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The successful design of high-lift, low-drag hypersonic configurations will depend on the ability to incorporate 

relatively sharp leading edges that combine good aerodynamic properties with acceptable heating rates.  Certain 
configurations, such as hypersonic waveriders (Nonweiler, 1959), are designed analytically with infinitely sharp leading 
edge for shock wave attachment.  However, for practical applications, these sharp leading edges must be blunted for 
heat transfer, manufacturing, and handling concerns, with associated departures from ideal performance.  Typically, a 
round leading edge (circular cylinder) with constant radius of curvature near the stagnation point has been chosen.  
Nevertheless, shock detachment distance on a cylinder, with associated leakage, scales with the radius of curvature. 
Certain classes of non-circular shapes may provide the required bluntness with smaller shock separation than round 
leading edges, thus allowing manufacturing, and ultimately heating control, with reduced aerodynamic losses. 

A typical blunt body, composed of a flat nose followed by a highly curved, but for the most part slightly inclined 
afterbody surface, may provide the required bluntness for heat transfer, manufacturing and handling concerns with 
reduced departures from ideal aerodynamic performance.  This concept is based on work of Reller (1957), who has 
pointed out that this shape results from a method of designing low heat transfer bodies.  According to Reller (1957), 
low heat transfer bodies is devised on the premise that the rate of heat transfer to the nose will be low if the local 
velocity is low, while the rate of heat transfer to the afterbody will be low if the local density is low. 

Santos (2003) has investigated the effect of the leading edge thickness on the aerodynamic surface quantities over 
these flat-nose leading edges.  The thickness effect was examined for a range of Knudsen number, based on the 
thickness of the flat nose, covering from the transitional flow regime to the free molecular flow regime.  The emphasis 
of the work was to compare the heat transfer and drag of this new shape with those obtained for round leading edge.  It 
was found that flat-nose leading edges provided lower drag than round leading edge.  Nevertheless, round leading edge 
yielded smaller stagnation point heating than the flat-nose leading edges for the conditions investigated. 

Based on recent interest in hypersonic waveriders for high-altitude/low-density applications (Anderson, 1990, 
Potter and Rockaway, 1994, Rault, 1994, Graves and Argrow, 2001), this paper extends the analysis presented by 
Santos (2003) by investigating computationally the shock wave structure over these new contours.  The primary goal is 
to assess the sensitivity of the shock standoff distance, shock wave thickness and shock wave shape to variations on the 
thickness of the leading edge and on the body surface temperature.  Comparisons based on shock standoff distance are 
also made to examine the benefits and disadvantages of using these new blunt shapes over round shapes. 

For the transitional hypersonic flow, at high Mach number and high altitude, the flow departs from thermal 
equilibrium and the energy exchange into the various modes due to the vibrational excitation and relaxation becomes 
important.  For the high altitude/high Knudsen number of interest (.Q > 0.1), the flowfield is sufficiently rarefied that 
continuum method is inappropriate.  In addition, the computational complexity and storage requirements associated 
with the boltzmann equation (Cercignani, 1988) are prohibitive.  Alternatively, the DSMC method is used in the current 
study to calculate the rarefied hypersonic two-dimensional flow on the leading edge shapes. 
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In dimensionless form, the contour that defines the shape of the afterbody surface is given by, 
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The blunt shapes are modeled by assuming a sharp leading edge of half angle θ with a circular cylinder of radius 5 
inscribed tangent to the wedge.  The blunt shapes, inscribed between the wedge and the cylinder, are also tangent to 
them at the same common point where they have the same slope angle.  The circular cylinder diameter provides a 
reference for the amount of blunting desired on the leading edges.  It was assumed a leading edge half angle of 10 deg, 
a circular cylinder diameter of 10-2m and flat-nose thicknesses W�λ∞ of 0.01, 0.1 and 1, where W = 2\ 
���� e and λ∞ is the 
freestream mean free path.  Figure (1a) illustrates this construction for the set of shapes investigated.  From geometric 
considerations, the exponent N in Eq. (1) is obtained by matching slope on the wedge, circular cylinder and on the body 
shapes at the tangency point.  For dimensionless thicknesses of 0.01, 0.1 and 1, the exponent N corresponds to 0.501, 
0.746 and 1.465, respectively.  The common body height + and the body length / are obtained in a straightforward 
manner.  It was assumed that the leading edges are infinitely long but only the length / is considered, since the wake 
region behind the leading edges is not of interest in this investigation. 
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Figure 1: Drawing illustrating (a) the leading edge shapes and (b) the computational domain. 
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The Direct Simulation Monte Carlo (DSMC) method, pioneered by Bird (1994), has become one of the standard 
and reliable successful numerical techniques for modeling complex flows in the transition regime.  The transition 
regime is the category of flow that falls between the continuum regime, where the Navier-Stokes equations are valid, 
and the free molecular regime, which is the limit of infinite Knudsen number. 

In the DSMC method, a group of representative molecules are tracked as they move, collide and undergo boundary 
interactions in simulated physical space.  Each simulated molecule represents a very much larger number of real 
molecules.  The molecular motion, which is considered to be deterministic, and the intermolecular collisions, which are 
considered to be stochastic, are uncoupled over the small time step used to advance the simulation and computed 
sequentially.  The simulation is always calculated as unsteady flow.  However, a steady flow solution is obtained as the 
large time state of the simulation.  In general, the total simulation time, discretized into time steps, is identified with the 
physical time of the real flow.  Moreover, the time step should be chosen to be sufficiently small in comparison with the 
local mean collision time (Garcia and Wagner, 2000, and Hadjiconstantinou, 2000). 

The molecular collisions are modeled using the variable hard sphere (VHS) molecular model (Bird, 1981) and the 
no time counter (NTC) collision sampling technique (Bird, 1989).  The energy exchange between kinetic and internal 
modes is controlled by the Borgnakke-Larsen statistical model (Borgnakke and Larsen, 1975).  Simulations are 
performed using a non-reacting gas model consisting of two chemical species, N2 and O2.  Energy exchanges between 
the translational and internal modes are considered.  For this study, the relaxation numbers of 5 and 50 were used for 
the rotation and vibration, respectively. 

The flowfield is divided into a number of regions, which are subdivided into computational cells.  The cells are 
further subdivided into four subcells, two subcells/cell in each coordinate direction.  The cell provides a convenient 
reference for the sampling of the macroscopic gas properties, while the collision partners are selected from the same 
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subcell for the establishment of the collision rate.  The linear dimensions of the cells should be small in comparison 
with the scale length of the macroscopic flow gradients normal to the streamwise directions, which means that the cell 
dimensions should be of the order of or even smaller than the local mean free path (Alexander et al., 1998 and 
Alexander et al., 2000). 

The computational domain used for the calculation is made large enough so that body disturbances do not reach the 
upstream and side boundaries, where freestream conditions are specified.  A schematic view of the computational 
domain is depicted in Fig. (1b).  Side I is defined by the body surface.  Diffuse reflection with complete thermal 
accommodation is the condition applied to this side.  Advantage of the flow symmetry is taken into account, and 
molecular simulation is applied to one-half of a full configuration.  Thus, side II is a plane of symmetry, where all flow 
gradients normal to the plane are zero.  At the molecular level, this plane is equivalent to a specular reflecting boundary.  
Side III is the freestream side through which simulated molecules enter and exit.  Finally, the flow at the downstream 
outflow boundary, side IV, is predominantly supersonic and vacuum condition is specified (Guo and Liaw, 2001).  At 
this boundary, simulated molecules can only exit. 

Numerical accuracy in DSMC method depends on the grid resolution chosen as well as the number of particles per 
computational cell.  Both effects were investigated to determine the number of cells and the number of particles 
required to achieve grid independence solutions.  Grid independence was tested by running the calculations with half 
and double the number of cells in ξ and η directions (see Fig. (1b)) compared to a standard grid. Solutions (not shown) 
were near identical for all grids used and were considered fully grid independent. 
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The freestream and flow conditions used in the present calculations are those given by Santos (2003) and 
summarized in Tab. (1).  The gas properties considered in the simulation are those given by Bird (1994) and shown in 
Tab. (2).  The freestream velocity 9∞, assumed to be constant at 3.56 km/s, corresponds to a freestream Mach number 
0∞ of 12.  In order to simulate the surface temperature effects, the wall temperature 7&  is assumed constant at 440, 660, 
880 and 1100 K, which correspond to 2, 3, 4 and 5 times the freestream temperature, respectively. 
 
Table 1: Freestream Conditions 
 

Temperature 
7∞ (K) 

Pressure 
S∞ (N/m2) 

Density 
ρ∞ (kg/m3) 

Number density 
Q∞ (m-3) 

Viscosity 
µ∞ (Ns/m2) 

Mean free path 
λ∞ (m) 

Velocity 
9∞ (m/s) 

220.0 5.582 8.753 x 10-5 1.8209 x 1021 1.455 x 10-5 9.03 x 10-4 3560 
 
Table 2: Gas Properties 
 

 Mole fraction 
;�

Molecular mass 
P (kg) 

Molecular diameter 
G (m) 

Viscosity Index 
ω�

O2 0.237 5.312 x 10-26 4.01 x 10-10 0.77 
N2 0.763 4.65 x 10-26 4.11 x 10-10 0.74 

 
The overall Knudsen number .Q ' , defined as the ratio of the freestream mean free path λ∞ to the leading edge 

thickness W, corresponds to 1, 10 and 100 for leading edge thicknesses W�λ∞ of 1, 0.1 and 0.01, respectively.  The 
Reynolds number 5H '  covers the range from 0.193 to 19.3, based on conditions in the undisturbed stream with leading 
edge thickness W as the characteristic length. 
 
���&RPSXWDWLRQDO�3URFHGXUH�

 
The problem of predicting the shape and location of detached shock waves has been stimulated by the necessity for 

blunt noses and leading edges configurations designed for hypersonic flight in order to cope with the aerodynamic 
heating.  In addition, the ability to predict the shape and location of shock waves is of primary importance in analysis of 
aerodynamic interference.  Furthermore, the knowledge of the shock wave displacement is especially important in a 
waverider geometry (Nonweiler, 1959), since these hypersonic configurations usually rely on shock wave attachment at 
the leading edge to achieve their high lift-to-drag ratio at high-lift coefficient. 

In this present account, the shock wave structure, defined by shape, thickness and detachment of the shock wave, is 
predicted by employing a procedure based on the physics of the particles.  In this respect, the flow is assumed to consist 
of three distinct classes of molecules; those molecules from the freestream that have not been affected by the presence 
of the leading edge are denoted as class I molecules; those molecules that, at some time in their past history, have struck 
and been reflected from the body surface are denoted as class II molecules; and finally, those molecules that have been 
indirectly affected by the presence of the body are defined as class III molecules.  Figure (2a) illustrates the definition 
for the molecular classes. 
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It is assumed that the class I molecule changes to class III molecule when it collides with class II or class III 

molecule.  Class I or class III molecule is progressively transformed into class II molecule when it interacts with the 
body surface.  Also, a class II molecule remains class II regardless of subsequent collisions and interactions.  Hence, the 
transition from class I molecules to class III molecules may represent the shock wave, and the transition from class III 
to class II may define the boundary layer. 

A typical distribution of class III molecules along the stagnation streamline for blunt leading edges is displayed in 
Fig. (2b) along with the definition used to determine the thickness, displacement and shape of the shock wave.  In this 
figure, ; is the distance [ along the stagnation streamline (see Fig. (1b)), normalized by the freestream mean free path 
λ∞, and I( ( (  is the number of molecules for class III to the total amount of molecules inside each cell. 
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Figure 2: (a) Drawing illustrating the classification of molecules and (b) Schematic of shock wave structure. 
 

In a rarefied flow, the shock wave has a finite region that depends on the transport properties of the gas, and can no 
longer be considered as a discontinuity obeying the classical Rankine-Hugoniot relations.  In this context, the shock 
standoff distance ∆ is defined as being the distance between the shock wave center and the nose of the leading edge 
along the stagnation streamline.  As shown in Fig. (2b), the center of the shock wave is defined by the station that 
corresponds to the maximum value for I( ( ( .  The shock wave thickness δ is defined by the distance between the stations 
that correspond to the mean value for I( ( ( .  Finally, the shock wave shape (shock wave “location”) is determined by the 
coordinate points given by the maximum value in the I( ( (  distribution along the lines departing from the body surface, 
i.e., η-direction as shown in Fig. (1b). 

The molecule classification that has been adopted here was first presented by Lubonski (1962) in order to study the 
hypervelocity Couette flow near the free molecule regime.  Lubonski (1962) divided the gas into three classes of 
molecules: “freestream”, “reflected from the boundary” and “scattered”.  Later, for the purpose of flow visualization, 
Bird (1969) applied the same scheme of classification by identifying the classes by colors: blue for class I, red for class 
II and yellow for class III molecules. 
 
���&RPSXWDWLRQDO�5HVXOWV�DQG�'LVFXVVLRQV�
 

The purpose of this section is to discuss and to compare differences in the shape, thickness and displacement of the 
shock wave due to variations on the body surface temperature as well as on the leading edge thickness. 

The distribution of molecules for the three classes along the stagnation streamline is illustrated in Figs. (3) and (4) 
for four cases that combine two different nose thicknesses, .Q '  of 100 and 1 (W�λ∞ of 0.01 and 1), and wall temperatures 
of 440 K and 1100 K.  The class distributions for the other cases investigated in this work are intermediate to these four 
cases and, therefore, they will not be shown.   

Referring to Figs. (3) and (4), I( , I( (  and I( ( (  are the ratio of the number of molecules for class I, II and III, 
respectively, to the total amount of molecules inside each cell along the stagnation streamline. Of great significance in 
these figures is the behavior of the class I molecules for sharp and blunt leading edges.  It should be observed that 
molecules from freestream, represented by class I molecules, collide with the nose of the leading edges even after the 
establishment of the steady state.  This is shown in Fig. (3), which represent sharp leading edge cases.  In contrast, 
molecules from freestream do not reach the nose of the leading edge for those cases illustrated in Fig. (4), that represent 
blunt leading edges.  This is explained by the fact that density (Santos, 2004) increases much more for blunt (flat) 
leading edges in the stagnation region and reach its maximum value in the stagnation point.  In this connection, the 
buildup of particle density near the nose of the leading edge acts as a shield for the molecules coming from the 
undisturbed stream. 
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Figure 3: Distributions of molecules for classes I, II and III along the stagnation streamline for leading edge thickness 
that correspond to Knudsen number .Q '  of 100 and wall temperature of (a) 440 K and (b) 1100 K. 
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Figure 4: Distributions of molecules for classes I, II and III along the stagnation streamline for leading edge thickness 
that correspond to Knudsen number .Q '  of 1 and wall temperature of (a) 440 K and (b) 1100 K. 
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According to the definition shown in Fig. (2b), the shock wave standoff distance ∆ can be observed in Figs. (3) and 
(4) for the flat-nose shapes shown.  The calculated shock wave standoff distance ∆, normalized by the freestream mean 
free path λ∞, is tabulated in Table (3) for the cases investigated.  It is apparent from these results that there is a discrete 
shock standoff distance for the cases shown.  As would be expected, the shock standoff distance increases with 
increasing the flat-nose thickness.  Moreover, the shock standoff distance also increases with the wall temperature rise.  
As a reference, for wall temperature of 1100 K, the shock wave standoff distance for cases .Q '  of 100, 10 and 1 is 
around 1.2, 1.2 and 1.16 times, respectively, larger than those for wall temperature of 440 K. 
 
Table 3: Dimensionless shock wave standoff distance ∆�λ∞ for flat-nose leading edges. 
 

7& � .Q '  = 100 .Q '  = 10 .Q '  = 1�
440 K 0.183 0.298 0.672 
660 K 0.184 0.336 0.714 
880 K 0.201 0.346 0.753 

1100 K 0.218 0.357 0.781 
 

For comparison purpose, the circular cylinder, shown in Fig. (1a), provides a larger shock detachment, i.e., ∆�λ∞ of 
1.645 for wall temperature of 880 K.  This value is about 8.2, 4.8 and 2.2 times larger than the cases corresponding to 
.Q '  of 100, 10 and 1, respectively, for the same wall temperature.  The results tend to confirm the expectation that the 
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shock standoff distance for sharp leading edge is smaller than that for blunt leading edge.  In fact, the flat-nose bodies 
behave as if they had a sharper profile than the representative circular cylinder. 

It is important to mention that shock standoff distance becomes important in hypersonic vehicles such as 
waveriders, which depend on leading edge shock attachment to achieve their high lift-to-drag ratio at high lift 
coefficient.  In this connection, the flat-nose shapes seem to be more appropriate than the circular cylinder, since they 
present reduced shock wave detachment distances.  Nonetheless, smaller shock detachment distance is associated with a 
higher heat load to the nose of the body.  According to Santos (2003), the heat transfer coefficient & :�;  (= 2T & �ρ∞9∞

<
) at 

the stagnation point for flat-nose bodies, .Q '  of 100, 10 and 1, with temperature of 880 K, are 2.4, 2.2 and 1.5 times 
larger than the heat transfer coefficient for the circular cylinder at the same conditions.  As a result, it should be notice 
from this comparison that the ideal blunting leading edge depends on the context.  If shock standoff distance is the 
primary issue in leading edge design of hypersonic waveriders, then flat-nose leading edges are superior to round 
leading edges (circular cylinder).  Contrary, if the stagnation point heating is the important parameter in the hypersonic 
vehicle design, then round shapes seem to be superior to the flat-nose shapes. 
 
�����6KRFN�:DYH�7KLFNQHVV�
 

Based on the definition of the shock wave thickness shown in Fig. (2b), the shock wave thickness δ along the 
stagnation streamline can be obtained from Figs. (3) and (4) for the flat-nose shapes.  As a result of the calculation, 
Table (4) tabulates the shock wave thickness δ, normalized by the freestream mean free path λ∞, for the cases 
investigated. 
 
Table 4: Dimensionless shock wave thickness δ�λ∞ for flat-nose leading edges. 
 

7& � .Q '  = 100 .Q '  = 10 .Q '  = 1�
  440 K 0.544 0.742 1.584 
  660 K 0.607 0.808 1.626 
  880 K 0.652 0.864 1.673 
1100 K 0.693 0.907 1.715 

 
The circular cylinder provides a much larger shock thickness, i.e., δ�λ∞, of 3.350 for wall temperature of 880 K.  

Compared to the flat-nose shapes, this value is about 5.3, 3.9 and 2.0 times larger than the cases corresponding to .Q '  of 
100, 10 and 1, respectively, with temperature of 880 K. 
 
�����6KRFN�:DYH�6KDSH�
 

The shock wave shape, defined by the shock wave center location, is obtained by calculating the position that 
corresponds to the maximum I for class III molecules in the η-direction along the body surface (see Fig. (1b)).  Figure 
(5) illustrates the shock wave shape in the vicinity of the stagnation region for cases .Q '  of 100 and 1, which correspond 
to flat-nose bodies with thicknesses W�λ∞ of 0.01 and 1, respectively.  Only shock wave shapes for cases with wall 
temperatures of 440 K and 1100 K were shown.  The shock wave shape for the other cases (not shown) are intermediate 
to the cases depicted in Fig. (5).  In this set of plots, ; and < are the Cartesian coordinates [ and \ normalized by λ∞,. 

It was pointed out by Lees and Kubota (1957) that when the freestream Mach number 0∞ is sufficiently large, the 
hypersonic small-disturbance equations admit similarity solutions for the asymptotic shock wave shapes over power-
law bodies (\ ∝ [ = , 0 < Q < 1), where asymptotic refers to the flowfield at large distances downstream of the nose of the 
body.  The hypersonic small-disturbance theory states that, for certain exponent Q, a body defined by [ =  produces a 
shock wave of similar shape and profiles of flow properties transverse to the stream direction that are similar at any 
axial station not too near the nose.  At or near the nose, the surface slope, the curvature, and the higher derivatives are 
infinite, and the similarity solutions break down.  In the more general case for 0 < Q < 1, the shock wave grows as [ > .  
When Q grows from zero, P begins by keeping the constant value P = 2/(M+3), and if Q keeps on growing towards unity, 
P remains equal to Q.  Here M takes the values zero for planar flow and one for axisymmetric flow. 

The flat-nose bodies, defined by Eq.(1), are not power-law shapes themselves, by they can be closely fitted with 
power-law shapes (∝ [ = ) far from the nose of the leading edge.  Figure (6a) displays the comparison of the flat-nose 
shapes and the corresponding power-law curve fit shapes.  As would be expected, discrepancies have been found 
among the curves in the vicinity of the nose of the bodies.  This behavior is brought out more clearly in Fig. (6b), which 
exhibits details of the curves near the nose. 

By considering the reference system located at the nose of the flat-nose bodies, ; = 0, the fitting process, which has 
been performed over those bodies shown in Fig. (6), approximates the body shapes by power-law shape of the 
following form, 
 ?

E[D\ )( +=  (2) 
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where D is the power-law constant of the curve fit, E is the distance from the nose of the leading edge, and Q is the 
power law exponent of the curve fit.  The coefficients D and E, normalized, respectively, by λ∞

@ ACB
=
D
 and λ∞,, and the 

exponent Q are tabulated in Table (5).  The maximum absolute error between the original shapes and the curve fit 
shapes for ; > 3 are less than 0.12%, 0.14% and 0.30% for flat-nose thicknesses corresponding to .Q '  of 100, 10 and 1, 
respectively. 
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Figure 5: Shock wave shapes on flat-nose bodies as a function of the wall temperature for leading edge thicknesses that 

correspond to Knudsen number .Q '  of (a) 100 and (b) 1. 
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Figure 6: Comparison of flat-nose shapes with power-law curve fit shapes for leading edge thicknesses W�λ∞ of 0.01, 0.1 
and 1, which correspond to Knudsen number .Q '  100, 10 and 1.  (a) along the afterbody surface and (b) in the vicinity 

of the nose. 
 
Table 5: Dimensionless coefficients D, E, and Q for the curve fit power law bodies. 
 

.Q ' � D E Q�
100 0.42893 0.04120 0.79 
  10 0.58436 0.13318 0.72 
    1 1.09002 0.47817 0.56 

 
In what follows, the flat-nose leading edges shown in Fig. (6) are now well represented by shapes with the power-

law form (∝ [ = ) far from the nose of the leading edges.  Hence, by assuming that power-law bodies generate power-law 
shock waves in accordance with hypersonic small-disturbance theory (Lees and Kubota, 1957), the shock location 
coordinates shown in Fig. (5) were used to approximate the shape of the shock wave with a curve fit.  A fitting 
algorithm was performed over these points to approximate the shock shape as a power law curve of the following form, 
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U%[$\ )( +=  (3) 

 
where $ is the shock wave power law constant, % is the distance from the nose of the leading edge to the shock wave 
curve fit along the stagnation streamline, and P is the shock wave power law exponent. 

For comparison purpose, two forms of the curve fit were considered in defining the shock shape: (1) $, % and P 
were found to provide the best curve fit solutions, and (2) $ and % were found by keeping P = 2/3 for Q < 2/3 cases, and 
P = Q for Q ≥ 2/3 cases, where Q and P�stand for body and shock wave power law exponents, respectively. 

It is worthwhile mentioning that the fitting process was performed over the points yielded by DSMC simulations 
located far from the nose region, say ; > 3.0, where it is expected that the blunt nose effects are not significant.  It is 
also important to recall that the shock wave shape in the vicinity of the nose is not correctly predicted by the theoretical 
solutions, since the hypersonic slender body approximations are violated close to or at the nose of the leading edges as 
explained above.  Moreover, the flat-nose shapes are represented by power-law shapes far from the nose region, as 
displayed in Fig. (6). 

Curve fit solutions for shock shape over the flat-nose body with .Q '  of 100 (W�λ∞ = 0.01), which corresponds to a 
body power law exponent of 0.79, are displayed in Figs. (7a) and (7b) for wall temperature of 440 K and 1100 K, 
respectively.  In Fig. (7a) (or (7b)), the solutions given by P = 0.84 (or P = 0.82) and P = Q = 0.79 represent, 
respectively, the two forms of the curve fit solutions mentioned above.  It is apparent from this set of figures that the 
curve fit solutions present a good agreement, by visual inspection, with those solutions provided by the DSMC 
simulation.  Nevertheless, as the maximum absolute error between the DSMC solutions and the curve fit solutions are 
calculated for coordinate points located at ; > 3.0, it is found that the best fit is obtained for the first form of the fitting 
process, i.e., when $, % and P were found in order to yield the best solution.  The error is less then 1.0% and 1.4% for P 
= 0.84 or 0.82 and 0.79, respectively, for the curves in Fig. (7a) and (7b).  In general, the solutions are in qualitative 
agreement with the Lees and Kubota (1957) findings in the sense that the shock wave shape would follow the shape of 
the body for body power law exponent Q > 2/3. 

Shock shape curve fit solutions for the flat-nose body with .Q '  of 1 (W�λ∞ = 1), which corresponds to a body power 
law exponent of 0.56, are displayed in Figs. (8a) and (8b) for body surface temperature of 440 K and 1100 K, 
respectively.  The curve fit solutions shown in this set of figures were obtained according to Eq.(3) by three different 
forms; in the first form, $ and %�were found by keeping P equal to the body shape, P = Q; in the second form, $, % and 
P were found in order to obtain the best fit; finally in the third form, $ and % were found by keeping P equal to 2/3, the 
exponent that it is expected that the shock wave would grow, according to the theory (Lees and Kubota, 1957). 

Referring to Figs. (8a) and (8b), it is noted that the curve fit given by P = Q = 0.56 does not match the shock wave 
shape obtained by the DSMC simulation, as predicted by the hypersonic small-disturbance theory (Lees and Kubota, 
1957).  In contrast, the two other curve fit solutions, P equal to 2/3, 0.71 in Fig. (8a) and 0.70 in Fig.(8b) present an 
excellent agreement with those solutions provided by the DSMC simulation.  Once again, the curve-fitted solution 
deviates from the DSMC solution close to the nose of the leading edge, as would be expected. 

At this point, it should be emphasized that the curve fit exponents are very sensitive to the number of coordinate 
points, which define the shock wave, used in the fitting process.  In addition, these coordinate points present 
fluctuations, originated from the DSMC simulations, which were not taken into account. 
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Figure 7: Shock wave shape curve fits on flat-nose body with thicknesses W�λ∞ of 0.01, which corresponds to Knudsen 
number .Q '  100.  For wall temperatures of  (a) 440 K and (b) 1100 K. 
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Figure 8: Shock wave shape curve fits on flat-nose body with thicknesses W�λ∞ of 1, which corresponds to Knudsen 
number .Q '  1.  For wall temperatures of  (a) 440 K and (b) 1100 K. 

 
Finally, for comparison purpose, the coefficients $ and %, normalized, respectively, by λ∞

@ ACB
>
D
 and λ∞, and the 

exponent P are tabulated in Table. (6). 
 
Table 6: Dimensionless coefficients $, %, and P for the curve fit power law bodies. 
 

7& � .Q ' � $ % P�
   440 K 100 0.95755 - 0.43187 0.79 

 100 0.81664   0.11801 0.84 
1100 K 100 1.02157 - 0.20607 0.79 

 100 0.93108   0.12246 0.82 
  440 K     1 2.42593 - 0.71967 0.56 

     1 1.71967   0.66279 2/3 
     1 1.50197   1.21651 0.71 

1100 K     1 2.55882 - 0.60505 0.56 
     1 1.81104   0.80247 2/3 
     1 1.62838   1.24265 0.70 
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This study applies the Direct Simulation Monte Carlo method to investigate the shock wave structure for a family 
of flat-nose leading edges.  The calculations have provided information concerning the nature of the shock wave 
detachment distance, shock wave thickness and shock wave shape resulting from variations on the thickness of the flat 
nose and on the body surface temperature for the idealized situation of two-dimensional hypersonic rarefied flow.  The 
emphasis of the investigation was also to compare these flat-nose leading edges with round shape (circular cylinder) in 
order to determine which geometry is better suited as a blunting profiles in terms of the shock wave standoff distance. 

The analysis showed that the shock wave structure was affected by changes in the wall temperature.  It was found 
that the shock wave standoff and the shock wave thickness increased with the wall temperature rise for the range of wall 
temperature investigated.  In addition, the shock wave was displaced further upstream the nose of the leading edges 
with increasing the wall temperature.  It was also found that the shock wave standoff distance and the shock wave 
thickness for the flat-nose bodies are lower than that for the circular body with the same tangency to a wedge of 
specified oblique angle.  In addition, the computational results indicated that the shock wave shape grows with power 
law form (∝ [ > ), for the flat-nose bodies investigated, which can be closely fitted with power-law shapes (∝ [ = ). 
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