at the Universidad de
Buenos Aires and has been used in previous studies by
Rozante and Cavalcanti [2008]. In order to facilitate our
analysis, daily precipitation totals reported at 12 UTC were
regridded to a common 0.25‐resolution grid using a linear
interpolation. Table 1 shows the results of the sensitivity
analysis of CRA model parameters and number of grid
points to changes in the Interpolation method. Three meth-
ods were tested on the storm registered on 23 December
2002 (Figure 2): triangle‐based linear (linear), triangle‐
based cubic (cubic) and nearest neighbor. Parameter values
range from 39.5 to 43.2 mm/d for average rainfall rate, from
140.0 to 153.0 mm/d for maximum rainfall, from 17.7 to
18.7 km3 for rainfall volume, and from 503 to 543 for the
number of grid points. For each model parameter, we
computed the deviation from the Linear method, defined as

Figure 1. Geographical location of the La Plata River
Basin. The light gray shaded area represents the geographi-
cal extension of the La Plata basin and the dark gray area
corresponds to the Iguazu basin. The dots represent the
latitude and longitude of the centroid of each MCS identi-
fied during the summer 2002–2003, and the crosses repre-
sent the systems identified in the Iguazu basin during the
period 2001–2003.

Table 1. Sensitivity Analysis of the Interpolation Method Used
for Observed Precipitation

Average
Rainfall
Rate

Maximum
Rainfall

Rainfall
Volume

Grid
Points

Linear 39.5 mm/d 140.7 mm/d 17.7 km3 543
Cubic 40.1 mm/d 153.0 mm/d 18.3 km3 529
Nearest neighbor 43.2 mm/d 140.0 mm/d 18.7 km3 503
Deviation from

linear
9.3% 8.7% 5.6% 7.3%
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the difference between the largest or smallest parameter
value obtained with the cubic or nearest neighbor method
and with the Linear method, and normalized by the later.
The largest deviation was found to be 9.3% for the average
rainfall rate whereas for maximum rainfall, rainfall volume
and grid points the deviations were 8.7, 5.6 and 7.3%,
respectively. These results indicate that the impact of the
interpolation method on parameter values does not have an
effect on the results of our study. Precipitation totals were
computed for each satellite product by adding up 3‐ or 6‐
hourly satellite estimates depending on the product avail-
ability. The satellite products are to be referred hereafter as
TRMM, CMORPH and PERSIANN and the ground pre-
cipitation measurements as observations.

3. Overview of the CRA Method and
Methodology

[15] The CRA method was developed by Ebert and
McBride [2000] with the aim of verifying to what extent
the forecasted or estimated rain entity had the same location,
shape and magnitude of the one that was observed. The
CRA method defines entities or contiguous rain areas as the
region bounded by a user‐specified isohyet. First an entity is
delineated in the satellite and the observed fields based on
the selected threshold and then a displacement error is
determined by incrementally moving the estimated field
over the observed field until a best fit criterion is optimized.
The total error in the satellite estimated field can be broken
down as the sum of errors due to location, volume and pattern.

However, occasionally the error decomposition obtained
using this criterion gives rise to a negative displacement error
in equation (1), for these cases the error decomposition
introduced by Grams et al. [2006] is used instead. In our
study eight storm events produced a negative displacement
error and the correlation decomposition method was selected.
The total mean square error (MSE) can be written as

MSE ¼ MSEdisplacement þMSEvolume þMSEpattern; ð1Þ

whereMSEdisplacement represents the difference betweenMSE
before and after the translation, MSEvolume is the difference in
mean intensity between the original and the shifted fields
multiplied by the number of grid points in the CRA, and
MSEpattern accounts for differences in the fine structure of
both fields, i.e., the satellite product incorrectly representing
the detailed rain structure such as satellite precipitation
showingmore detail or the precipitation maximum positioned
in a different location.
[16] Second, each of the satellite products was paired with

the observations and a visual inspection was performed to
verify that the system was detected in both fields, i.e.,
observed and satellite‐estimated. Third, the CRA method
was used to analyze each set of observed and satellite‐
derived precipitation fields. The statistical significance of
the correlation coefficient being different to zero at a 95%
confidence level was tested using the F test [Ebert and
McBride, 2000]. Finally, for each satellite product the
differences between satellite‐estimated and observed pre-

Figure 2. MCS event observed on 23 December 2002 over the La Plata River basin for (a) CMORPH,
(b) PERSIANN, (c) TRMM, and (d) rain gauge. The heavy line shows the boundary of the CRA delin-
eated with the 30 mm isohyet. The arrow shows the displacement of the satellite‐estimated storm in the
northwest position.
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cipitation parameters were measured using the bias. The
mathematical expression for the bias is

bias ¼
Xn

i¼1

Sati � Obsið Þ; ð2Þ

where Sati denotes the satellite‐estimated precipitation and
Obsi denotes observed precipitation in each grid box i.
[17] Figure 2 shows a four‐panel plot with an example

of CRA verification for a typical event recorded on
23 December 2002 for CMORPH, PERSIANN, TRMM,
and observations. This event had an average life span and
area. A displacement vector (black arrow) denotes the
shifting of the satellite field to match the observed field by
maximizing the correlation coefficient between both entities.
Note that the size of the verification domain encloses the
raining grid points and can be different for every satellite
product.
[18] A macroscale hydrological model was used to eval-

uate how uncertainty in the spatial location of the storm
propagated through the hydrological cycle. For this purpose,
synthetic precipitation fields were generated for the Iguazu
basin by incrementally shifting the observed precipitation
along a latitudinal transect. The reader is referred to section 5
for details of the hydrological model used in the study. The
hydrological model performance was evaluated with the
Nash‐Sutcliffe efficient (NSE) coefficient as

NSE ¼ 1�
Pn

i¼1
Simi � Obsið Þ2

Pn

i¼1
Obsi � �oð Þ2

; ð3Þ

where Simi denotes the streamflows simulated with the
hydrological model using observed precipitation and Obsi
denotes observed streamflows at the basin’s outlet, mo is the

mean of the observations, and n is the number of values in
the streamflows record.

4. Detecting Systematic Errors in Satellite
Precipitation

[19] The CRA method requires the specification of three
parameters: the precipitation threshold which is the isohyet
used to isolate precipitation entities, i.e., grid points where
rain intensities are larger than the threshold and are to be
included in a CRA. This threshold is critical for the inclu-
sion or division of multiple rain entities in a CRA and
effectively selects those precipitation values for which the
statistics are computed. In the United States and Australia,
parameter values of 6.35 mm/6 h and 20 mm/d were adopted
by Grams et al. [2006] and Ebert and McBride [2000],
respectively. Decreases in the magnitude of the threshold
allow the inclusion of smaller entities with the drawback of
partitioning events into unrealistically small entities. A
sensitivity analysis of the threshold parameter was per-
formed for the typical event shown in Figure 2. Parameter
values in the 10 to 60 mm/d range were used in the analysis.
Figure 3 shows the impact of different parameter values on
RMS and correlation coefficient between observed and
satellite‐estimated MCS that occurred on 23 December 2002.
Mean RMS values range from 20 to 25 mm/d increasing
with larger threshold values and reaching a maximum at
around 40 mm/d. Conversely, the correlation coefficient
ranges from 0.38 and 0.58 for the mean of the three satellites
and reaches a minimum of 0.38 for the 40 mm/d threshold
value. Model performance is more sensitivity to small and
large threshold values for which RMS and r take the smal-
lest and largest values, respectively. However, threshold
values located in the lower end of the feasible range forces
the CRA model to combine individual observed systems
into one large CRA; on the other hand a threshold located in
the upper end of the feasible range does not include parts of
the storm in the analysis and statistics are calculated over an
area that is not representative of the MCS. Performance
measures remain stable in the 20–40 mm/d parameter range
indicating that changes in the threshold value does not affect
the outcome of the CRA method. Based on the results of the
sensitivity analysis, and the magnitude of the storms in
the basin, whose maximum intensity surpasses 100 mm/d; a
threshold of 30 mm/d was chosen for the study. This
threshold value produced reasonable looking entities for
MCSs in the basin.
[20] The second user‐defined parameter is the critical

mass threshold, which defines the minimum volume of
rainfall necessary for a system to be identified. The area
of the smallest MCSs was found to be approximately
55,000 km2 at the time of its maximum extension, which
corresponds to a volume of 1.65 km3 when a rainfall event
of 30 mm/d is considered. Since increases of the critical
mass might have excluded smalls systems we chose to use
the default value of 1 km3. A sensitivity analysis of the
critical mass parameter indicated that increases in the
magnitude of this parameter resulted in less entities being
identified and the exclusion of small MCSs (not shown).
Finally the search radius, which allows the separated
observed and estimated rain entities to be compared, as long
as they are within the search limit, was set to the default

Figure 3. Sensitivity analysis of CRA precipitation thresh-
old parameter for the MCS event registered on 23 December
2002. (a) RMSE in mm/d for three satellite products:
CMORPH, TRMM, PERSIANN, and mean. (b) Same as
in Figure 3a but for the correlation coefficient r.
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value of six grid points in all directions. This represents a
search radius of approximately 558.5 km over which the
satellite‐estimated system could be moved to match the
observed rain entity.
[21] Daily observed precipitation was plotted for the days

when a MCS was reported in order to check if those events
identified with IR satellite imagery by Salio et al. [2007]
were also captured by the surface network. The position
of the storm’s centroid was used to visually locate a system
in both precipitation fields; only those systems that were
simultaneously reported in the four fields (i.e., three satellite
products and observations) were included in the analysis. By
doing this, those events detected by the satellite product but
not observed (false alarms) and alternatively those observed
but not estimated (missed events) were eliminated. This
process significantly reduced the numbers of MCSs to be
examined from over one hundred to twenty‐four (Figure 1).
Note that some events had lifecycles of up to 42 h, for those
cases with lifecycles exceeding a day only the cumulative
precipitation for the day where the maximum extension
occurred was used. The substantial reduction in the number
of MCSs included in the study was partially caused by a
decline in the number of reporting stations over the El
Pantanal region, in the northwest corner of the basin, by the
existence of adjacent systems, which in several occasions
overlaid making difficult the demarcation of one system,
and by missing data in CMORPH and PERSIANN archives.
No significant differences to the eye of the human forecaster
were found in the performance of the CRA method when the
RMSE or the correlation coefficient between the fields was
used as a matching criterion (not shown). The correlation
coefficient tends to match observed and estimated precipi-
tation gradients rather than precipitation peaks hence it can

more efficiently measure the matching between moving
storm cells. Based on this, the matching criterion used to
compute spatial displacements was the maximization of the
correlation coefficient, and the error decomposition was
based on the MSE (equation (1)), which had shown to give
more robust error components [Ebert and Gallus, 2009].
[22] Statistics were calculated for the following parameters:

average (conditional) rainfall rate, rainfall volume, maxi-
mum rainfall, and displacement. Additionally the total error
decomposition into the three components of displacement,
volume, and pattern error, (equation (1)) was computed.

4.1. Average Rainfall Rate

[23] Figure 4 shows box plots of bias in average (condi-
tional) rainfall rate, i.e., nonzero rainfall rates above the
selected threshold, for CMORPH, PERSIANN and TRMM
precipitation estimates. CMORPH estimates show a wet
(positive) bias in the median with a value of 10 mm/d and
extreme values as large as ±150 mm/d which represents up
to ±200% of the observed mean and it is considered quite
large even for noisy satellites estimates [Sapiano and Arkin,
2009]. Over Australia, CMORPH satellite estimates have
shown systematic positive biases for rain intensities exceed-
ing the 20 mm/d threshold and over the continental United
States there are clear indications that CMORPH presents
large positive biases during the warm season, which is in
agreement with our findings for South America [Sapiano
and Arkin, 2009; Ebert et al., 2007; Tian et al., 2007].
Even though the sign of the bias is consistent in all the
studies, the magnitude of the bias in our study is signifi-
cantly larger due to the fact that we are focusing only on
heavy rain events hence the differences between ground and
remotely sensed precipitation is amplified. From a hydro-
logic standpoint these biases can affect fast‐response pro-
cesses in the basin such as Hortonian infiltration, soil
compaction, or canopy interception, which can result in
changes in the rainfall‐runoff response. However, due to the
lack of subdaily observed precipitation assessing the mag-
nitude of these impacts is outside the scope of this paper.
[24] PERSIANN rainfall estimates on the other hand

show a strong tendency to underestimate the average rainfall
rate with a median value of −8.5%. Despite showing an
overall dry bias, the discrepancy in the values is smaller for
PERSIANN estimates with extremes values ranging from
−100 to 25% of the observed values. These results disagree
with studies of daily precipitation in the United States,
South America and Australia [Sapiano and Arkin, 2009;
Ebert et al., 2007; de Goncalves et al., 2006] who found a
systematic overestimation of daily estimates by PERSIANN
products.
[25] Of all the satellite products considered in this study,

only TRMM has a bias correction applied at a monthly scale
using ground‐based precipitation. The median of average
rainfall Rate estimated by TRMM has a small positive bias
(3 mm/d) indicating that the gauge correction does offer a
significant advantage over other uncorrected satellite pro-
ducts for an accurate representation of MCSs in SESA. It is
worth mentioning that a large number of rain gauges used in
this study are not routinely available for TRMM ground
validation and calibration constituting an independent vali-
dation source.

Figure 4. Box plot of bias (satellite‐estimated minus
observed) in average (conditional) rainfall rate in mm/d
for CMORPH, PERSIANN, and TRMM satellite products.
The bottom and top lines represent the 25th and 75th per-
centiles, and the middle line represents the median. The
mean is indicated by the gray diamond. Whiskers extend
from each end of the box to the adjacent values in the data
within 1.5 times the interquartile range. The interquartile
range is the difference between the third and the first quar-
tile, i.e., 25th and 75th percentiles. Outliers are displayed
with pluses.
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4.2. Rainfall Volume

[26] Figure 5 shows the bias in unconditional rainfall
volume in km3 for the three satellite products. Unconditional
rainfall was selected to compare observed and satellite
precipitated volumes over a common area. CMORPH and
TRMM show unbiased medians, however biases in storm
volume range from −15 to 15 km3 in the case of CMORPH
and slightly less in the case of TRMM (−10 to 10 km3);
these differences represent as much a ±100% of the mean
observed volume for all the recorded events. PERSIANN
overestimates volumes for almost all the storms with a
median value of 1.3 km3 and extremes between −7 and
18 km3 (−50 to 140% of the observed volume). This is
surprising since the average rainfall rate and rainfall volume
are closely related parameters therefore the same sign in the
bias is expected. PERSIANN shows systematically larger
storm areas than observations, which significantly reduces
the conditional average rainfall rate (Figure 4). Conversely
when unconditional rainfall is considered, e.g., zero and
nonzero pixels, more spatially extended storms yield a larger
rainfall volume.
[27] Table 2 shows the number of 0.250° grid points

exceeding the 30 mm/d threshold for the three satellite
products and the observational network. The average size of
MCSs for CMORPH and TRMM is below 20% of the
observed size. Conversely PERSIANN has a large positive
bias (90% of the observed storm size) indicating a system-
atic overestimation of the storm area. This reflects that the
adaptive neural network calibration of IR imaginary is not
capturing the spatial extension of the convective events.

4.3. Maximum Rainfall

[28] The highest observed precipitation amount in any
of the 0.25‐degree cells included in the verification domain
is considered to be the maximum rainfall for a MCS
(Figure 6). CMORPH and PERSIANN underestimate the
maximum rain with a median of −12 and −16 mm/d,
respectively, and values ranging ± 100% of the observed
values. The TRMM product overestimates observed maxi-
mum rainfall with a median bias value of +14 mm/d (32%
of the observed mean). This indicates that the monthly bias
correction efficiently corrects total precipitation amounts but
does filter high‐intensity events such as those generated for
a MCS. These findings are in agreement with the results of
Tian et al. [2007], for the United States, who found that
TRMM estimates detected stronger precipitation events than
observations causing a shift in the precipitation spectrum
toward higher rainfall intensities.

4.4. Displacements in the Location of the MCSs

[29] The spatial distribution of errors in the location of
MCSs are displayed in a x‐y plot where negative values
represent displacements from the center of mass of the
observed event in the south and west directions, and positive
values represent displacements in the east and north
directions. The CRA method looks at all possible dis-
placements within the search box and chooses the one
that gives the maximum correlation or minimum RMSE,
depending on which matching criterion has been specified
by the user. Figure 7 shows the location of the centroids for
each satellite product within a 5‐degree radius. Dispersion is
high for the three satellite products with storm centroids
displaced as far as 500 km from the location of the observed
event. Each individual storm was visually inspected to
verify that the magnitude of the error obtained with the CRA
method was in close agreement with the error detected by
the human eye.
[30] All three satellite products showed a preferential

direction of displacement along an east‐west transect with
TRMM and CMORPH having less dispersion in the longi-
tudinal direction than PERSIANN (Figures 7a and 7c). This
behavior is in part consistent with the findings of Velasco

Figure 5. Same as Figure 4 but for rainfall volume in km3.

Table 2. Summary of Average MCS Sizes From Satellite
Precipitation Productsa

Satellite
Storm Average Size

(Number of Grid Points) Bias (%)

CMORPH 257 −1.2
PERSIANN 494 90.0
TRMM 314 20.8

aThe bias is expressed as a percentage of the ground observed size.

Figure 6. Same as Figure 4 but for maximum rainfall in
mm/d.
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and Fritsch [1987] for Meso Convective Complexes in the
region who found the tracks of these systems had a general
pattern of migration from west to east. Displacements
in PERSIANN showed the largest dispersion with storm
locations distributed almost equally in the northeast, north-
west and southeast directions (Figure 7b). One possible
explanation to the errors in the location of the systems could
be due to the fact PERSIANN relies on IR data to estimate
rainfall therefore satellite sensors can only detect convective
precipitation from cold cloud tops consequently not detect-
ing rainfall precipitating from warm shallow clouds [Ebert
et al., 2007]. Only the CMORPH algorithm attempts to
account for rain system movement by means of the morphing
procedure. Another factor that could be affecting the location
of the storms is related to the fact that if precipitation reaches
its maximum between two consecutive satellite overpasses,
the satellite cannot detect it and the system’s migration is
not fully described by satellite products.

4.5. Error Decomposition

[31] One of the main features of the CRA method is the
possibility to represent the total error as the sum of the error
due to displacements, the error in volume and the error due
to small differences in the structure of the estimated and
observed storms (pattern error). Figure 8 shows the average
contribution to the total error of each error component for
the three satellite products. For CMORPH rainfall estimates,
on average the major source of error arose from dis-
crepancies in the small structure of the storm totaling more
than 50% of the total error followed by errors in volume
(Figure 8a). The pattern error is strongly influenced by
spatial variability that can be a function of the type of
sensor, satellite spatial and especially temporal sampling,

and the retrieval algorithm used to generate the estimates.
For PERSIANN, errors in pattern contributed to 61% of
the total error whereas errors in volume and displacement
represented 15 and 24% of the total error, respectively
(Figure 8b). In TRMM estimates the largest contribution to
the total error came from differences in the fine structure
between fields, which contributed to 65% of the total error.
Errors in volume and displacement represented 20 and 15%
of the total error, respectively.

5. Case Study: Evaluating the Impact of
Displacement Errors on Streamflow Simulations

[32] When considering the usefulness of satellite‐estimated
precipitation for hydrological applications, it is crucial to
consider the impact that errors in the location of the storm
has on streamflow properties mainly the peak. In recent
years, a number of studies have looked at the effects of the
spatial variability of rainfall on simulated peaks and they
have concluded that it can play a major role in the uncer-
tainty of streamflows in a basin [Younger et al., 2009;
Carpenter and Georgakakos, 2004; Arnaud et al., 2002;
Wilson et al., 1979]. In addition, published studies have
examined the influence of storm movement, as well as the
position of the storm centroid, on overland flow [e.g.,
Chang, 2007; Morin et al., 2006; Syed et al., 2003; de Lima
and Singh, 2002]. The studies concluded that the position of
the storm core relative to the watershed outlet becomes more
important as the catchment size increases and that upstream
moving storms generate smaller peaks than downstream
moving storms. However, these studies are restricted to
small basins and to precipitation products derived from radar
measurements therefore an evaluation of the effects of storm

Figure 7. Displacement of satellite‐estimated MCSs with respect to observed systems. The x and y axes
represent longitude and latitude in degrees, respectively. (a) CMORPH, (b) PERSIANN, and (c) TRMM.

Figure 8. Decomposition of the total error into its sources: displacement, volume, and pattern.
(a) CMORPH, (b) PERSIANN, and (c) TRMM.
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location is lacking. To evaluate how this type of error
affects the different components of the hydrologic cycle, a
small subbasin of the La Plata basin was selected as a case
study: the Iguazu river basin. The Iguazu Basin is a trans-
boundary watershed located in southeastern part of the La
Plata Basin (Figure 1). The basin has an area of approxi-
mately 70,000 km2 and is located between 25°S and 27°S
and 49°W and 55°W. From its headwaters in Brazil at
1400 m of altitude, the river flows east‐west for approxi-
mately 1300 km until its confluence with the Paraná river
in Argentina.
[33] The hydrological cycle in the Iguazu river basin was

represented with the variable infiltration capacity (VIC)
model. VIC is a macroscale hydrologic model that has
the capability to represent the sub‐grid‐scale variability of
vegetation coverage, topography, precipitation and soil
moisture storage capacity. For details of VIC mathematical
formulations the reader is referred to Liang et al. [1994,
1996]. The VIC formulation for the Iguazu basin uses three
soil layers of 0.1, 1.5 and 1.0 m of thickness from top to
bottom, and 9 vegetation types. VIC was implemented at a
daily time step and a spatial resolution of 0.125 degrees.
Although a finer temporal resolution would have been
desirable to be able to detect subdaily streamflow behavior
only daily records of precipitation and streamflows were
available for the basin. VIC was run in water balance mode
(VIC Version 4.0.6). A data set of daily total precipitation

for the Iguazu basin was available for the period 1 January
1979 to 31 December 2005 at a 0.25‐degree resolution
[Liebmann and Allured, 2005]. This data set does not
incorporate the additional rain gauges put in place during
SALLJEX in the central west part of the LPB but it offers an
excellent spatial coverage over the Iguazu Basin for an
extended period of time. Maximum and minimum daily
temperatures and wind fields were obtained from the
National Center for Environmental Prediction (NCEP)
Reanalysis 2 available at 2.5‐degree resolution [Kanamitsu
et al., 2002]. Meteorological forcings were interpolated to
a 0.125‐degree resolution using a linear scheme. Daily
streamflows at Estreito Station (−25,55°S, −53.80°W) were
obtained from the Brazilian National Water Agency (ANA)
(http://www.ana.gov.br/) and used to evaluate the model’s
performance. VIC streamflow simulations, driven with
observed fields, were considered the “truth” and used to
compute errors between shifted and baseline model simu-
lations. For more information on the implementation and
performance of VIC in the Iguazu basin the reader is
referred to E. M. Demaria et al. (Evaluating the propagation
of errors in satellite precipitation estimates to hydrological
applications in South America, manuscript in preparation,
2011).
[34] Synthetic error‐perturbed precipitation fields were

generated by displacing the observed precipitation along the
east‐west direction. This direction was chosen following the

Figure 9. Daily streamflows at Estreito station for 12 days after the occurrence of a MCS in the basin.
The black line represents baseline streamflows simulated with error‐free precipitation, and the dashed/
gray lines represent streamflows simulated with shifted precipitation upstream/downstream. Above each
plot is the day of the MCS and the spatial location at the time of its maximum development.
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results presented in Figure 7, which indicated that dis-
placement errors in satellite‐estimated precipitation tended
to be dominant along a latitudinal transect. Observed pre-
cipitation fields were incrementally moved upstream/
downstream (eastward/westward) 14.125, 70.625, 127.125,
183.625 and 240.125 km. Even though the maximum dis-
placement is smaller than the maximum found in Figure 7, it
is representative of the displacements experienced by the
majority of the systems. The other atmospheric forcings
used in the model, i.e., temperature and wind, remained the
same as in the baseline simulations.
[35] During the period 1 September 2000 to 31 May

2003, fourteen MCSs were identified in the Iguazu Basin
using a tracking algorithm applied to IR satellite imagery
[Vila et al., 2008; Salio et al., 2007]. The systems varied
in size from 76,400 to 505,260 km2 (mean areal size:
193,340 km2), they initiated in average at 1700 UTC and
ended at 0300 UTC of the next day reaching the maximum
extension at 2000 UTC. At the time of their maximum
extension, the geographical positions of the systems where
centered in the upper basin (five systems), middle basin
(four systems) and lower basin (five systems) (refer to
Figure 1 for the locations of the systems). The average life
span of a MCS was nine and a half hours with the events
located in the upper basin being relatively shorter in dura-
tion. Figure 9 shows daily streamflows at the basin’s outlet
for the twelve consecutive days after an MCS was identified
in the basin. Note that the basin’s response time is approxi-
mately 5 days between the headwaters and the outlet. The
streamflows simulated with shifted precipitation generally
undergo increases/decreases in the magnitude of the flows’
downstream/upstream displacements. For almost all the
events analyzed the dispersion is larger in the proximity of
the peak than in the rising limb and the recession. Despite
changes in the magnitude of the flows, the timing of the

peaks is not affected by shifts in precipitation. This behavior
indicates that in large‐size basins, such as the Iguazu basin,
the effects of storm moving further away from the mouth
can flatten the peak as a result of channel storage. For
storms mowing downstream the increase in the peak is due
to rainfall at the mouth concurrent with streamflow con-
tributions from the upper part of the basin. Changing the
location of the storm had practically no effect on the timing
of the peak indicating that for large‐size basins the surface
storage and the channel network can lessen the impact of
this type of error. Another contributing factor is the daily
discretization of the VIC model, which does not allow
capturing the subdaily variability of streamflows in the
basin.
[36] The impact of systematic displacement of precipita-

tion on the peak of the hydrograph is shown in Figure 10.
The bias, as a percentage of the baseline peak, is computed
between the error‐free peak and the peak of the event sim-
ulated with precipitation moved upstream and downstream
the basin. Simulations with precipitation shifted in the
upstream direction systematically underestimate error‐free
peaks indicating a smoothing in the response of the system.
For displacements in the downstream direction simulated
peaks overestimated baseline peaks as the result of
increasing runoff contribution. This is valid for daily time
scales when additional smoothing is introduced by the
temporal averaging of short‐term fluctuations. Despite the
change in the sign of the bias, the magnitude of the differ-
ences is quite small not surpassing a five percent difference
from the baseline peak. These results indicate that for a
basin of the size of the Iguazu and for a daily time step,
errors in the location of a satellite‐estimated MCS do not
have a significant impact on hydrological applications that
require a precise estimate of the peak magnitude. Further-
more, if one considers that the error associated with
streamflow measurements using a rating curve can be, in
average, as large as 25%, the increment of peak discharge
due to displacement in precipitation can be considered
almost negligible for a large‐scale basin [Di Baldassarre
and Montanari, 2009].

6. Conclusions

[37] The ability of three satellite products to represent the
spatial characteristics of MCSs over the La Plata River basin
in southeastern South America was examined with an
object‐based approach, the CRA method. This method
allows for the objective determination of the source of errors
affecting the correct characterization of storm events in
space and time, verification that cannot be made with tra-
ditional grid‐to‐grid techniques. During the austral summer
2002–2003, precipitation events exceeding 30 mm/d for
three satellite products: TRMM, CMORPH and PERSIANN
were evaluated against observed precipitation, which was
considered the benchmark. The analysis of the different
statistical parameters provided by the CRA method indi-
cated the existence of systematic deficiencies in the three
satellite products representing convective system over the
basin. The impact of the location of the storm on basin
streamflows was evaluated by forcing a macroscale hydro-

Figure 10. Bias between peaks simulated with shifted and
unshifted precipitation as a percent of the baseline flow.
(left) Results with upstream displacements along a latitudi-
nal transect and (right) results for downstream displace-
ments. The line shows the median.
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logical model with spatially shifted precipitation fields. The
main conclusions of our investigation are as follows:
[38] 1. The average (conditional) rainfall rate of MCSs,

delineated with the 30 mm/d isohyet, shows significant
dispersion for all satellite products. CMORPH overestimates
ground observations whereas PERSIANN estimates are
systematically smaller than observations. TRMM median
average rainfall rate is unbiased confirming that the bias
correction performed at the monthly level effectively in-
creases the accuracy of the estimates.
[39] 2. The spatial extension of MCSs is overestimated by

PERSIANN causing a systematic dry bias in the average
conditional rainfall rate. The PERSIANN tendency to
underestimate average rainfall rate may be result from IR
measurements misclassifying cirrus clouds as precipitating
systems. Further studies are needed to quantify these effects.
[40] 3. Both CMORPH and TRMM successfully capture

the median of the storm volume over the basin whereas
PERSIANN slightly overestimates observations. Hence
some hydrological applications that require an estimation
of the amount of water in the channel, e.g., water supply,
will be more sensitive to errors in satellite‐estimated
precipitation.
[41] 4. The maximum rainfall of the storm is better cap-

tured by CMORPH and PERSIANN, which are the two
satellite‐only products included in the study, nevertheless
intense rainfall rates are systematically smaller than
observed ones. TRMM on the other hand overestimates
intense rainfall despite being bias‐corrected with ground
observations indicating that the correction procedure does
not filter some of the noise existing in the data.
[42] 5. The preferential direction displacement of satellite‐

estimated MCSs is in the east‐west direction for CMORPH
and TRMM resembling the trajectory of some mesoscale
systems in the region. PERSIANN estimates showed dis-
placements equally distributed in the northeast, northwest
and southeast directions.
[43] 6. Discrepancies in the fine structure of the storms

dominate the total error decomposition of all satellite pro-
ducts. For TRMM estimates, this source of error represents
more than 65% of the total error whereas errors in displace-
ment and volume are small resulting from the ground‐based
bias correction routinely performed. The contribution to the
total error from errors in volume is small for PERSIANN
estimates whereas they are significant for CMORPH products.
[44] 7. Hydrological simulations of streamflows in the

Iguazu basin indicate that the location of the storm influ-
ences the magnitude of the peak, hence its volume, when it
is shifted upstream and downstream the basin. Displace-
ments in the location of a satellite‐estimated MCS does not
have a significant impact on the timing of the peaks indi-
cating that the basin’s response to precipitation diminishes
the effect that errors in storm location has on simulated
streamflows.
[45] As previous studies pointed out, the incorporation of

rain gauge information in TRMM not surprisingly reduces
the bias in the storm volume and average rainfall rate [Tian
et al., 2007]. However, for intense rainfall rates there is not
clear gain over satellite products that are not bias‐corrected,
which along with the latency in availability reduces its
applicability in real time rainfall‐runoff applications such as

flash flood warning. Unfortunately, the real time operational
version of TRMM was not available at the time of
SALLJEX and was not included in this study.
[46] CMORPH estimates, which are entirely based on

remotely sensed measurements without a ground‐based
correction, performed equally well for rainfall volume and
even outperformed TRMM detecting the maximum rainfall
indicating that the “morphing” method used can success-
fully capture the spatial characteristics of large convective
systems.
[47] The results of this study are valid for convective

storm that exceed the 30 mm/d threshold and for rain
dominated large‐scale basins where saturation excess
mechanisms are predominant. For subdaily temporal scales
differences in peak arrival time might become significant.
Questions remain regarding the accuracy of the satellite
products at a subdaily time step and if some characteristics
such as the onset and duration of the events are well cap-
tured. Unfortunately there is no indication that the density of
the surface network will be improved in the near future
leaving the fate of this type of analysis to future field
campaigns.
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