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1. INTRODUCTION 
 
       Numerical weather prediction, which is the 
core activity of atmospheric research and 
operational centers, consists basically of 
computation of solution for a set of partial 
differential equations expressing the 
conservation laws of mass, momentum and 
energy for compressible continuum medium in 
the non-inertial system related to a rotating 
sphere. The chosen differential model is solved 
numerically as initial value (or initial-boundary 
value) problem, requiring the definition of initial 
data. Data assimilation schemes supply these 
initial conditions, but they may be not well 
adjusted dynamically, which means that fast 
oscillations of a great amplitude, which are not 
observed in real atmosphere, are generated at 
the initial stages of the numerical solution. These 
oscillations may contaminate physically meaning 
solution up to some days of forecast depending 
on mechanisms of physical and computational 
diffusion included in the model. The process of 
adjusting the initial data to the prediction model 
to ensure small amplitudes of the fast waves is 
called initialization.  
       The long history of balance relations aimed 
to adjust the initial data may be traced back to 
the famous nonlinear balance equation by 
Charney (1955). A review of various initialization 
procedures, including nonlinear balance and 
omega equations, developed up to mid 70's is 
given by Bengtsson (1975). The current 
approaches to initial adjustment include 
nonlinear normal mode initialization (NMI) 
introduced by Machenhauer (1977) and Baer 
and Tribbia (1977), boundary derivative method 
(BDM) presented first by Browning et al. (1980) 
and digital filter technique proposed by Lynch et 
al. (e.g., Lynch and Huang 1992). One of the 
most effective versions of the NMI is vertical (or 
implicit) normal mode initialization (Bourke and 
McGregor 1983, Temperton 1988, Fillion and 
Roch 1992), which is equivalent to BDM 
approach (Kasahara 1982, Bijlsma and 
Hafkenscheid 1986, McGregor and Bourke 
1988).  
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       In his seminal paper, Daley (1981) 
presented the basic concepts of initialization and 
formulated a series of problems whose solution 
may improve understanding the principal 
properties of initialization equations. In this study 
we investigate one of these issues: the non-
ellipticity of the balance diagnostic relations 
under fixed pressure field, so-called pressure 
(geopotential) constrained initialization. In the 
last years the initialization procedure was 
dropped in some atmospheric centers due to 
increased quality of observational network and 
objective analysis. Even having this tendency, 
the solution of the stated problem is important on 
its own because it could clarify a nature of the 
balance between atmospheric fields.  
       The first studies of the ellipticity conditions 
for balance relations were made by Charney 
(1955) and Houghton (1968) in the case of 
nonlinear balance equation on the f-plane and 
on the sphere. Since the last equation is the 
particular case of the Monge-Amper equation 
(Charney 1955, Kasahara 1982), these studies 
essentially were the applications of the well-
developed theory of Monge-Ampere equation.  
       The first theoretical study of the non-
ellipticity of simplified NMI/BDM equations was 
presented by Tribbia (1981), who constructed 
theoretical example demonstrating that a certain 
restriction on meteorological fields must be 
satisfied in order to obtain a solution of the 
initialization system with fixed geopotential. He 
used the model of isolated barotropic vorticity on 
the f -plane and obtained restriction is close to 
ellipticity condition of the nonlinear balance 
equation. The violation of ellipticity condition can 
lead to the divergence of the iterative method of 
solving the NMI/BDM equations when the height 
constrained initialization is required. This 
problem was first reported by Daley (1978) in 
applying Machenhauer iteration procedure to the 
shallow water equations. The speculations about 
the reasons for this problem centered on two 
possibilities: the shortcomings of applied 
iterative algorithms and the mathematical 
inconsistency of the boundary value problem 
due to existence of nonelliptic regions in the real 
atmosphere data (Daley 1981, Tribbia 1981, 
Errico 1983, Rasch 1985). 
       Among different studies on nonelliptic 
regions in the isobaric height fields we should 
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note the papers by Kasahara (1982), Paegle et 
al. (1983) and Knox (1997), and discussion of 
the respective issues by Daley (1991). As it was 
pointed out by Kasahara (1982), in the past the 
occurrence of these regions was considered as 
a result of observational inaccuracies even 
though the changes made to recover ellipticity 
criterion sometimes exceeded probable data 
errors, specially at higher levels. Probably, 
Kasahara (1982) was the first who stated in 
explicit way that the ellipticity condition is a 
mathematical constraint on atmospheric fields, 
which can produce nonelliptic regions, and, 
consequently, impossibility of the required 
balance, simply because the assumptions made 
in deriving the balance relations could be not 
totally satisfied in real atmosphere. Therefore, 
one of the points of the different studies (e.g., 
Kasahara 1982, Paegle et al. 1983, Randel 1987 
and Knox 1997) is to "adjust" ellipticity 
conditions by including the terms neglected in 
nonlinear balance relations. The new conditions, 
called realizability conditions, have essentially 
reduced the area of nonelliptic regions 
supporting the Kasahara supposition. However 
this approach is based on evaluation of the 
contribution of different terms of the primitive 
divergence equation for possible recovering the 
ellipticity of regions rather than on the consistent 
system of balance relations. The only 
considered balance equation was the nonlinear 
balance equation on the f-plane or on the 
sphere. 
       In the recent years some new and more 
complex mathematical criterions of ellipticity 
were obtained for NMI/BDM equations, which 
are much more general balance system based 
on more accurate and reliable assumptions than 
nonlinear balance equation (Bourchtein 2002, 
Bourchtein 2006). This way many terms 
neglected in deriving the nonlinear balance 
equation were recovered in NMI/BDM equations. 
Therefore, one can expect that respective 
ellipticity conditions should be more soft and 
related nonelliptic regions should be more 
scarce in order to confirm the Kasahara 
statement.    
       In the present study we compare nonelliptic 
regions related to nonlinear balance equation 
(on the f-plane and sphere) and NMI/BDM 
equations for the shallow water model. In section 
2 we present the NMI/BDM equations for the 
shallow water model and give a brief exposition 
of the respective ellipticity conditions. The 
results of evaluation of nonelliptic regions in 
South Hemisphere for different balance relations 
are presented in section 3 followed by 
concluding remarks in the same section. 
 

2. BALANCE EQUATIONS AND ELLIPTICITY 
CONDITIONS 

 
       In local Cartesian coordinates yx,  the 
classic nonlinear balance equation on a tangent 
plane has the form (Charney 1955) 
        ( ) 02 222 =∇−−+∇ Φψψψψ xyyyxxf ,       (1) 
where ψ  is the streamfunction, Φ  is the 

geopotential, f  is a chosen value of the Coriolis 
parameter f , and 2∇  is the Laplace operator. 
Considered as equation for the streamfunction 
with given geopotential, it is a special case of 
Monge-Ampere equation. If this equation is to be 
solved on bounded domain D with imposed 
values of the streamfucntion on the boundary 

D∂ , then the problem is well posed only if the 
equation is of elliptic type. It requires the 
ellipticity condition to be satisfied, which has the 
following form for equation (1): 
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       Similarly, using spherical coordinates λ  
longitude and ϕ  latitude, the nonlinear balance 
equation assumes the form (Houghton 1968) 
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where a  is the Earth's radius, ϕΩsin2=f , 
aϕΩβ cos2= , Ω  is the angular velocity of 

the Earth's rotation and u and v are the 
longitudinal and meridional components of 
nondivergent wind, that is,     
                au ϕψ−= , ϕψ λ cosav = .           (4) 
Again, the solution of the boundary value 
problem for (3) with respect to the 
streamfunction requires the ellipticity condition, 
which can be written as follows (Houghton 
1968): 
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       The NMI/BDM systems have much more 
complex structure and contain a set of 
equations. For the shallow water equations on a 
sphere, the system contain two equations, which 
can be expressed in longitude-latitude 
coordinates λ ,ϕ  as follows (Browning et al. 
1980, Bourke and McGregor 1983, Temperton 
1988): 
          ( ) ( )vu QQdivvucurlf ,, 22

2 =−∇ Φ  ,         (6) 
 ( ) ( )( ) ( )vu QQcurlfQvudivf ,, 2

2
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for any vector function ( )VU,  and any scalar 
function h . Here u  and v  are the (full) physical 
components of velocity, Φ  is a mean 
geopotential height and ΦQQQ vu ,,  contain all 
the nonlinear and variable coefficient terms of 
the shallow water equations, that is, 
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       The system (6), (7) contains three unknown 
functions u , v  and Φ , so it admits different 
closure conditions. The following natural 
versions of these conditions are frequently 
considered (Daley 1981, Daley 1991):  
                     0

2 pfp =−∇≡ ΦψΦ  ,               (10) 
                                 0ψψ =  ,                        (11) 
or 
                                 0ΦΦ =  ,                        (12) 
i.e., initialization with unchanged slow mode p  
(frequently called unconstrained initialization), 
unchanged streamfunction ψ  (streamfunction 
constrained initialization) or unchanged 
geopotential Φ  (geopotential constrained 
initialization). Function p  is the potential vorticity 
of linearized barotropic equations on the f -
plane. Nonlinear system of the partial differential 
equations (6), (7) with one of the closure 
conditions (10), (11) or (12) forms well-posed 
boundary value problem if it is elliptic. The 
ellipticity is guaranteed if its homogeneous form 
(characteristic determinant) is definite, that is, it 
does not change sign in the domain D of the 
problem.  
       For each of the closure conditions (10)-(12) 
the ellipticity criterion of the respective 
differential problem have been derived in 
(Bourchtein 2002, and Bourchtein 2006). In 
particular, it was shown, that the closures (10) 
and (11) generate the same ellipticity condition 
in the simple form 
                             22 vu +>Φ  .                  (13)      
It means that the boundary value problem for 
NMI/BDM with unchanged streamfunction can 
be well posed if, and only if, the phase speed of 
gravitational waves Φ=c  is greater than 

advective speed in all domain D. Of course, this 
condition is satisfied for the barotropic model of 
the atmosphere and for the first (greatest) 
vertical modes of the baroclinic model. However, 
the condition (13) is violated for very thin layers, 
which is the cause of the divergence of iterative 
algorithms applied to solve the initialization 
equations. Respectively, a similar behavior can 
be expected for slow internal modes of the 
baroclinic model and it was observed in 
numerical experiments with different multilevel 
models reported in many papers (e.g., Daley 
1981, Errico 1983, Temperton and Roch 1991).  
       If the geopotential constrained initialization 
is used, then ellipticity condition is much more 
complex and its approximate form in spherical 
coordinates can be written as follows 
(Bourchtein 2006): 
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In the next section we show that this condition 
can be violated in some points of the analysis 
data. Even though the area covered by points 
with the negative values of 3E  is usually small in 
comparison with the total area of a chosen 
domain, it leads to mathematical inconsistency 
of the boundary value problem for considered 
differential equations. This inconsistency causes 
divergence of any iterative method applied to 
solve the boundary value problem. This way we 
confirm the Daley assumption that the reason 
behind the problem of divergence is of 
mathematical nature.  
 
 
3. ANALYSIS OF DISTRIBUTION OF THE 

NONELLIPTIC REGIONS 
 
       In this section we apply the ellipticity criteria 
(2), (5) and (14) to investigate the occurrence of 
the respective nonelliptic regions in the gridded 
data of the NCEP (National Centers for 
Environmental Prediction) analysis for the 
Southern Hemisphere. The data for this study 
were taken from the global NCEP analysis 
available on a spatial grid with regular 
latitude/longitude resolution of 01  and 26 vertical 
pressure levels. The analysis was restricted to 
the data of the Southern Hemisphere at 850, 
500 and 200 hPa pressure levels for 0000 GMT 
05 November 2005. The meteorological 
elements used are the longitudinal and 
meridional velocity components u  and v , and 
the geopotential Φ . 
       First, we compute the ellipticity measures 

1E  and 2E  defined by (2) and (5) on three 
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chosen pressure levels. The nondivergent 
velocity components in (5) were evaluated by 
formula (4) with the streamfunction found from 
Poisson's equation  

ζψ =∇ 2 , 
where the Laplace operator is defined in (9) and 
ζ  is the relative vorticity defined by the second 
formula in (8) with gridded data of the velocity 
components u  and v . The obtained values of 

2E  are systematically slightly greater than 1E , 
but the difference is too small and can be 
certainly neglected for this study. The charts of 
the distribution of 2E  are shown on Figs.1-6 
separately for each pressure surface and 
Eastern and Western Hemispheres. Contour 
intervals are 28104 −−⋅ s . To avoid the "noisy" 
maps, the nonelliptic regions only are plotted. It 
can be seen the strong tendency in increasing of 

the nonelliptic area toward higher levels. There 
is some relation between nonelliptic area 
location at different levels but it is not observed 
systematically. At each pressure surface the 
nonelliptic regions are mostly appeared in the 
tropics and subtropics, though there are some 
nonelliptic regions in the middle and even high 
latitudes too. The geographical distribution of the 
nonelliptic regions in the tropics appears to be 
almost random. To give one example of the 
relation between measures 1E  and 2E  we show 
also the chart of 1E  for 500 pressure surface, 
Western Hemisphere (Fig.7). As one can see 
the values of two measures are virtually identical 
for the purpose of our study. Therefore, from 
now on we use only the measure 2E , which is 
theoretically more complete. 

 
 

Fig.1. Distribution of the nonelliptic regions according to measure 2E  in the East part of the Southern 
Hemisphere at 850 hPa pressure level. 
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Fig.2. Same as in Fig.1, except for the West part of the Southern Hemisphere.  
 
 

Fig.3. Same as in Fig.1, except for the 500 hPa pressure level. 
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Fig.4. Same as in Fig.2, except for the 500 hPa pressure level. 
 
 

Fig.5. Same as in Fig.1, except for the 200 hPa pressure level. 
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Fig.6. Same as in Fig.2, except for the 200 hPa pressure level. 
 
 

Fig.7. Same as in Fig.4, except for the measure 1E . 
 
     The following series of six charts (Figs.8-13) 
shows the elliptic measure 3E  for corresponding 
surfaces and Hemispheres. Contour intervals 
are 29102 −−⋅ s  and again only the nonelliptic 
regions are plotted. On all charts for 3E  the 
nonelliptic regions cover significantly less area 
and have much less intensity in comparison with 

the measure 2E . The spatial distribution of the 
nonelliptic 3E  areas seems to follow the pattern 
of the measure 2E : these are more 
concentrated in tropic and subtropic zone with 
rather chaotic geographical distribution and 
increased area and intensity at the 200 hPa 
pressure level.  
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Fig.8. Distribution of the nonelliptic regions according to measure 3E  in the East part of the Southern 
Hemisphere at 850 hPa pressure level. 
 
 

Fig.9. Same as in Fig.8, except for the West part of the Southern Hemisphere. 
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Fig.10. Same as in Fig.8, except for the 500 hPa pressure level.  
 
 

Fig.11. Same as in Fig.9, except for the 500 hPa pressure level. 
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Fig.12. Same as in Fig.8, except for the 200 hPa pressure level. 
 
 

Fig.13. Same as in Fig.9, except for the 200 hPa pressure level. 
 
 
       As it was pointed out by different 
researchers (e.g., Kasahara 1982, Knox 1997), 
an area average of ellipticity measure is another 
important index for examining the nature of 
nonelliptic regions. The longitudinal averages of 
the measures 2E  and 3E  are presented in 
Figs.14-19. The solid line is for 2E  and the 

pointed for 3E . Evidently, the negative values of 

3E  are much more rare and have much smaller 
amplitudes as compared to 2E . Besides, the 
negative values of 3E  are confined to very 
narrow tropic zone and all of them are clustered 
near boarder line between negative and positive 
values.    
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       If we compare the results for 3E  with the 
respective results obtained for realizability 
conditions by Kasahara (1982) and Knox (1997), 
we can note a great similarity. Indeed, the use of 
ellipticity criterion 3E  allows to recover ellipticity 
in the major part of the negative area of the 
measure 2E  and to decrease strongly the 
remain negative values bringing them to the 
boarder line. The average qualitative distribution 
of the measure 3E  exhibits the same principal 
characteristics as the realizability measures, 
namely, the negative area is confined to tropic-
subtropic zone and it increases toward higher 
pressure levels. The main difference is that the 

effect of compensation of negative ellipticity 
achieved in (Kasahara 1982 and Knox 1997) by 
inclusion in the realizability conditions the 
additional terms from the divergence equation, is 
obtained in our study by substituting the 
ellipticity criterion for more simple balance 
relation by another ellipticity criterion 
corresponding to more complex and justifiable 
NMI/BDM method. This way, we substantiate the 
Kasahara statement that ellipticity conditions can 
be violated in the actual atmospheric fields 
essentially due to approximations made under 
deriving the balance relations.   
 
 

 
 

 
Fig.14. The longitudinal averages of the measures 2E  and 3E  for the East part of the Southern 
Hemisphere at 850 hPa pressure level as functions of southern latitude. The solid line is for 2E  and 
the pointed for 3E . 
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Fig.15. Same as in Fig.14, except for the West part of the Southern Hemisphere. 
 
 

 
Fig.16. Same as in Fig.14, except for the 500 hPa pressure level.  
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Fig.17. Same as in Fig.15, except for the 500 hPa pressure level. 
 
 

 
Fig.18. Same as in Fig.14, except for the 200 hPa pressure level. 
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Fig.19. Same as in Fig.15, except for the 200 hPa pressure level. 
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