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Figure 7. Pearson correlation coefficient between NDVI and incoming radiation (a) without lag, (b) with 1-month lag, (c) with 2-month lag
and (d) with 3-month lag. The black color corresponds to unclassified areas in the phenoregion map (see figure 1).
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Abstract

Depiction of phenological cycles in tropical forests is critical for an understanding of seasonal
patterns in carbon and water fluxes as well as the responses of vegetation to climate variations.
However, the detection of clear spatially explicit phenological patterns across Amazonia has
proven difficult using data from the Moderate Resolution Imaging Spectroradiometer
(MODIS). In this work, we propose an alternative approach based on a 26-year time-series of
the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution
Radiometer (AVHRR) to identify regions with homogeneous phenological cycles in
Amazonia. Specifically, we aim to use a pattern recognition technique, based on temporal
signal processing concepts, to map Amazonian phenoregions and to compare the identified
patterns with field-derived information. Our automated method recognized 26 phenoregions
with unique intra-annual seasonality. This result highlights the fact that known vegetation
types in Amazonia are not only structurally different but also phenologically distinct. Flushing
of new leaves observed in the field is, in most cases, associated to a continuous increase in
NDVI. The peak in leaf production is normally observed from the beginning to the middle of
the wet season in 66% of the field sites analyzed. The phenoregion map presented in this work
gives a new perspective on the dynamics of Amazonian canopies. It is clear that the phenology
across Amazonia is more variable than previously detected using remote sensing data. An
understanding of the implications of this spatial heterogeneity on the seasonality of
Amazonian forest processes is a crucial step towards accurately quantifying the role of tropical
forests within global biogeochemical cycles.

Keywords: tropical forest, vegetation index, Amazonia, phenology, leaf flushing, remote
sensing
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Biophysical and structural changes in the forest canopy driven
by phenological cycles are closely tied to vegetation—climate
feedbacks (Richardson et al 2013, Wu et al 2012, Gonsamo
et al 2012). Therefore, depiction of the spatial configuration
of phenological cycles in multiple biomes is essential
for improvement of the representation of ecophysiological
processes in Earth system models (Bradley et al 2011) and
for evaluation of the impacts of climatic variation on these
processes (Richardson et al 2013).

Undisturbed Amazonian vegetation is characterized by
a heterogeneous mosaic of forest types (Silman 2007, Gond
et al 2011) originating from complex interactions between
three main factors: (1) climate, which generates gradients
in the timing of the onset and ending of the dry season
(Liebmann and Marengo 2001, Sombroek 2001), the length
of the dry season (Marengo et al 2001) and the seasonality
of solar radiation (Schafer et al 2002); (2) environmental
factors, which present a large heterogeneity in soil physical
and chemical characteristics (Quesada et al 2009), drainage
and topography; and (3) biological factors, which are
characterized by changes in species composition across the
basin (Sombroek 2001, Sternberg 2001, ter Steege et al 2006),
by structural differences in canopy sizes (Barbier et al 2009),
by gradients of net primary productivity (Aragao et al 2009)
and by canopy litter production (Chave et al 2010).

Previous studies using the normalized difference veg-
etation index (NDVI) derived from Advanced Very High
Resolution Radiometer (AVHRR) data have shown little
variation in the phenology of Amazonian forests (Batista
et al 1997, Maignan et al 2008). Distinct changes in
the amplitude of the NDVI, however, were observed for
eastern (high amplitude) and north-western (low amplitude)
Amazonia (Asner et al 2000). Negative anomalies in the
NDVI during the dry season of eastern Amazonia were
associated with decreases in canopy greenness related to dry
season water stress. Moreover, the reduction in the amplitude
of the NDVI from EI Nifio to La Nifia years suggested that
Amazon forest phenology is responsive to rainfall variations.
Further research analyzing vegetation index (VI) and leaf
area index (LAI) products derived from MODIS data have
advanced our knowledge on the phenology of Amazonian
forests (Huete er al 2006, Myneni et al 2007, Xiao et al 2006,
Saleska et al 2007, Anderson et al 2010, Brando et al 2010,
Anderson ef al 2011, Bradley et al 2011, Samanta et al 2012).
An important breakthrough using MODIS data was the
identification of seasonal changes in forest greening during
the dry season as a response to increased solar radiation for
large areas of primary forests in Amazonia (Huete et al 2000,
Myneni et al 2007, Xiao et al 2006, Samanta et al 2012).
However, generalization of the dry season green up over
Amazonian forests must be interpreted cautiously. Bradley
et al (2011), using similar data, showed that 1.27 x 10% km?
of the forested area analyzed was in phase with radiation,
while 1.58 x 10° km? was in phase with precipitation.
Most of the forested area had a weak seasonality (Bradley
et al 2011). Moreover, inter-annual variability in changes
in the VI could not be explained by climatic variation in
Amazonia (Brando et al 2010). This variability indicates
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Figure 1. Phenoregions identified in the Amazon basin.

that other environmental controls may play an important role
in determining the phenology of Amazonian forests. Our
knowledge about Amazonian phenology is still limited to
basin-wide generalizations, mainly because of unsuccessful
attempts to identify spatially variable coherent regional
patterns of phenology. This is in part due to limitations
linked to the length of the time-series available for previous
analysis (<10 yr) and field information confined to a single
area in eastern Amazonia (Tapaj6s National Forest; Doughty
and Goulden 2008, Malhado et al 2009, Brando et al 2010)
that may not be representative of other areas of Amazonia,
and therefore limiting our capacity to interpret the patterns
observed from satellite data.

Based on the principle that phenological variation
of tropical trees is shaped through adaptations to biotic
and abiotic factors and, hence, phenological traits are an
evolutionary reflection of the influence of these external
factors (van Schaik er al 1993, Borchert 1994, Borchert
et al 2002), we expect that the phenological cycles within
Amazonian vegetation types will vary greatly, reproducing
the environmental diversity that can emerge from the spatial
arrangement of potential drivers of phenology identified
above for this biome. Despite the difficulty in determining
the ultimate causes of forest phenological cycles, analysis
of pixel-based long-term seasonality of VI is likely to
provide an indication of spatially explicit homogenous
phenological responses of Amazonian vegetation to different
evolutionary pressures. The longest satellite-derived VI
time-series currently available is the NDVI from AVHRR
(1981-2011) (Zhu et al 2013). A recent comparison between
the NDVI and the enhanced vegetation index (EVI) from
MODIS revealed that bidirectional reflectance effects are
more exacerbated in the EVI than the NDVI, potentially
influencing the interpretation of phenological cycles in forest
ecosystems (Galvao et al 2011).
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Table 1. Vegetation description, dry season period (monthly precipitation < 100 mm), peak of maximum NDVI and proportional variation

of NDVI for all phenoregions.

Peak of % NDVI variation
Phenoregion  Vegetation description Reference Dry season  maximum NDVI  (max-—min)
1 Roraima savanna IBGE (2004) Oct-Mar Aug 31.71
2 Dense forest of low lands IBGE (2004) Jun-Sep Jul 25.19
with lianas
3 Alluvial dense evergreen IBGE (2004) Aug-Nov Aug 21.72
forest in low lands
4 Dense forest of low lands IBGE (2004) Jul-Oct Jul 36.33
5 Low land dense moist forest ~ Selvaradjou et al (2005) Jan-Mar Sep 20.11
6 Savanna Panagos et al (2011) Nov-Apr Sep 22.14
7 Andes—Amazon transition Panagos et al (2011) Jul-Sep Sep 20.29
forest
8 Premontane pluvial forest Panagos et al (2011) May-Sep Aug 30.97
9 Closed evergreen forest IBGE (2004) Jun—Oct Aug 17.93
10 Evergreen forest in high Panagos et al (2011) Jun—Ago Jun 18.13
lands
11 Bamboo forest IBGE (2004) May-Sep Jul 21.65
12 Dense forest of low lands IBGE (2004) Aug—Oct Aug 25.76
with palms
13 Campinarana forest IBGE (2004) Aug—Oct Nov 20.09
14 Low lands evergreen open IBGE (2004) Jun—Ago Jul 20.78
forest
15 Campinarana forest with IBGE (2004) Oct-Jan Oct 22.12
palms and shrubs
16 High forest with regular Huber (2006) Aug—Oct Sep 30.38
canopy
17 Submontane forest with IBGE (2004) May-Sep Jul 27.81
palms and lianas
18 Pluvial forest in high lands Panagos et al (2011) Dec-Feb Dec 16.67
19 Dense evergreen forest with  IBGE (2004) Jun-Sep Aug 24.43
palms and lianas
20 Premontane dry forest Panagos et al (2011) Jun-Sep Aug 29.15
21 Xerophytic vegetation Rangel et al (1997) Jun—Oct Dec 24.50
22 Mixed high and open forest ~ Gond et al (2011) Dec—Mar Sep 39.07
with a tropical savanna
climate
23 Dense evergreen forest in IBGE (2004) Aug—Nov Jul 25.30
low lands with palms and
lianas
24 Forest transition between IBGE (2004) Jun-Sep Jun 23.56
dense, open forest and
savanna
25 Mosaic of evergreen Anhuf and Winkler (1999)  Dec—Mar Oct 16.52
lowland forest, swamp
forest, and savanna
26 Flooded savanna Lépez and Jun-Sep Apr 22.46

Zambrana-Torrelio (2005)

To identify distinct ecological responses of Amazonian
forests to localized biotic and abiotic controls, in this study
we propose to analyze 26-year long time-series of NDVI data
from AVHRR using a novel pixel-level pattern recognition
technique based on temporal signal processing concepts.
Specifically, we aim to (1) characterize the spatial variability
of forest phenology in Amazonia by identifying regions where
the forest phenological cycle is homogeneous (phenoregions);
(2) quantify the relationships between the seasonality of the
NDVI signal of each distinct phenoregion and climate by
analyzing the covariance between NDVI, rainfall and solar
radiation; and finally (3) investigate how the NDVI changes
in relation to field-derived data on leaf flushing and litterfall

based on a new compilation of published information for
Amazonia.

2. Material and methods

2.1. Datasets

We used two long-term NDVI time-series (1982-2008)
with 8 km spatial resolution from the Advanced Very
High Resolution Radiometer (AVHRR) available from the
Global Inventory Monitoring and Modeling Studies (GIMMS)
group. The first corresponds to biweekly data and the
second to monthly data. These two datasets have been
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Figure 2. Comparison between phenoregions’ NDVI time-series (—4-). Production peak of new leaves (shaded). Monthly coefficient of
variation of NDVI (vertical bars) and rainy season (dashed line). (a) Phenoregion 6 (Norconk and Conklin-Brittain 2004); (b) Phenoregion 9
(Peres 1994); (c) Phenoregion 16 (Bonal er al 2000); (d) Phenoregion 18 (Boubli 2005); (e) Phenoregion 24 (Pinto and Setz 2004);

(f) Phenoregion 25 (Basset et al 2001).

constantly improved to minimize noise resulting from residual
atmospheric effects, orbital drift, inter-sensor variations, and
stratospheric aerosol effects (Tucker et al 2005, Pinzon
et al 2005). The biweekly data were used for the pattern
recognition analysis due to their higher temporal resolution.
The monthly data were used to perform the correlation
analysis between monthly rainfall and incoming radiation and
NDVI datasets, as well as to investigate the seasonality of field
phenology, NDVI and rainfall data.

Monthly precipitation and incoming radiation time-series
covering the period from 2000 to 2008 were created for each
phenoregion based on the Global Land Data Assimilation
System (GLDAS) precipitation grids (0.25° spatial resolution)
(Rodell et al 2004). Additionally, we compiled published
information on field observations of peak of new leaf and
litterfall production for 12 sites in Amazonia to investigate
how the NDVIs for selected phenoregions respond to the
seasonality of these two phenological processes: (1) leaf
flushing and (2) abscission (table S1 available at stacks.iop.
org/ERL/8/024011/mmedia).

To reduce the effect of land use and land cover change on
the phenological signal, we masked all areas corresponding
to agriculture, water body, bare soil and urban areas based on
the GLOBCOVER product developed by the European Space
Agency (ESA) (Arino et al 2007).

2.2. Data processing

Our rationale for detecting forest phenology was based
on three assumptions: (1) NDVI time-series can provide
cyclical spectra that are directly related to the distinct
phenological patterns of each phenoregion; (2) the periodicity
of the cycles can be mathematically separated, allowing
the identification of phenologically homogenous regions;
and (3) the multi-temporal nature of the NDVI time-series
is analogous to the characteristics of hyperspectral data,
permitting the use of similar image processing techniques.

We applied a signal processing approach to the NDVI
time-series aiming to automatically identify NDVI standard
curves, which represent phenological forest patterns, in
order to map these regions. This signal processing approach
consisted of ‘noise-adjusted’ principal component analysis
(minimum noise fraction), automated extraction of end
members (pixel purity index) and an automated classification
method based on spectral similarity (spectral angle mapper).

The minimum noise fraction (MNF) is a linear transform
that provides an optimal ordering of images in terms of image
quality and increases the signal to noise ratio, generating
principal component images that are unaffected by noise
(Green et al 1988).

After MNF transformation, the pixel purity index (PPI)
was then applied to the principal component images. The
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Figure 3. Comparison between phenoregions’ NDVI time-series (—4-). Production peak of litterfall (shaded). Monthly coefficient of
variation of NDVI (vertical bars) and rainy season (dashed line). (a) Phenoregion 10 (Justiniano and Fredericksen 2000); (b) Phenoregion 11
(RAINFOR—Tambopata Site); (c) Phenoregion 13 (Barbosa and Fearnside 1996); (d) Phenoregion 14 (Nebel et al 2001); (e) Phenoregion
17 (Selva et al 2007); (f) Phenoregion 26 (Brienen and Zuidema 2005).

PPI is an algorithm based on convex geometry concepts used
to find the most ‘spectrally pure’ or extreme pixels (end
members), which examines multidimensional envisioned data
in n-dimensions. Each point (pixel) within this data space can
be examined as a linear combination of an unknown number
of pure components (Boardman 1995). The PPI is computed
by repeatedly projecting n-dimensional scatter plots onto a
random unit vector. The extreme pixels in each projection are
recorded and the total number of times each pixel is marked
as extreme is noted. A threshold of 5000 pixels was used to
define how many pixels are marked as extreme at the end of
the projected vector.

The selected end members (phenological signatures)
were then used as input for the spectral angle mapper (SAM)
analysis. This pattern recognition technique is based on the
measurement of spectral similarity between two or more
spectra obtained considering each spectrum as a vector in
n-dimensional space (Kruse et al 1993). Once similar spectra
are identified they are aggregated into a single category.
Lastly, the resulting map was postprocessed and pixels with
less than nine neighbors and phenoregions with less than 100
pixels were excluded from the final map.

We computed for each phenoregion the mean monthly
NDVI. These time-series were smoothed using the Savitzky—
Golay filter (Chen et al 2004) and the coefficient of variation

was calculated as a homogeneity index. For each NDVI
time-series extracted from each phenoregion, phenophases
corresponding to the start (SS), end (ES) and peak (PS) of the
growing season were calculated according to the methodology
proposed by Jonsson and Eklundh (2002).

Finally, correlation analyses were performed to quantify
the relationships between NDVI and rainfall and radiation for
each phenoregion.

3. Results and discussion

The pattern recognition technique enabled the characteri-
zation of 26 phenoregions with distinct long-term NDVI
temporal cycles (figure 1). These phenoregions tended, in
general, to reflect the spatial distribution of main vegetation
types described for Amazonia (table 1).

Previous studies used approaches based on automated
cluster analysis or training techniques using multisensor data
(Saatchi et al 2000, Eva et al 2003) that do not incorporate the
temporal component of phenology dynamics. Consequently,
the resulting maps tended to represent Amazonia as
a homogeneous lowland humid forest. Conversely, our
technique captured the differences between high forest with
regular canopy and mixed high and open forest with a
tropical savanna climate in the Guyana shield. These two
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Figure 4. (a) Peak of rainy season, (b) peak of dry season, (c) month of maximum radiation and (d) month of minimum radiation. The
arrows indicate the southeast—northwest direction of the climatic gradient. The black color corresponds to unclassified areas in the

phenoregion map (see figure 1).

forest types have structural and climate differences that have
been previously described (Sombroek 2001, Gond et al
2011) but not yet clearly separated using remote sensing
data. Another important distinction, probably influenced by
climatic gradients, was observed among dense forest, open
forest and dry forest in the north—south direction.

3.1. Reconciling NDVI variation with field-based phenology

For all phenoregions analyzed, the peak of new leaf
production reported from field observations was followed
by a steady increase in NDVI or occurred during the
maximum NDVI (figure 2). The peak of litterfall production
corresponded to time periods in which NDVI had a
descending trend (figure 3).

In contrast to previous studies using MODIS data that
reported widespread leaf flushing during the dry season in
Amazonia (Huete et al 2006, Myneni et al 2007, Xiao et al
2006, Samanta et al 2012), field-based information from our

literature compilation revealed that the peak of new leaf
production occurs during the wet season in 66% of the sites.
The NDVI from the AVHRR follows this same dynamics with
values increasing from the beginning or middle of the rainy
season to the end.

Specifically, field-based reports showed that the pluvial
forest in high lands (Phenoregion 18) and forest transition
between dense, open forest and savanna (Phenoregion 24)
presented just one annual peak of new leaf flushing in the
dry season (Boubli 2005, Pinto and Setz 2004). The closed
evergreen forest (Phenoregion 9) presented two peaks of
flushing in the wet season (Peres 1994). The savanna forest
(Phenoregion 6), mosaic of evergreen lowland forest, swamp
forest, and savanna (Phenoregion 25) and high forest with
regular canopy (Phenoregion 16) presented just one peak of
flushing in the wet season (Norconk and Conklin-Brittain
2004, Basset et al 2001, Bonal et al 2000). The NDVI of each
phenoregion followed these events in both the dry and the wet
season. The coefficient of variation of the NDVI values did
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Figure 5. (a) Start of the growing season, (b) peak of the growing
season and (c) end of the growing season. The arrows indicate the
southeast-northwest direction of the phenology gradient. The black
color corresponds to unclassified areas in the phenoregion map (see
figure 1).

not exceed 40% in any of the regions analyzed. The automated
PPI method captured NDVI temporal signatures consistently
with the main phenological features observed in the field.

3.2. Timing of phenological phases

We identified a strong rainfall and radiation gradient, with
maximum rainfall occurring in parallel with minimum
radiation. Both variables followed a southeast-northwest
direction. The phenophases clearly followed this climatic
gradient (figure S2 available at stacks.iop.org/ERL/8/024011/
mmedia). In the northwest of the basin the onset of the
growing season occurred mainly between May and July
(figure 5(a)), during the middle to the end of the dry season
when solar radiation is at its maximum (figure 4(c)). This
region is characterized by a non-existent or short dry season.
On the other hand, in the central-north Amazon the onset
of the growing season occurred from March through May,
during the middle to the end of the wet season, following the
increased availability of solar radiation. In the extreme south
of the Amazon basin, Phenoregions 17 and 26, characterized
by submontane forest and savanna, respectively, had the
onset of the growing season between October and December,
two months before the maximum rainfall (beginning of the
wet season). In the southwest—northeast direction the peak
of the growing season (figure 5(b)) occurred following the
middle-to-end of wet season gradient, from April (southwest)
to September (northeast). The end of the growing season
(figure 5(c)) also followed the end of dry season gradient in
the southwest—northeast direction (September—February) with
a lag of about three months.

Correlation analysis revealed that without lags only
savanna forests presented positive correlation with rainfall.
However, 76.9% of all phenoregions had a significant positive
correlation between NDVI and rainfall with a three month
time lag (figure 6). The correlation between NDVI and
incoming radiation was positive in a large part of the basin
without lags (figure 7). These results indicate that large areas
of Amazonian forests strategically flush new leaves from the
middle to the end of the wet season when incoming radiation
is increasing and soil water availability is still high (Judrez
et al 2007). A delay effect of the NDVI in response to rainfall
is expected and is likely to explain the occurrence of negative
correlation coefficients when lags are not considered. An
exception was savanna forest and submontante forest with
palms and lianas that presented positive correlation between
NDVI and rainfall without time lags.

The NDVI amplitude between maximum and minimum
values reached 16.67% in the mosaic of evergreen lowland
forest, swamp forest, and savanna (Phenoregion 22) and
39.07% in the mixed high and open forest with a tropical
savanna climate (Phenoregion 25). In the alluvial dense
evergreen forest domain in the low lands (Phenoregion
3), where Tapajos National Forest and Caxiuana National
Forest are located, the NDVI amplitude reached 21.72%
(table S1 available at stacks.iop.org/ERL/8/024011/mmedia).
These results were similar to previous studies that used EVI
(Samanta et al 2012, Myneni et al 2007, Huete et al 2006).
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Figure 6. The Pearson correlation coefficient between NDVI and precipitation (a) without lag, (b) with one month lag, (c) with two month
lag and (d) with three month lag. The black color corresponds to unclassified areas in the phenoregion map (see figure 1).

Our results showed a basin-wide phenological gradient
delay between the southeast and northwest portions of four
months for the start of the growing season and six months
for the peak of growing season, when the forest reached the
highest NDVI values at the middle-to-end of the wet season.
This reveals that the phenological responses to climatic
variation are heterogeneous across Amazonia. Based on our
NDVI and field-based analysis we argue that the flush of new
leaves does not occur simultaneously during the dry season
across all Amazonian forest as previously stated (Samanta
et al 2012, Myneni et al 2007, Saleska et al 2007, Huete et al
2006, Asner et al 2004). By combining the long-term NDVI
time-series (26 years) with ground-based studies produced
in the last 26 years, we highlighted that leaf flushing in the
majority of Amazonia, as approximated by the NDVI, starts
after the soil is fully recharged with water and incoming

radiation starts to increase after the peak of the wet season.
This tendency is characterized in our data by a peak in the
NDVI by the end of the rainy season. We demonstrated that
the onset and end of the growing seasons in Amazonia cannot
be considered to occur simultaneously throughout the basin
from July to September. We showed a southeast-northwest
direction gradient of rainy and dry seasons (figures 4 and 5).
It was also possible to note a difference of five months in the
peaks of the dry and wet seasons in the southeast—northwest
direction and four months in the start of the growing season
(September to December) in the west—east direction of the
Amazon basin, which is in agreement with Marengo et al
(2001).

It is interesting to note that in a large fraction of southern
Amazonia, the growing season occurs almost exclusively
during the wet season for a period of three months. In contrast,
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Figure 7. The Pearson correlation coefficient between NDVI and incoming radiation (a) without lag, (b) with one month lag, (c) with two
month lag and (d) with three month lag. The black color corresponds to unclassified areas in the phenoregion map (see figure 1).

in the northern, and wetter, fraction of the basin the growing
season occurs during the transition between wet and dry
seasons for a period of six months. The shorter time of
the growing season in the south could be associated with a
‘sprint’ of greenness as an evolutionary strategy to reduce
losses through herbivory during this susceptible phase of
foliar development (Patino et al 2012, Moles and Westoby
2000). This ‘sprint’ of greenness could be either associated
to the flushing of new leaves (Sinimbu et al 2012) or to the
increased rate of leaf expansion (Brando et al 2010).

Previous studies of Amazonia greening tend to assume
a dry season between July and October, concluding that
Amazonia greens up during the dry season (Samanta et al
2012, Huete et al 2006, Xiao et al 2006). Therefore, due to
the variability observed here in the timing of phenological
phases and climatic gradient, more caution should be taken
when linking climatic conditions with canopy phenology in
Amazonia.

4. Conclusions

This work provided a critical understanding of the phenolog-
ical mosaics in Amazonia and how they respond to climatic
variability. The fundamental aspect of our methodology was
the implementation of a pixel by pixel pattern recognition
technique that could successfully identify the differences
in the natural cycles of forest phenology. Our phenoregion
map clearly distinguishes regions that were not detected in
previous studies. This is probably because spatially pixels
are spectrally similar but temporally they produce distinct
responses to biotic and abiotic factors.

Differently from previous studies, using MODIS data,
which generated contradictory results, creating an unresolv-
able debate (Saleska et al 2007, Asner and Alencar 2010,
Samanta et al 2012, Atkinson et al 2011), our results added
a new and independent perspective on the phenology of
Amazonian forests. The coherent phenological patterns found
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in our analysis are a result of the combination of the data
characteristics and the methodological approach used. In
spite of inherent limitations of optical remote sensing, in
terms of saturation of NDVI signal over tropical canopies
(Aragdo et al 2005) and interference of clouds (Asner and
Alencar 2010), it appears that, in particular, the length of
the time-series allowed the detection of cyclical behavior
in the AVHRR/NDVI data. This indicates that saturation of
NDVI was not a problem for the analysis. Moreover, the
identification of peak NDVI during the dry season in some
areas and the wet season in other areas indicates that cloud
cover is not a major factor influencing the seasonality of
this dataset. Because our methodology explicitly distinguishes
curves based on their shape and not their amplitude, the
influence of NDVI saturation and potential cloud or aerosol
interference is minimized.

Forest phenology is a complex process involving several
environmental factors which enables similar vegetation types
to develop distinct phenological cycles or, alternatively,
different vegetation types to develop similar phenological
cycles. For this reason we opted to compare the phenoregions
with the main vegetation types on a macroscale.

Our results show that Amazon forest phenology is
more heterogeneous than previously anticipated. To better
understand the drivers of this heterogeneity it is critical to
perform a formal evaluation of the contribution of other
variables across the basin, including soil, geomorphology,
vegetation and climatic information.
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