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Abstract: The problem of three-dimensional two-impulsive orbital maneuvers between two elliptical orbits with 
minimum fuel consumption, but having a time limit, is considered in the present paper. This limit in the time 
generates a new characteristic to the problem, which eliminates the majority of the methods available in the 
literature. Equations available in the literature are used and some new ones are developed to consider cases with 
different geometries. Those equations are then solved and a software is implemented to perform the orbital 
maneuvers. The original equations are presented in the literature without any numerical results, so, the new 
cases considered and the solutions and implementation of the method available in the literatures are the 
contributions shown here. The software was used with success in several different situations. 
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1 Introduction 
      The majority of the spacecrafts that have been 
placed in orbit around the Earth use the basic 
concepts of orbital transfers. During the launch, the 
spacecraft is placed in a parking orbit distinct from 
the final one which it was designed. Therefore, to 
reach the desired final orbit, the spacecraft must 
perform orbital transfer maneuvers. Beyond this, 
the spacecraft orbit must be corrected periodically 
because there are perturbations acting on it. 
      There are many alternatives to solve this 
problem in the literature, considering different 
assumptions. An important field of solutions 
considers the low thrust maneuver, where a force 
with low magnitude is used during a finite time. So, 
to obtain the trajectory of the spacecraft, the 
equations of motion must be integrated by 
numerical algorithms. Some results using this 
model can be seen in references [1] to [15]. There 
is also an alternative approach, which uses the 
concept of an impulsive thrust. This is the situation 
where the thrust has an infinity magnitude and is 
applied during a negligible time. Several papers 
used this approach, like references [16] to [42]. 
      In this work, we consider the problem of two-
impulse orbital transfers between non-coplanar 
elliptical orbits with minimum fuel consumption, 
but with a time limit for this transfer. This time 
limit imposes a new characteristic to the problem 
that rules out the majority of the transfer methods 
available in the literature. Therefore, the transfer 

methods must be adapted to this new constraint. 
The equations presented by Eckel and Vinh [33] 
are used, but some new equations, to extend the 
method to cases with different geometry, are 
developed. Then, the problem is solved and those 
equations are used to develop a new software for 
orbital maneuvers. 
 

2 Definition of the Problem 
      The orbital transfer of a spacecraft from an 
initial orbit to a desired final orbit consists in a 
change of state (position, velocity and mass) of the 
spacecraft, from initial conditions 0r


, 0v


 and 0m  

at time 0t  to the final conditions fr


, fv


 and fm  

at time ft  ( 0tt f  ), as shown in Fig. 1. The 

maneuver can be classified as: maneuvers partially 
free, when one or more parameter is free (for 
example, the time spent by the maneuver); or 
maneuvers completely constrained, when all the 
parameters are constrained. In this case the 
spacecraft performs an orbital transfer maneuver 
from a specific point in the initial orbit to another 
specific point in the final orbit (for example, the 
rendezvous maneuvers). In this work, based in 
Rocco [40], we consider the orbital transfer 
maneuvers partially free, and that the spacecraft 
propulsion system is able to apply an impulsive 
thrust. Therefore, we have the instantaneous 
variation of the spacecraft velocity. 
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trust acceleration

 
Fig. 1 – Orbital Transfer. 

 

3 Presentation of the Method 
      The bases for this method are the equations 
presented by Eckel and Vinh [33] that provides: the 
transfer orbit between non-coplanar elliptical orbits 
with minimum fuel and fixed transfer time; or the 
minimum transfer time for a prescribed fuel 
consumption. In the present work we consider only 
the problem with fixed transfer time. The equations 
were presented in the literature, but the method was 
not implemented neither tested in Eckel and Vinh 
[33], and it is valid only for a specific geometry. 
They used the plane of the transfer orbit as the 
reference plane but we decided to use the equatorial 
plane as the reference plane because, in this way, it 
is easy to obtain and to apply the results in real 
applications. Using the transfer orbit as the 
reference plane almost all the results obtained 
belongs to the same specific geometry, so we 
changed the reference system, adding the equations 
1 to 6 to consider cases with more complex 
geometry. Thus, this modification, the 
implementation and the solutions using this method 
are contributions of this work. After that the 
method was implemented to develop a software for 
orbital maneuvers. By varying the time spent in the 
maneuver, the software developed provides a set of 
results that are the solutions of the problem of bi-
impulsive optimal orbital transfer with time limit. 
      Given two non-coplanar terminal orbits we 
desire to obtain a transfer orbit with minimum fuel 
consumption and fixed time transfer. The orbits are 
specified by their orbital elements, as shown in 
Table 1 (subscript 1: initial orbit; subscript 2: final 
orbit; no subscript: transfer orbit). 
 

 
Table 1 – Orbital Elements. 

 
a Semi-major axis 
e Eccentricity 
p Semi-latus rectum 
 Longitude of the periapsis 
i Inclination 
 Right ascension of the ascending node 
M Mean anomaly 
E Eccentric anomaly 
 Angle between the planes of the initial and 

final orbits 
1 True anomaly of the ascending node N  

obtained in the plane of the initial orbit 
2 True anomaly of the ascending node N  

obtained in the plane of the final orbit 
1I Location of the first impulse 

2I Location of the second impulse 
  Transfer angle obtained in the plane of the 

transfer orbit 
1 Plane change angle resulted from the first 

impulse 
2 Plane change angle resulted from the second 

impulse 
1V Velocity increment generated by the first 

impulse 
2V Velocity increment generated by the second 

impulse 
V Total velocity increment 
T Time spent by the maneuver 

1 True anomaly of the point 1I  obtained in the 
plane of the initial orbit 

2 True anomaly of the point 2I  obtained in the 
plane of the final orbit 

1r Distance from point 1I  

2r Distance from point 2I  

1f True anomaly of the point 1I  obtained in the 
plane of the transfer orbit 

2f True anomaly of the point 2I  obtained in the 
plane of the transfer orbit 

1x Radial component of the first impulse 

2x Radial component of the second impulse 

1y Transverse component of the first impulse in 
the plane of the initial orbit 

2y Transverse component of the second impulse 
in the plane of the transfer orbit 

1z Component of the first impulse orthogonal of 
the initial orbit 

2z Component of the second impulse orthogonal 
of the transfer orbit 

ih Horizontal component of iV  

thrust acceleration 
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      Depending on the intersection of the orbital 
planes, there are four possible geometries for the 
maneuvers, as shown in Figs. 2 to 5. 

      Figure 2 presents the geometry of the maneuver 
when 12 ΩΩ   and 12 ii  . Figure 3 presents the 

geometry when 21 ΩΩ   and 21 ii  . 
 

equatorial plane

ascending node of the final orbit

ascending node of the initial orbit

final orbit

vernal point

initial orbit

 
Fig. 2 – Geometry of the Maneuver when 12 ΩΩ   and 12 ii  . 

 

equatorial plane

final orbit

initial orbit

ascending node of the final orbit

ascending node of the initial orbit

vernal point
 

Fig. 3 – Geometry of the Maneuver when 21 ΩΩ   and 21 ii  . 
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Figure 4 presents the geometry of the maneuver 
when 12 ΩΩ   and 21 ii  . Figure 5 presents the 

geometry when 21 ΩΩ   and 12 ii  . 

      Depending on the locations of the impulses, 
there are three possible cases (shown in Figs. 6 to 
8). 
 

 

initial orbit

final orbit

equatorial plane

vernal point

ascending node of the final orbit

ascending node of the initial orbit

 
Fig. 4 – Geometry of the maneuver When 12 ΩΩ   and 21 ii  . 

 

final orbit

initial orbit

equatorial plane

vernal point

ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 5 – Geometry of the maneuver When 21 ΩΩ   and 12 ii  . 
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transfer orbit

initial orbit

equatorial plane

final orbit

vernal point
ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 6 – Case 1: 1I  before N  and 2I  after N . 

 
initial orbit

transfer orbit

equatorial plane

vernal point

final orbit

ascending node of the final orbit

ascending node of the initial orbit
 

Fig. 7 – Case 2: 1I  and 2I  after N . 
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initial orbit
final orbit

transfer orbit

equatorial plane

vernal point

ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 8 – Case 3: 1I  and 2I  before N . 

 
      Combining these three cases with the four 
possible geometries for the transfer maneuver, 
there is a set of twelve cases that can be solved by 
the software developed. Thus, from the geometry 
of the maneuver, we obtain 1 , 2 ,   and the 
transfer angle   by [42]: 
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      Considering that the spacecraft propulsion 
system is able to apply an impulsive thrust and that 
the maneuver is bi-impulsive, the total velocity 
increment is: 
 

  FVVV 21   (7) 
 
where   is an arbitrary variable for the transfer. 
 
The time of the transfer is: 
 

 ΧGΤ    (8) 
 
      Therefore, the problem is the minimization of 
V  for a prescribed Τ . If the transfer time is 
prescribed as being equal to a value 0Τ , we have 
the constraint relation: 
 

00 ΤΤ   (9) 
 
      Thus, we have the performance index: 
 

 0ΤΤkVJ    (10) 
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      From Eckel and Vinh [33], we have that the 
solution of the problem depends on three variables: 
the semi-latus rectum p  of the transfer orbit and 

the true anomalies 1  and 2  that define the 
position of impulses in the initial and final orbits. 
Therefore, we have the necessary conditions: 
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      By eliminating the Lagrange’s multiplier k  
from equations 11, there is a set of two equations: 
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      Evaluating the partial derivatives in these 
equations and doing some simplifications, the final 
optimal conditions are: 
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which use the following relations: 
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      The semi-latus rectum, the semi-major axis and 
the components of the impulses are given by  
equations 26 to 31. The necessary velocity 
increment to perform the maneuver can be obtained 
using equation 32. 
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      The total time spent in the maneuver can be 
obtained using the following equations: 
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      Therefore, there is an equation system 
composed by equations 9, 13 and 14. Solving this 
equation system by the Newton Raphson Method 
[43] we obtain the transfer orbit that performs the 
maneuver spending a minimum fuel consumption, 
but with a specific time. 
 

 
 

4- RESULTS 
      Figures 9 to 26 present some of the results 
obtained in Rocco [40] and [41] with the software 
developed. They not show only the tendency of the 
parameters, but they also quantify the evolution of 
the variables studied. The graphs were obtained 
through the variation of the total time spent in the 
maneuver. Thus, each point was obtained by 
executing the software with a given time. The 
points were joined by a line that shows the 
behaviour of that orbital element.  
      The first example (Figures 9 to 14, 25 and 26) 
used here is a maneuver of small amplitude 
between an initial orbit with semi-major axis of 
12030 km, eccentricity 0.02, inclination 0.00873 
rad, longitude of the periapse 3.17649 rad, 
longitude of the ascending node zero and a final 
orbit with semi-major axis of 11994.7 km, 
eccentricity 0.016, inclination 0.00602 rad, 
longitude of the periapse 3.05171 rad, right 
ascension of the ascending node 0.15568. This 
maneuver shows that the method applied here is 
suitable for maneuvers of stationkeeeping. In this 
example we used as initial values l  = 12033.55 km, 

1  = 4.03575149 rad, and 2  = 5.94012897 rad. 
      As a second example (Figures 15 to 24), we 
performed a maneuver between an initial orbit  
with semi-major axis of 15000 km, eccentricity 
0.05, inclination 0.08726646 rad, longitude of the 
periapse 0.52359878 rad, right ascension of the 
ascending node 0.17453293 rad, and a final orbit 
with semi-major axis of 20000 km, eccentricity 
0.06, inclination 0.17453293 rad, longitude of the 
periapse 0.78539816 rad, right ascension of the 
ascending node 0.34906585 rad. This maneuver 
shows that the method can be applied in transfers 
involving larger amplitudes. In this example we 
used as initial values l  = 17500 km, 1  = 

0.78539816 rad, and 2  = 1.04719755 rad. 
      The Figures show the behaviour of some orbital 
elements versus time spent in the maneuver, in 
seconds. Figures 9 and 15 show the behaviour of 
the semi-major axis of the transfer orbit, in km. 
Figures 10 and 16 show the behaviour of the 
eccentricity of the transfer orbit. Figures 11 and 17 
show the transfer angle in degrees. Figures 12 and 
18 show the behaviour of the inclination of the 
transfer orbit, in degrees. Figures 13 and 19 show 
the plane change angle resulted from the first and 
second impulses, in degrees. Figures 14 and 20 
show the velocity increment 1V  and 2V , and the 

total velocity increment V  in km/s. Figures 21 and 
22 show the plane change angle generated by the 
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impulses for the second example in more detail. 
Figures 23 and 25 show de resultant of the plane 
change ( 21   ), and Figures 24 and 26 show the 

total plane change ( 21   ) in degrees for the 

first and second example, respectively. 
 

5- CONCLUSIONS 
      From Figures 9 to 26 and from other examples 
studied in Rocco [40], we can verify that, in a 
general way, when the maneuver spends less time 
the semi-major axis and the eccentricity of the 
transfer orbit increases, and when the maneuver 
spends more time the velocity increment decreases 
and the transfer angle increases. These behaviors 
occur because, when the maneuver is performed 
with less time, the transfer orbit approaches to a 
hyperbolic orbit, so the semi-major axis and 
eccentricity tend to increase. When the maneuver is 
performed with more time the transfer angle can be 
greater and the impulse directions approach the 
direction of the motion of the spacecraft. However, 
the impulse directions will never be in the direction 
of the motion, because there is always a component 
orthogonal to the orbital plane. This component 
provides a plane change, as shown in Figures 13 
and 19. We can verify, in Figure 13, that, when the 
maneuver spends less time the plane change angle 
increases. In the second example, shown in Figure 
19, this fact also occurs, as shown in more details 
in Figures 21, 22, 23 and 24. Figure 21 and 22 
show the plane change angle resulted from the first 
and second impulse, respectively. In these figures, 
it is easy to verify that there is a small variation in 
the value of the plane change angle along the time. 
In Figure 21 we have a curve that initially 
decreases with the time, but around 2950 seconds 
the curve turns to increase. However, Figure 22 
show that the value of the plane change angle 
resulted from the second impulse has a clear 
tendency to decrease with time. Therefore the 
resultant of the plane change, shown in Figure 23, 
and the total plane change angle, shown in Figure 
24, decrease along the time. In the first example, 
although the resultant of the plane change increases 
along the time, as shown in Figure 25, the total 
plane change angle, shown in Figure 26, presents 
the same tendency of Figure 24, regarding the 
second example. The small increase in the value of 
the total plane change angle, observed in Figure 26, 
is due to a change of geometry of the maneuver that 
happens about 2600 seconds. Comparing these 
figures with Figures 14 and 20, it is possible to 
verify that, for a high plane change, there is a high 
value of the velocity increment. This is expected 

because changes in inclination, in general, spend 
more fuel. The increase in the plane change angle 
occur because when the fixed time is small, the 
spacecraft have to perform the maneuver very fast, 
then there is a great plane change in the first 
impulse and another great plane change in the 
second impulse. But the sum of the plane changes 
angles almost remains constant because the second 
impulse reverse part of the plane change angle 
resulted from the first impulse. But the resultant of 
the plane change is not equal to the difference 
among the inclinations of the initial and final 
orbits, because these orbits usually do not cross, 
because the maneuver does not correct just the 
difference in inclination, but also correct the 
eccentricity, the longitude of the periapside, the 
right ascension of the ascending node and the semi-
major axis. Beyond this, we can verify that, for the 
first example, the semi-major axis and the 
eccentricity of the transfer orbit, shown in Figures 
9 and 10, stabilized quickly. Therefore, inclination 
changes prevailed in the maneuver, thus most of 
the velocity increment applied in the maneuver is 
owed by the plane change. In the second example, 
the semi-major axis and the eccentricity, shown in 
Figures 15 and 16, present a high variation along 
the time without stabilizing around a specific value. 
In this way, the changes in the semi-major axis and 
in the eccentricity dominate the maneuver, 
prevailing with respect to inclination changes. But, 
in both examples, the behavior of the velocity 
increment is the same. The velocity increment 
decreases with time. However, there is a limit that 
occurs when the transfer angle is greater than 180º. 
After this limit, the increment velocity increases 
with time because, in this case, the impulse 
directions depart from the direction of the 
spacecraft motion. But, there is another kind of 
solutions that consider one or more complete 
revolutions in the transfer orbit before the injection 
into the final orbit, as foreseen in Equation 33. In 
this kind of solutions the time specified for the 
maneuver can be very high, in fact, this is 
recommended to cases when the time specified is 
greater than the period of the initial and final orbits. 
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Fig. 9 – Semi-Major Axis vs. Time 
Spent in the Maneuver (1o example). 

 
Fig. 11 – Transfer Angle vs. Time 
Spent in the Maneuver (1o example). 

 
Fig. 13 – Plane Change Angle vs. Time 
Spent in the Maneuver (1o example). 
 

 
Fig. 10 – Eccentricity vs. Time 
Spent in the Maneuver (1o example). 

 
Fig. 12 – Inclination vs. Time 
Spent in the Maneuver (1o example). 

 
Fig. 14 – Velocity Increment vs. Time 
Spent in the Maneuver (1o example). 
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Fig. 15 – Semi-Major Axis vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 17 – Transfer Angle vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 19 – Plane Change Angle vs. Time 
Spent in the Maneuver (2o example). 
 

 
Fig. 16 – Eccentricity vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 18 – Inclination vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 20 – Velocity Increment vs. Time 
Spent in the Maneuver (2o example). 
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Fig. 21 – Plane Change Angle ( 1 ) vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 23 – Resultant of the Plane Change vs. 
Time Spent in the Maneuver (2o example). 

 
Fig. 25 – Resultant of the Plane Change vs. 
Time Spent in the Maneuver (1o example). 

 
Fig. 22 – Plane Change Angle ( 2 ) vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 24 – Total Plane Change Angle vs. 
Time Spent in the Maneuver (2o example). 

 
Fig. 26 – Total Plane Change Angle vs. 
Time Spent in the Maneuver (1o example). 
 
 

            Besides that, we should advise that the 
software developed can not supply the solution for 
all combinations of the input parameters. For 
certain values of time, it can be impossible to 

obtain one solution because, for a very small or 
very large values of the time spent in the maneuver, 
the solution can not exist, or the numerical 
algorithms used in the software do not converge for 
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the solution, because the initial values used are too 
far from the solution. So, it is recommended a 
physical analysis of the problem, which takes into 
account the periods of the initial and final orbits, to 
find the range of values for the time spent in the 
maneuver, which is possible to accomplish the 
maneuver. 
  Another question to be solved is if the 
solution is a local or global minimum. Up to where 
we verified, the solution obtained seems to be a 
global minimum, because for the same input 
parameters, but using different initial values, it was 
not possible, to obtain better results. It is important 
to notice that the software tests automatically all 
the results, verifying if the maneuver obtained is 
just a mathematical solution or if it can really be 
implemented. When we use numerical methods 
there are some solutions, which satisfy the 
equations, however, in practice, they are 
impossible. Due to this fact, all the points shown in 
the graphs were tested and they represent solutions 
capable of being implemented. Thus, the developed 
software was tested with success. 
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