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Abstract 

The main objective of this work is to present an 
overview of the space weather and its relation with 
the global network of ground-based multi
muon detectors (GMDN). T he GMDN 
international collaboration consisting of 10 
institutions from 6 countries in 5 continents. 
directional muon detector fo r measuring high
galactic cosmic rays (GCRs) was installed in 2001 
and expanded in its detection area in 2005, through  
an international cooperation between Brazil, Japan 
and USA, and has been in operation since then at th e 
Southern Space Observatory - SSO/CRS/INPE 
(29,4º S, 53,8º W, 480 m a.s.l), São Martinho da Se rra, 
RS, in southern Brazil, as an important component o f 
the GMDN. The observations conducted by this 
detector are used for forecasting the arrival of th e 
interplanetary coronal mass ejections (ICMEs) and 
the geomagnetic storms at the Earth.  The detector 
measures high- energy GCRs by detecting secondary 
muons produced from the hadronic interactions of 
primary GCRs (mostly protons) with atmospheric 
nuclei. While muons have a relatively short
(about 2.2 microseconds at rest), they can reach th e 
detector at ground level because of the relativistic 
effect of the time dilation with heir high speed 
(~0.96c), preserving the incident direction of primary 
particles. The multi- directional detector can measure 
the GCR intensity in various directions at a single  
location, such as SSO in Brazil. ICMEs accompanied 
by a strong shock often forms a GCR depleted region  
behind the shock. The Forbush decrease is observed 
when the Earth enters in this depleted region. Some  
particles from this depleted region leak into the 
downstream, traveling with almost the speed of ligh t, 
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the GMDN. The observations conducted by this 
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energy GCRs by detecting secondary 
muons produced from the hadronic interactions of 
primary GCRs (mostly protons) with atmospheric 

short  life-time 
(about 2.2 microseconds at rest), they can reach th e 

the relativistic 
heir high speed 

preserving the incident direction of primary 
directional detector can measure 

the GCR intensity in various directions at a single  
location, such as SSO in Brazil. ICMEs accompanied 
by a strong shock often forms a GCR depleted region  

ehind the shock. The Forbush decrease is observed 
when the Earth enters in this depleted region. Some  
particles from this depleted region leak into the 
downstream, traveling with almost the speed of ligh t, 

much faster than the approaching shock, and 
creating the precursory loss- cone anisotropy around 
the sunward IMF direction at the Earth. Loss
are typically visible 4- 8 hours prior to the shock 
arrival and the onset of major geomagnetic storm at  
the Earth. This cosmic- ray precursor can be detected 
som etimes as early as ten hours prior to the shock 
arrival at the Earth. With the real time 
upgraded GMDN, its methodology and data reduction 
techniques permits accurate Space We
forecasting.  

 

Introduction 

The main objective of this work is
of the ground-based Global multi
Detectors Network (GMDN). A Multi
Detector (MMD) for measuring high
galactic cosmic rays (GCRs) was installed in 2001 and 
expanded in its detection area in 2005, through an 
international cooperation between
and has been in operation since then at the Southern 
Space Observatory – SSO/CRS/CCR/INPE 
(29,4º S, 53,8º W, 480 m a.s.l), São Martinho da Serra, 
RS, in southern Brazil, as an important component of the 
global network of ground-based
detectors – GMDN. The observations conducted by these 
detectors and network are used for forecasting the arrival 
of the Interplanetary Coronal Mass Ejections (ICMEs
the geomagnetic storms at the Earth.

 

The physical mechanism 

ICMEs accompanied by a strong shock often forms a 
GCR depleted region behind the shock. The Forbush 
decrease is observed when the Earth enters in this 
depleted region. Some particles from 
leak into the downstream, traveling with almost the speed 
of light, much faster than the approaching shock, and 
creating the precursory loss-cone anisotropy around the 
sunward Interplanetary Magnetic Field (IMF) direction at 
the Earth, Fig 1. 
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The main objective of this work is to present an overview 
Global multi-directional Muon 

Detectors Network (GMDN). A Multi-directional Muon 
Detector (MMD) for measuring high-energy,  ~50 GeV,  
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Methodology 

 
The MMDs detectors measure high-energy GCRs
 
 

Fig. 1: Physical mechanism causing loss
precursors1,2.  
 
 

(~50–170 GeV) by detecting secondary muons produced 
from the hadronic interactions of primary GCRs (mostly 
protons and heavier nuclei) with atmospheric nuclei. 
While muons have a relatively short life-time (about 2.2 
microseconds at rest), they can reach the MMD at ground 
level because of the relativistic effect of the time dilation 
with their high speed (~0.96c), preserving the incident 
direction of primary particles, Fig. 2 and Fig. 3. 

 
 

Observations 
 
Since the large detector mass is required for 

high energy cosmic rays, ground-based instruments su
as MMDs remain the best and cheapest method for 
observing and studying these particles1,2

record secondary cosmic rays created by the interactions 
of > 1 GeV primary cosmic rays with Earth’s atmosphere

The multi-directional Muon detectors, MMDs, can 
measure the GCR intensity in various directions at a 
single location, such as at SSO in southern Brazil, Figure 
4. 

 
 

The sky coverage of the Global Muon Detector 
Network – GMDN 

 
 Currently, the Global multi-directional Muon Detectors 
Network – GMDN is consisted by four MMDs: at Nagoya 
(Japan), Hobart (Australia), São Martinho da Serra, RS, 
(Brazil) and Kuwait City (Kuwait).  The GMDN can 
continuously monitor the GCR intensity in 6
channels covering almost the entire sky and can precisely 
measure the variation of the GCR streaming separately 
from the variation of the GCR density, i.e. the isotropic 
component of the GCR intensity. 

 
The geographic location (big star) of each detector

presented in Fig. 5. Each of symbols (squares, triangles 
and circles) shows the existing asymptotic viewing 
direction of a particle incident to each MMD

and t he Global Muon Detector Network – GMDN
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 the median primary rigidity, after correction for 
geomagnetic bending of cosmic ray orbits.  

 
 
 
 

 
Fig. 2: Ground-based detectors measure byproducts 

of the interaction of primary cosm
atmosphere4. 

 
 

 Fig. 3: The SSO’s Muon detector
 
 

 Fig. 4: The multi-directional Muon detector, MMD, can 
measure the GCR intensity in various directions at a 
single location4. 

 
The number of directional channels monitored

MMD is: Nagoya - 17; Hobart - 13; Kuwait
Martinho da Serra - 17 (V, N, S, E, W, NE, NW, SE, SW,
N2, S2, E2, W2, N3, S3, E3, W3). The track through each 
symbol represents the spread of viewing directions
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Fig. 5: The GMDN’s MMD geographic location (big 

star)5. 
 

corresponding to the central 80% of each multi-directional 
detector’s energy response. 

Therefore, with a suitable analysis, the ground-based 
MMDs observations combined with its global network – 
GMDN data, can provide an unique information on the 
conditions in the near-Earth interplanetary medium, solar-
terrestrial relations and space weather3.  
 

 
 
Results 
 

Munakata et al5 examined cosmic ray precursors of 
geomagnetic storms by analyzing the pitch angle 
distribution of GCR intensity measured by a couple of 
MMDs at Nagoya and Hobart. Out of 22 storms with good 
coverage, they found 15 (68,2%) storms associated with 
precursors, of which 10 were the loss-cone precursors. 

 

 
Fig. 6: Visualization of precursors using the methodology 

developed by Da Silva6 for a geomagnetic storm on 
December 14, 20066. 
 
Each circle on Figure 6 represents an hourly count 

rate in a single directional channel plotted at the 
appropriate time (abscissa) and pitch angle (ordinate) of 
the viewing direction. A pitch angle of 0º corresponds to 
the sunward direction along the IMF. Open and solid 
circles represent, respectively, an excess and deficit of 

cosmic ray intensity relative to the average, and the 
diameter of each circle is proportional to the magnitude of 
deficit or excess5. 

With the GMDN the loss-cones are typically visible 4-8 
hours prior to the shock arrival and the onset of major 
geomagnetic storm at the Earth5. 

 
 
This cosmic-ray precursor can be detected sometimes 

as early as ten hours prior to the shock arrival at the 
Earth5. 

Despite been observed more frequently before intense 
geomagnetic storms (see Munakata et al5), loss-cones 
can also be observed in small or moderate geomagnetic 
storms. One example of a loss-cone observed during a 
moderate storm in November 15th 2008 is shown in 
Figure 7. Red circles mean decreases and blue circles 
mean increases. The diameter of each circle is 
proportional to the magnitude of deficit or excess. In this 
case the precursor is observed between 10 and 5 hours 
before the storm sudden commencement (SSC). In a set 
of 16 moderate and small geomagnetic storms observed 
in 2008 by the GMND, Braga7 observed precursor 
signatures before the SSC in 14 (87%) of the events. 
 

 
Fig. 7: Visualization of precursors using the 

methodology developed by Braga7 for a geomagnetic 
storm on November 15, 2008. In the x-axis the time 
before/after the SSC is indicated and in the y-axis the 
pitch angle (degrees) is indicated7. 

 
 
 

The SSO’s MMD Observations 
 

An example of a Geomagnetic storm observed by the 
SSO’s MMD in October 2003 is shown in Fig. 8. 

A loss-cone signature observed by the SSO’ MMD 
prior to the SSC causing a severe geomagnetic storm is 
shown in Fig. 9. The loss cone has all the right 
characteristics, 3hr duration, implying ~45 deg width, and 
it onsets first in the eastward viewing channel, then 
vertical and westward, Fushishita et al10. 

Real time plots of the pitch angle distribution, the 
bidirectional streaming and the GCR flow direction 
deduced from the GMDN are available in the GMDN - 
Space Weather Prediction with Cosmic Rays Website 
(http://neutronm.bartol.udel.edu/spaceweather/). 

The Brazilian National Institute for Space Research – 
INPE/MCT developed a program to monitor the Space 
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Weather Solar Terrestrial interactions by satellite and 
ground-based observations, and to provide useful 
information to space related communities, technological, 
industrial and academic areas. It is aimed to observe 
physical parameters of the geoenvironment, CME
 

Fig. 8: Geomagnetic storm observed by the SSO’s 
MMD in October 2003. 

 

Fig. 9: Forbush decrease observed by the SSO’s MMD in 
December 14, 2006. 

 
information by satellite and ground-based cosmic ray 
monitoring at the SSO’s MMD. The INPE’s Space 
Weather Website (http://www.inpe.br/spaceweather/) is 
available for real time monitoring. 

The real time processing of GMDN data with 5 CR 
multi-directional muon detectors, MMDs, are been 
processed at the Institute of Space Systems from DLR
Bremen, Germany, an example is presented in Fig. 

 

 
Fig. 10: Real time processing of GMDN data with 
5 CR multi-directional muon detectors8. 
 
It is also important to mention the Solar TErrestrial 

RElations Observatory – STEREO Space Weather Page 

and t he Global Muon Detector Network – GMDN
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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: Real time processing of GMDN data with  
 

It is also important to mention the Solar TErrestrial 
STEREO Space Weather Page  

(http://secchi.nrl.navy.mil/spwx/) where are available real 
time monitoring from the Sun and interplanetary medium.

 
 

Conclusions 
 
The MMDs observations and results from Kuwabara
 

et al9 and Fushishita et al10 show that the GMDN is a 
high-quality tool for Space Weather monitoring and 
forecasting.  

With the expectation of the approval by European 
Commission of the NExt generation Space TEChnology 
NESTEC Project, the GMDN may be upgraded in 
2010/2011 including new muon detectors in Bremen, 
Germany and in Hermanus, South Africa, and it will 
become an international collaboration consisting of 10 
institutions from 6 countries in 5 continents.

With the real time data from the upgraded GMDN, the 
methodology and the technique for applied international 
services will permit very accurate Space Weather 
forecasting in near future.  

For future plans it is suggested the combination of real 
time data and other information from NASA’s STEREO 
and from the Solar Dynamics Observa
missions with that from GMDN, in order to develop a new 
methodology and technique for applied international 
services, to permit Solar Heliosphere 3
with accurate Space Weather forecasting. Possible 
support for the future plans may 
BRAZIL (FAPESP, MCT (FINEP –
JAPAN (JAXA). 
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