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Abstract: In this work, we propose to test the robustness
of Gradient Pattern Analysis (GPA) on such cases perform-
ing a threshold reduction of the wavelet coefficients, ana-
lyzing how GPA interprets the reconstructed series based on
these coefficients. For this, we use a multiresolution analysis
decomposition performed by discrete biorthogonal wavelet
transforms and a thresholding based on L? norm conser-
vation on well known chaotic dynamical systems data sets.
GPA is a tool to characterize asymmetry and detect irregular
fluctuations in spatio-temporal data. Some efforts have been
done to test the GPA strength on the identification of these
features.

Keywords: wavelet analysis, gradient pattern analysis, mul-
tiresolution analysis, asymmetry measurement.

1. INTRODUCTION

In the last 25 years, wavelet techniques have become an
important tool for local data analysis in different areas of
science [1, 3, 4, 6, 8, 9]. It’s well known that the mag-
nitude of the wavelet coefficients, obtained by the discrete
wavelet transform (DWT), depends on the local regularity of
the function (or signal) in study[1]. Therefore, to choose the
significant wavelet coefficients is a function-dependent prob-
lem in the wavelet domain. These significant coefficients
could be used in a compact representation of the signal. [2]
is an example of the many works that have being done in
this sense. One question that arises is if the asymmetries
existent in the original signal are preserved in the signal gen-
erated by the Inverse Discrete Wavelet Transform (IDWT)
applied to this compact wavelet representation, i.e., the re-
construction of the signal using only the significant wavelet
coefficients. It’s expected that Gradient Pattern Analysis, a
technique that measures the fluctuation degree along a signal
to quantify its asymmetry and complexity, can be used in this
investigation. Some other applications using wavelet analy-
sis combined with GPA are presented in [10]. Since GPA is
very sensitive in detecting changes in the signal asymmetric
behavior [11], a significant change in GPA measure should
indicate a loss of information about the dynamics of the sig-

nal.

The following section describes, based on the work of
[5], the theoretical background on multiresolution analysis
(MRA), highlighting biorthogonal MRA and its main proper-
ties that support our proposal. Next, an overview of Gradient
Pattern Analysis is given, and the full methodology combin-
ing the two techniques is described in Section 4. The results
and concluding remarks are presented, respectively, in Sec-
tions 5 and 6.

2. MULTIRESOLUTION ANALYSIS

The Multiresolution Analysis L2(R) {V7, ¢}, called
MRA {V7 ¢}, is a sequence of linear sub-spaces V7 of
L?(RR) and a associate function ¢, called scale function. They
satisfy the following conditions:

l....cvicvlicvtic..,
]L2(R) :Ujezvj,

NjezV? = {0},

2. f(x) €eVI & f(2x) € VIitL;

3. f(@) e VY & flx—k)e VI VkeZ;

4. ¢(x — k)pey is a Riesz base of VO,
Follows, that:

e there is a sequence i € ¢2 so that the following scale
relation holds ¢(z) = 23, ., h(k)p(2z — k), where
h(k) are called scale coefficients;

e for each j, the family d)fc(x) =2112¢(29x — k), k € Z,
forms a Riesz base of V7.

In the frequency domain, the scale relation is expressed
by 6(€) = H(€/2)9(6/2), where H(€) = ¥, o h(k)e ¢
is the scale filter associate to ¢. The filter H is a low-pass
filter, i.e., H(0) = 1 and H(w) = 0. For more details in
MRA see [1].

The main contribution of the theory wavelet is the charac-
terization of the complementary spaces between two embed-
ded spaces V7 C VJt!1 by direct sum VIt = VI + W7,



Moreover, the spaces W3 will contain the difference in the
information between the resolution levels j and the more re-
fine level j+1. There is more than one way to representate
this direct sum. In the next section, a method to construct the
W7 is presented in the context of an MRA biorthogonal.

2.1. MRA Biorthogonal

A MRA biorthogonal, herein MRAD, is a pair of {V7, ¢}
and {V*J ¢*} of MRA related by L2(R) = VO + V*0L g0
that their associated scale functions ¢ e ¢* satisfy the follow-
ing the biorthogonal condition

(G(—k), 6" (—0)) = / b(a—k) 6" (x—0) di = 8., (1)

and by so, they are called dual scale functions. Similarly, for
a fix j, the families {¢7} } and {¢,’} are also biorthogonal,
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In the frequency domains,

¢ (27 x — L) dx = Ok, (2)

one has Y, p(w +

21k)¢*(w 4 27k) = 1, where the overbar indicates the
complex conjugate. This expression is a direct consequence
of the Poisson summation formula.

2.2. Wavelet Functions

Let us consider W7 = VIitl A Vit and WHI =
V*3+1 N VI~ The following direct sum are valid:
VIt =y Wi vt = v Wi (3)

Defining the functions v e * as

=2 g(k)¢(2u—k), ¢*(x)=2) g*(k
kEZ kez
“4)
where usually g(k) = (—=1)¥*'h*(—k + 1) and g*(k) =
(—1)k*1h(—k + 1), one can prove that the families

vi(z) = 2Pp@r — k), vl (x) = 2200 (2Fx — k),
®)
are Riesz bases of W7 and W*J. The filters G(£) =
> rez 9(k)e ™ and G*(&) = 3, o g7 (k)e™™*¢ are band
pass filters, i.e., G(0) = G*(0) = 0e G(n) = G*(7w) = 1.
In frequency domain the scale relations, presented in 4, are
expressed by

(€)= G(E/2)P(E/2), V(&) = G*(£/2)9"(£/2). (6)

The function ] are called wavelet functions, and ¢’/
are called dual wavelet functions. They satisfy the following
biorthogonal conditions:

< ‘]Z;a ZJ> = 07 < Zjﬂﬁ% = 0) < 2]7 7n> - 6], 5kf
(7
The so called families of Daubechies orthogonal wavelet
are a particular case of the biorthogonal families when ¢ =
¢* and ¢ = *. Another example are the splines biorthog-

onal wavelets 1*, where 1* are spline functions.

*(2z—k),

2.3. Approximation schemes

A MRAD is a usefull tool to study I.?(IR) functions. Func-
tions f € L2(R) can be approximate by projections in %2
such that P9 f(z) = Y, (f, ¢;.7)#1.(x), or projection in W,
Q' f(z) =Y. (f, Zj >1/Ji (z), since they contain the differ-
ence of the information between the levels 5 and j+1, i.e.,

Q7 f(z) = [PI+L — PI] f(x). Therefore,
P (@) = [P+ Q)f (@), ®)

corresponds to the decomposition V71 = V7 + 7. In mul-

tilevel jo < j, we have:

P (2) =[PP + Q" + -+ Q] f(z), )
that is associate to the decomposmon Vitl = yio + Wio 4
-+ WJ. Defining ¢, = (f,¢;’), and d], = (f, ), Eq. 8

can be written as
i+1 +1
Z AN Z A

and in multilevel, we have the following formula

)+ > dii(z), (10)
k

Z CJ+1§Z5]+1 Z Cjo(bjo Z Z dy
k | e (an
that corresponds to {¢ 7'} < {¢1°} U {p°} - U {]}.

These operations are performed by the discrete wavelet trans-

form DWT=DWT’"" and its inverse IDWT=IDWT/*!, iie.

j1, DW
{c'T) =

IDWT

{cjo,dj07~-~ ,dj}

2.4. Properties

In this section we describe the main properties of the
wavelet transform discussed in this work. More details in
these properties could be obtained in [1, 18].

2.4.1 Double Localization

In the point of view of these properties of double localiza-
tion the wavelet coefficients dJ, are a measure of the frequen-
cial information in £ € €/ in the support of 1/)% (t). Con-
sequently, the wavelet transform is a time-frequency trans-
form with temporal resolution inversely proportional of the
frequencial one, i.e.

Az x AV€ = constant.

The following paragraphs describe briefly how this transform
works in the physical and frequencial domain.

Physical Localization: Usually the scale function ¢(x)
have a compact support, with length Az. As j increase,
#(27x — k) is localized in smaller intervals, AJx = O(277).
The indexes k indicate a translation k£ 277 that are also effec-
tuated. Therefore, in each level j, all the functions have the
same shape, changing only the position where they are local-
ized, they change by a integer number multiply by the scale.
The wavelet functions have the same behavior.



Frequency Localization: As discussed in this section, the
scale families are constructed in terms of the low-pass filter
H (). Consequently, a Fourier transform ¢(€) is symmetri-
cally localized in a region centered in £ = 0.

In this way, in the convolution operation zf)({) could be
interpreted as a low-pass band filter. If we change the scale,
we have ¢(277¢) as also a low-pass band filter centered in
¢ = 0, with bandwidth proportional to 27. In the wavelet
case we have a different behavior. Usually, 1/;(5 ) is also a
symmetric function, but it is zero in & = 0. For £ > 0,
we have a concentration in a region 2 of length A. There-
fore, the convolution operations 1&(5 ) can be interpreted as
pass-band filter, that enhance frequencies || € . When
we change the scale the changes in ¢(277¢) works also as
a pass-band filter, with a localization in the region QJ, and
bandwidth A7, proportional to 27.

2.4.2 Approximation order: Polynomial reproduction

In a MRAD the scale function ¢ e it dual ¢* must satisfy
the Strang—Fix condition (SFC) [17]. Let p be the order of
the SFC that ¢ satisfy, i.e., all polynomial of degree p can be
represented exactly by ¢(z) and its translates ¢(z —k). It can
be verify that p+1 is exactly the multiplicity of the zero in the
filter H (&) in & = 7. This property assure the approximation
order

1 = P flle = 02770 4D),

The same is valid to the dual ¢*. If p* is the order of SFC of
¢*, then the multiplicity of the zero in H*(£) em £ = 7 is
p* 4+ 1.

2.4.3 Null moments: polynomial cancellation

On the other hand, as G(¢) = e % H*(¢ + ), the zero mul-
tiplicity of the filter G(£), in £ = 0, is equal to p* + 1. Sim-
ilarly, as G*(¢) = e~ H(& + ), is the multiplicity of the
zero in the filter G* (), in £ = 0, is equal to p + 1.

We can verify that the number of null moments of one
wavelet function is equal to the multiplicity of zeros of the

filter G(&) in £ = 0. Therefore,

/x%(m) de =0, (=0,...,p", (12)
that is related by

dP(€)
det

‘§=0: Oa EZO) ap*' (13)

Similarly, for the dual wavelet ¢)*:
{=0,...,p, (14)

that is related by

" (€)
dgt

‘520: 07 6:07 ; P- (15)

2.4.4 Local regularity characterization

In the wavelet analyze function can represented in the MRA
spaces by expansion in the scale functions or expansion in
the wavelet functions.

As is presented in the next theorem the amplitude of the
wavelet coefficients dj, = (f, 1),”) are directly related to the
local smoothness of the function f, in the support of wzﬂ s
and the number of null moments of 1*. Therefore, wavelet
coefficients can be used as local indicators of regularity of
the analzed function. Usually these coefficients smaller in
the smooth regions. For this reason, expansion in wavelet
bases are advantageous for the compression point of view.

Theorem: Let p be the order of SFC of ¢. If f is a function
with continue derivatives f (%) in the support w*i,, 0<s<
p + 1, then the wavelet coefficient d? = (f, Zj ) and holds
the estimation

i < € 279D p) | (16)

where C' is a constant that depends on t)* and the norm ||
£ || in the support of ¢*7..

2.4.5 Null moments x Smoothness

The degree of smoothness of the scale function is directly re-
lated to the SFC order, i.e., the smoothness of ¢, and conse-
quently v, grows with p. Therefore, as larger is the smooth-
ness of 1), as larger is the number of null moments of *.

Focus in this paradigm null moments/smoothness of the
wavelet functions, the interpretation of the following forms
the representation can be different:

Fo= D el (17)
7.k

= Y (f b’ (18)
7.k

If 4* has more null moments that <, then, ¢ is much more
smooth than y*. Therefore, the first form seams to be much
more appropriated to compress the information than the sec-
ond one, when the reconstruction is made using only the
wavelet coefficients dj, greater than a certain threshold cho-
sen.

2.5. How to choose the threshold

One question that arises is about what can be considered
a small amplitude for the wavelet coefficients. There are sev-
eral methodologies to decide what is the best threshold (see,
for instance, [2]). On the discrete biorthogonal wavelet trans-
form theory, there is not an Energy Conservation Theorem,
the so called Parseval’s Theorem present in Fourier Analysis,
i.e., in MRA Biorthogonal, the summation of all squared sig-
nal samples is not necessarily equal to the summation of all
scale and wavelet coefficients. So, as an alternative strategy,
we use the mean square error (the so called RMSE) to mea-
sure the degradation of the signal after gradually removing
the smallest detail coefficients.



3. GRADIENT PATTERN ANALYSIS

The Gradient Pattern Analysis (GPA) [12—-15] is an inno-
vative technique, which characterizes patterns based on large
and small amplitude fluctuations of the spatial, temporal, and
spatio-temporal structures represented as a static or dynam-
ical gradient lattice. In this approach, each local fluctuation
is represented by a vector in two-dimensional space. Thus,
according to [16], a given scalar field of fluctuations can
be represented as a composition of four gradient moments:
g1, the integral representation of the fluctuation distribution
(vectors); go, the integral representation of the correspond-
ing norms; gs, the integral representation of corresponding
phases; and g4, the complex representation of the gradient
pattern (a complex coefficient composed by each correspond-
ing pair of norm and phase). Considering the sets of local
norms and phases as discrete compact groups, spatially dis-
tributed in a square lattice, the gradient moments have the
basic property of being globally invariant (for rotation and
modulation).

To calculate the asymmetry coefficient, first of all, the
time series must be converted into a mesh grid, rearranging
the points in a n X n array, that we call the 2-D represen-
tation of the data. Next, we compute the local fluctuation
between each pair of neighboring amplitudes in the global
pattern, characterized by its gradient vector. It makes the rel-
ative values between adjacent amplitudes to become relevant,
rather than the respective absolute values. Such relative val-
ues can be characterized by each local vector norm and its
orientation (phase). In this approach, each local fluctuation
is represented by a vector in a two-dimensional space, com-
posing what we call the gradient lattice. Since symmetric
fluctuations are expected to be reflected by symmetric vec-
tors, i.e., vectors with the same norm and opposite phases,
the next step consists in eliminating all the symmetric vec-
tors. This operation guarantees that a completely symmet-
ric pattern presents no asymmetric correlation and, thus, no
asymmetric vectors. In this case, by definition, g; is null. If
there are remaining asymmetric vectors, the geometric con-
nection among the fluctuations is generated by a Delaunay
triangulation, taking the last point of each vector as a vertex.
To measure the asymmetry correlation, called here asymme-
try coefficient, we take g1 = |e — f|/f, where f is the num-
ber of asymmetric fluctuations and ¢ is the geometric energy
correlation given by the number of connections among all
fluctuations.

Although this is not the scope of this work, the method
can be easily extended to two-dimensional data, by just skip-
ping the first step — generation of the mesh grid — and com-
puting the gradient vectors over the original square matrix.

We present here GPA applied in two examples of short
time series composed of only 64 points each. Fig. 1(a) shows
a symmetric series generated by a sine function, and Fig. 1(a)
shows the same series with some perturbations. We can see
in the gradient lattice (Fig. 1,b) that every gradient vector has
a symmetric one associated, meaning that all vectors will be
removed, giving a null asymmetry coefficient.

In the series presented in Fig. 2(a), we note the presence
of some level of asymmetry. Thus, we expect to find a pos-
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Figure 1 — A symmetric time series composed by 64 points (a)
and its respective gradient lattices (b). All gradient vectors are
removed, thus the triangulation field does not exist for this case.

itive value for g;. In Fig. 2(b) the respective gradient lat-
tice is shown. The few perturbations added in this series
are reflected in the gradient lattice, decreasing the number
of symmetric vectors to be removed in comparison with the
sinusoidal example. Consequently, there are remaining vec-
tors (Fig. 2, c) to generate the triangulation field, shown
in Fig. 2(d), which gives ¢ = 98 and f = 38. Taking
g1 = |e — f|/f, we obtain for this example g; = 1.57.
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Figure 2 — GPA of two examples of an asymmetric time series
composed with 64 points (a). The gradient lattice is shown in
(b), and (c) shows the remaining vectors after the symmetric
vectors remotion; (d) corresponds to the triangulation field.

Due to the possible changes in the phases of each fluc-
tuation (a vector in the gradient lattice), the parameter ¢ is
very sensitive in detecting local asymmetric fluctuations on
the gradient lattice [11]. Several calculations on random pat-
terns have shown that the parameter g; quantifies the level
of asymmetric fluctuations and it is much more sensitive and
precise in characterizing irregular fluctuations than the cor-
relation length measures [11]. When there is no asymmet-
ric correlation in the fluctuation pattern, the total number of
asymmetric vectors is zero and then, by definition, g; is null.
For a random and totally disordered fluctuation pattern, g;
has the highest value. For a complex pattern composed by



locally asymmetric fluctuations, g; is nonzero, defining dif-
ferent classes of irregular fluctuation patterns. Note that for
more regular and low frequency fluctuations the triangulation
field captures an increase of regularity in the gradient lattice.

4. DATA AND METHODOLOGY

In this study, we performed an exploratory analysis ap-
plying DWT with families {¢*,¢} with p* = 1ep = 3,
i.e., 4 null moments for ¥* and 2 null moments for v, and
also the associate representation {1, ¢¥* }, in two well known
signals provided by the simulation of dynamical processes.
These data come from the so called Lorenz Equations (Lz)
and Kuramoto-Sivashinsky system (KS5). Lz is composed
by three ordinary differential equations and used as a simple
mesoscale meteorological model. We use one of the vari-
ables whose phase space presents a chaotic regime. Fig. 3
shows the signal used in our analysis, sampled with 1024
points and generated by Lz simulation.

Lz system

0 200 400 600 800 1000

Figure 3 — Signal generated by Lorenz equation.

Used to model processes dynamics, K .S has chaotic
regime and is represented by a fourth degree partial differ-
ential amplitude equation, that can be written as:

u u oty Ou?
ot

922 Vo T ar | (19

where v is a viscosity damping parameter and v =
u(z,t), with u(x,t) = u(z + 2, t) and periodic boundary
conditions. This equation is used as a model for intrinsic in-
stabilities in complex fluids. Details in XS can be found in
[7]. The signal used in our analysis, also sampled with 1024
points, is shown in Fig. 4

As discussed above, the DWT is perfectly inverted by the
IDWT. Thus, if we apply the transform, eliminate the small-
est amplitude wavelet coefficients and perform the IDWT,
the result must be close to the original signal. After that,
we compare the asymmetry coefficient obtained for the orig-
inal signal to that measured over the reconstructed one, called
here compact wavelet representation. The methodology steps
are summarized in Fig. 5.

As shown in the diagram above, we also use the Root
Mean Squared Error (RMS) to verify how far the recon-
structed series are from the original one.

KS system
1.5e+07 T

1407

u(xb)
°

“1e+07 [

156407 L L L L L
o 200 400 600 800 1000
t

Figure 4 — Signals generated by Kuramoto-Sivashinsky system.
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MRA

Asymmetry coefficient

‘ Decomposed signal ‘

l Details Selection

Reconstructed signal ‘
| GPa

‘ Asymmetry coefficient ‘

|

‘ Root Mean Squared Error ‘

RMS

l Difference

‘ Asymmetry variation

Figure 5 — Diagram illustrating the methodology.

5. RESULTS AND DISCUSSION

Gradually increasing the threshold, defined at each iter-
ation as the minimum absolute amplitude of the signal, we
generated a set of asymmetry variations and plotted them
for Lz and K S series. Fig. 6 presents the asymmetry vari-
ation against the RMSE values measured over the Lz sig-
nal reconstructed in each compactness degree. According to
[11], asymmetric matrices, where f > 400, with size about
32 x 32, can be compared when the standard deviation of the
gradient asymmetry coefficient is of the order 10~5.

The compactness degree is supposed to be directly pro-
portional to the signal degradation. Thus, as long as the sig-
nal is degraded, as expected, the asymmetry coefficient g;
gets more distant from the one measured over the original
series, what in Lz series seems to go faster beyond analysis
functions characterized by a higher number of null moments
in the decomposition phase, given here by families {3,1} and
{5,1}. The opposite behavior is observed for K S series, as
shown in Fig. 7, probably due to the anti-persistent behav-
ior of KS series, which makes its compact wavelet repre-
sentation more dependent on the high frequency information
contained in the detail coefficients. In fact, although Lz and
K S represent chaotic systems, they are intrinsically differ-
ent. While the K S variability is generated from a single
state variable, the Lz variability comes from a set of three
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Figure 6 — Asymmetry coefficient variation along increasing
root mean squared error for Lz series reconstructed using fam-
ilies {1,3}, {3,1}, {1,5} and {5,1}.

state variables.

No apparent significant changes can be observed in both
reconstructed (degraded) series, even with high values for
RMSE in K S case. Nevertheless, the asymmetry variation
is high enough to loose its accuracy. Fig. 8 shows the dif-
ference |KS — K 5’7{5;1} |, where K'S is the denomination for
the original series, and K Si;r’él} relates to K S series recon-
structed using {5,1} analysis function.

Note that, as shown in Fig. 9, for the Lz system, there are
much more “disregarded” structures than to K S.

It’s also relevant to consider the rate of significant points
necessary to produce a compact wavelet representation with
no loss of information in the context of the asymmetries
and irregular fluctuations measured by GPA. Table 1 shows
the minimum number of significant points for each function
analysis.

Table 1 — Number of significant points.

Series| (1,3} {(3,13] (L5} {51}
Lz | 95.14% | 47.81% | 95.12% | 23.60%
KS | 70.06% | 48.97% | 83.90% | 49.17%

The most remarkable result is about reconstruction of Lz
signal using family {5,1}. As we can see in the table above,
this analysis function is able to reconstruct Lz series using
only 23.51% of the detail coefficients, with no loss of infor-
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Figure 7 — Asymmetry coefficient variation along increasing
root mean squared error for K S series reconstructed using
families {1,3}, {3,1}, {1,5} and {5,1}.

mation of the characteristic nonlinear underlying process. As
said before, it can be associated to the persistent behavior of
Lz dynamics, comparing to the anti-persistent variability of
KS process.

6. FINAL REMARKS

Our promising results indicate that, with some improve-
ments, the method can be used to indicate the robustness of
GPA and work as an additional tool for measuring asymme-
try more efficiently. One of the improvements and additional
analysis that can be done in our methodology, already evolv-
ing to be published soon, includes to incorporate other fami-
lies of the same orders analyzed here, say {2,4}, {3,3}, with
order 6, and the fourth order {2,2}.

Finally, by comparing the results for K.S and Lz, it is
clear that higher order decomposition has enhanced the co-
efficients reduction in K S series, while higher order recon-
struction has enhanced coefficients reduction in Lz series.
In practice, this behavior indicates that, for different chaotic
dynamics, one can find different biorthogonal families more
appropriated to represent each one with maximum compact-
ness. In order to verify such dependence, a complemen-
tary analysis which does include other chaotic dynamics will
be performed, and research along these lines is currently in
progress.
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