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1. INTRODUCTION 
 

The so-called “electric sector” of Brazil, 
namely the set comprising electricity companies 
(state-owned and private) plus regulatory 
agency has been implementing automated 
telemetric systems for hydrological monitoring in 
the country’s main energy-producing 
watersheds.  This is motivated both by the 
electricity regulatory agency (ANEEL) 
requirements and by the belief that better 
(meaning higher frequency and telemetric) 
monitoring will lead to more safety and better 
reservoir operation with regard to multiple use 
criteria (mainly energy-generation and flood-
control). 

Once an automated monitoring system is in 
place, it is desirable to assess its effectiveness 
in providing reliable hydrological forecasts.  

Here, we will try to study the case of the 
Iguaçu River Monitoring System upstream of 
Foz do Areia Reservoir.  For that purpose, we 
use relatively well-known statistical forecasting 
tools: ARIMA models and Kalman Filter models.  
In both cases we compare the use of 
conventionally operated stream gages (with data 
reported by radio or telephone two times a day) 
to the now more readily available hourly 
telemetric data.  We also analyze the impact of 
precipitation forecasts (simulated from historical 
records with different degrees of skill) on the 
quality of the streamflow forecasts.  It is 
expected that objective ways of assessing the 
benefits of enhanced monitoring will play an 
important role in defining criteria for network 
project and cost-benefit analysis in some of the 
Country’s key water resource sectors. 
 
2. METODOLOGY 
 
2.1 Study Site 
 
In this work we study streamflow forecasts in the 
Iguaçu River at the City of União da Vitória, just 

upstream of the Foz do Areia Reservoir.  This is 
the most upstream and largest reservoir in the 
Iguaçu River and is the main responsible for 
regulating energy generation in the cascade.  It 
has an installed capacity of 1676 MW.  During 
floods, the reservoir’s backwater effects can 
worsen flooding at União da Vitória, so that a 
rather unusual upstream flood control constitutes 
a permanent challenge for the reservoir’s 
management.  Thus, streamflow forecasts are 
an essential tool for good reservoir operation.  
Besides the obvious importance of this site, it 
has a good record of conventional and 
automated hydrological data.  In summary, in 
this work we use hourly streamflow and 
precipitation data from the automated 
hydrological stations, and conventional (i.e. 
manually recorded) streamflow data manually 
recorded two times a day (at 7:00 and 17:00 hrs, 
local time).  The calibration period is 1998-2002, 
whereas verification was performed for the 
2003-2004 years. Figure 1 shows the study 
region. 
 
2.2 ARIMA Models 
 

ARIMA (Autoregressive Integrated Moving 
Average) models are widely used in the Brazilian 
Electric Sector, and for that reason were used as 
a first approach to streamflow forecasting in the 
present work. They are relatively easy to 
implement and can cope with some 
nonstationary effects.  We followed the standard 
procedures for model identification, parameters 
estimation and model verification as presented 
by Bras and Rodríguez-Iturbe (1993, p 55). 

Altogether, we implemented 6 different 
ARIMA (p,d,q)  forecasting models, where p is 
the number of autoregressive terms, d is the 
number of time differences applied to the 
nonstationary streamflow data series in order to 
produce a stationary time series, and q is the 
number of moving average terms. 
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Figure 1: Study region in the Iguaçu River 
upstream of the City of União da Vitória, Paraná 
State, Brazil 

 
From the 6 adjusted models, we then chose 

an ARIMA (7,1,3) with the least mean square 
error for forecasts with telemetric data, and an 
ARIMA (4,1,2) for forecasts with the 
conventional data.  In both cases, the models 
are tested for forecasts with lead time from 12 
up to 72 hours ahead.  Notice that the orders 
refer to the data time resolution; thus the ARIMA 
(7,1,3) uses data from the last 7 hours, whereas 
the ARIMA (4,1,2) uses data from the last 4 12-
hour periods. 
 
2.3 Models based on Kalman Filters 
 

There are several shortcomings in ARIMA-
based forecasting models; probably the most 
notorious is their forecasts invariably lag behind 
the observed flows during the hydrograph 
ascent, the reverse happening during 
recessions.  Thus, more sophisticated Kalman-
filter models were also tested.  Our 
implementation follows the lines of Anderson 
and Moore (2005, p 50).  We use a linear 
Kalman filter with 20 discrete time states.  The 
state estimation is based on the following 
predictors: (a) difference in time of streamflows 
at the forecasting site; (b) difference in time of 
streamflows at two upstream watersheds, 
Fluviópolis and Timbó, (c) the arithmetic mean of 
12-hour precipitation measured at the União da 
Vitória, Fluviópolis and Timbó hydrological 
stations and (d) precipitation forecasts by class 
for a 24-hour lead time, split into 4 6-hour 
intervals.  

Because the ascent and the recession of the 
hydrograph are controlled by very different 
factors, we adopted the well-known approach of 
considering them separately. Thus we 
implemented two Kalman filters, which keep the 
memory of the last state of ascent/descent, and 
are turned on and off as the hydrograph rises 
and falls.  This is a simple way of not changing 

the model state too abruptly, but rather 
remembering the last similar state, and usually 
produces much better forecasts.  The resulting 
Kalman Filter-based forecasting model uses as 
input telemetric hourly streamflow and 
precipitation data from 2 hydrological stations 
upstream and at the forecasting site, as well as 
precipitation forecasts by class for the next 0-6, 
6-12, 12-18 and 18-24 hour intervals. After some 
sensitivity studies, we defined the following 
precipitation classes: low (up to 2.5 mm 
accumulated in 6 hours), medium (2.5-10 mm), 
high (10-20 mm) and extreme (> 20 mm).  

 
2.4 Assessing the Quality of Forecasting 
 

There are two possible approaches for the 
assessment of the quality of streamflow 
forecastings: measure-oriented and distribution-
oriented (Katz and Murphy, 1997).  Both are 
used in the present work.  We used the classical 
Mean Square Error (MSE), but also introduce a 
positive mean square error (MSE+) (when the 
forecast is greater than the observed flow) and a 
negative one (MSE−) (when the forecast is less 
than the observed flow), defined by: 
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where f is the forecasted value, x the observed 
value, and zifn(a−b) is zero if a ≤ b and equal to 
a−b otherwise. 

The skill score SSMSE is defined by: 
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where MSE(f,x) is the mean square forecasting 
error, and MSE(r,x) is the reference mean square 
error (in this work, the reference error is the error 
of a forecasting model that uses only manually 
recorded data, to be described in the sequence).  
Similar scores were used for MSE+ and MSE−. 

Since we were especially interested in lag 
errors (LE), we defined the quantities: 
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where m is the number of observed streamflow 
classes, rj is the representative value for each 
class, p(rj) is the probability of class j, LEj is the 
lag error assigned to class j, n is the number of 
periods i during which x≥rj, Tfij is the time at 
which the forecasted flow reaches the value rj 
during period i and Txij is the time at which the 
observed streamflow reaches the value rj during 
period i. The skill score for the lag error is given 
by: 

)),(/),((1),,( xrLExfLExrfSS LE −=         (7) 
 

where LE(f,x) is the forecast lag error and LE(r,x) 
is the reference lag error. 

Finally, we calculated mean errors by 
streamflow class conditioned on the rising and 
falling limbs of the hydrograph.  A rising limb is 
defined from hourly data as one where xi>xi-6, 
where the 6-hour lag is chosen to avoid 
measurement errors and fluctuations that are 
apparent at the hourly time scale.  15 streamflow 
classes were used, from 100 to 1500 m3/s. 
 
3. RESULTS 
 
3.1 Modeling Tools 
 

All models discussed in this work were 
implemented using the System Dynamics 
(Forrester, 1994; Sterman, 2000) simulation 
package VENSIM, from Ventura Systems. This 
approach has been proposed and used for the 
simulation of both physical and social 
phenomena, and provides the user with an 
analogy of fluxes and storages (with user-
specified mathematical relationships) through 
graphically connected boxes to build the 
systems of interest. 

The models tested during the verification 
period (2003-2004) are called A12 (an ARIMA 
(4,1,2) run at the 12-hour interval with manually 
recorded data), A1 (an ARIMA (7,1,3) run at the 
1-hour interval with telemetric data), and K (for 
the Kalman Filter Model).  Because K requires 
an error structure for the precipitation forecasts, 
and because such data were not available (as 
there are as yet no operational quantitative 
precipitation forecasts for the region), we 
performed instead a sensitivity analysis by 
running all simulations with 6 different pre-
assigned error structures and their 
corresponding conditional probability matrices. 
These matrices are assumed to be the same for 
0-6, 6-12, 12-18 and 18-24 hour forecasts. 

Using the error matrices, we artificially 
introduced random errors into the historical 
precipitation data thereby synthesizing less-
than-perfect precipitation forecasts. For each 
streamflow forecasting lead time (12, 24, 48, 60 
and 72 hours) and conditional probability of error 

matrix we generated 50 synthetic sequences of 
precipitation forecasts and took their mean as 
representative of the corresponding error 
structure.  The conditional probability matrices 
used are: 

 























=























=























=























=























=























=

00000
00000
00000
00000
11111

4.01.01.01.01.0
2.04.02.02.01.0
2.02.04.02.02.0
1.02.02.04.02.0
1.01.01.01.04.0

,

6.03.006.001.001.0
3.06.023.004.004.0
05.005.06.025.015.0
04.004.008.06.02.0
01.001.003.01.06.0

,

8.01.003.001.001.0
1.08.007.004.004.0
05.005.08.005.005.0
04.004.007.08.01.0
01.001.003.01.08.0

,

0.90.050.010.0050.005
0.050.90.040.0150.015
0.030.030.90.030.03
0.0150.0150.040.90.05
0.0050.0050.010.050.9

,

10000
01000
00100
00010
00001

M0M0.4

M0.6M0.8

M0.9M0

e
 

 
The standard interpretation of the matrix 

elements is p(fi|xj), which means: the probability 
of generating a forecast of class i when the 
observed precipitation class is actually j.  The 
sequence M1...M0.4 represents a sequence of 
increasing errors, from 100% hits to 40% and 
M0 represents a situation where forecasts are 
always null.  The observed MSE of the 
precipitation forecasts for the 6-hour 
precipitation lead time were 0.97, 8.1, 17.1, 22.5, 
91.9 and 11.8 (mm)2.  Notice how, since we are 
only employing a class forecast, the M1 error 
matrix does produce a non-null MSE.  The 
corresponding simulation results are tagged as 
K1, K0.9, K0.8, etc. 
 
3.2 Accuracy Analysis 
 

Table 1 gives the calculated MSE’s and skill 
scores for all models employed. Only the MSE’s 
and MSE−’s are shown, as the MSE+’s can be 
calculated by MSE – MSE−.  The reference value 
of the calculation of skill scores is A12 
(therefore, SS for A12 is 0 by definition).  For 
A12, the following values were observed for the 
ratio RMSE / Average Observed Flow at the 5 
forecasting lead times: 0.03, 0.08, 0.13, 0.17, 
0.22 and 0.25. 

A1 has a marginally better accuracy (smaller 
MSE) than A12 at 24, 36, 48, 60 and 72-hour 
lead time. This may have to do with noisy 1-hour 
streamflow data; however, the difference is 
hardly noticeable.  The Kalman Filter Models 
have a distinctly better performance over the 
ARIMA models when they are given good 
precipitation forecasts, but even with poor or 
absent precipitation forecasts they give 
significantly smaller MSE−.  For example, SSMSE- 
= 58% for K1 and 32% for K0.6 at the 36-hour 
lead time. 
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Accuracy Measure Lead time
(h) A1 A12 K1 K0.9 K0.8 K0.6 K0.4 K0

MSE 12 171 161 154 180 202 215 253 218
(m3/s)2 24 913 916 624 812 956 1051 1293 995

36 2293 2351 1480 1959 2286 2514 2908 2438
48 4139 4259 2899 3631 4150 4559 5195 4408
60 6325 6533 4883 5646 6206 6634 7334 6629
72 8742 9027 7215 7916 8469 8881 9617 9031

SSMSE 12 -7 0 4 -12 -26 -34 -57 -36
(percentage) 24 0 0 32 11 -4 -15 -41 -9

36 2 0 37 17 3 -7 -24 -4
48 3 0 32 15 3 -7 -22 -4
60 3 0 25 14 5 -2 -12 -1
72 3 0 20 12 6 2 -7 0

MSE−
12 114 116 78 90 101 106 130 117

(m3/s)2 24 649 673 295 381 456 483 661 583
36 1645 1707 711 937 1116 1163 1473 1574
48 2938 3014 1547 1860 2128 2186 2682 2939
60 4417 4503 2900 3189 3462 3487 4089 4521
72 6029 6086 4547 4753 4985 4948 5618 6232

SSMSE− 12 1 0 32 22 12 8 -13 -2
(percentage) 24 4 0 56 43 32 28 2 13

36 4 0 58 45 35 32 14 8
48 3 0 49 38 29 27 11 2
60 2 0 36 29 23 23 9 0
72 1 0 25 22 18 19 8 -2

Model

 
Table 1: Accuracy measures of simulated 
models for 12, 24, 36, 48, 60 and 72-hour lead 
time 
 

Figures 2 and 3 show the skill score for 
different forecasting lead times of all models 
studied.  
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Figura 2: Accuracy improvement of simulated 
models for 12, 24, 36, 48, 60 and 72-hour lead 
time 
 

Negative Accuracy Improvement of Prediction Models
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Figure 3: Negative accuracy improvement of 
simulated models for 12, 24, 36, 48, 60 and 72-
hour lead time 

In order for significant improvements in the 
forecasting skill to be obtained by the Kalman 
Filter models, it is necessary to have very good 
precipitation forecasts (less than 10% error by 
class).  For the negative accuracy improvement, 
however, the Kalman Filter models perform 
much better, even when there are significant 
errors in the precipitation forecasts (cases K0.8 
e K0.6).  The best comparative performances 
over the hourly ARIMA model are at the 36-hour 
lead time. 
 
3.3 Analysis of Lag Errors 
 

Table 2 shows the values of LE errors in 
hours (defined in section 2.4, equations (5) and 
(6)) of the different models. The lag errors of the 
ARIMA models are significantly higher than 
those of the Kalman Filter models. A1 is able to 
improve the lag time errors up to 20% over A12, 
at the 36-hour lead time. The Kalman Filter 
models display more dramatic improvements, 
again even in the presence of significant 
precipitation forecast errors, larger than 50% in 
some cases. This is shown graphically in Figure 
4. 
 

Lead time
(h) A1 A12 K1 K0.9 K0.8 K0.6 K0.4 K0

LE 12 4 5 3 3 3 3 4 4
(h) 24 10 12 5 7 7 7 9 9

36 16 20 9 9 11 11 14 13
48 23 26 14 14 15 15 19 21
60 28 33 21 21 21 21 26 29
72 33 40 28 26 26 26 32 36

SSLE 12 17 0 46 36 29 28 18 14
(percentage) 24 14 0 54 44 37 36 22 20

36 20 0 55 52 46 45 30 31
48 11 0 46 45 42 41 27 20
60 16 0 37 38 36 37 22 14
72 17 0 30 34 34 35 19 10

ModelLag Error

 
Table 2: Lag error measures of simulated 
models for 12, 24, 36, 48, 60 and 72-hour lead 
time 
 

Forecasting models that use telemetric data 
obtained at 1-hour intervals show significant 
improvement over A12, but the improvement 
peaks at the 36 hour lead time and decreases 
thereafter. Thus, the automated hydrological 
network is most beneficial for forecasts at this 
lead time. Also notice that K0.9, K0.8 and K0.6 
have smaller lag errors than K1 at the 72-hour 
lead time. This apparently paradoxical result is 
due to the fact that M0.9, M0.8 and M0.6 
overestimate precipitation, thus reducing lag 
errors and negative mean square errors, at the 
cost of an overall increase of MSE.  This brings 
up the question of relating the quality of 
precipitation forecasts to that of streamflow 
forecasts.  As shown by Murphy and 
Ehrendorfer (1987), there is no one-to-one 
relationship between, for instance, the MSE of 
precipitation and the MSE of streamflow. What 
really happens is that these relationships are 
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always multidimensional and quality can not be 
represented by just one measure. 
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Figure 4: Lag error reduction of simulated 
models for 12, 24, 36, 48, 60 and 72-hour lead 
time 
 
3.4 Analysis of Errors during Hydrograph 

Rise and Fall  
 
Finally, we show in Figure 5 the mean 

streamflow forecasting errors classified by the 
rising and falling limbs of the hydrograph.  As is 
to be expected, the forecasting errors during 
hydrograph rise are predominantly negative (the 
models fail to predict the correct timing of the 
hydrograph rise), the opposite happening during 
hydrological recessions. The Kalman Filter 
models, all of which use telemetric hourly data, 
have a significant advantage in this respect.  
This is particularly important for flood control. 
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Figure 5: Rising and not rising mean errors of 
models A1, A12, K1 e K0.8 for 36-hour lead time 
 
4. CONCLUSIONS 
 

This work analyzed the improvements in 
forecasting skill provided by telemetric data and 
their use in statistical models that can make use 
them appropriately.  The study site is the Iguaçu 

River Basin upstream of the City of União da 
Vitória. We tested different configurations of data 
availability, including: the baseline of 
conventional streamflow data, hourly streamflow 
data, hourly precipitation data and precipitation 
forecasts by class.   

Forecasting quality was assessed with Mean 
Square Error, and its further classification in 
positive and negative MSE, Lag Errors (LE) and 
their associated skills.  Mean error during the 
rising and falling of the hydrograph was also 
calculated. 

ARIMA models using telemetric hourly data 
show a marginal improvement in overall 
accuracy (or the order of 3%), but substantial 
improvement for the lag errors (up to 20%).  No 
significant patterns were found with respect to 
the forecast lead time.  

Kalman Filter models show substantial 
improvements in accuracy skill (up to 37%), 
negative accuracy skill (up to 58%) and lag error 
(up to 55%).  However, this is accomplished 
mainly at the price of having precipitation 
forecasts available.  The precipitation forecast 
used, however, is relatively simple, consisting of 
predicting 4 different classes (low, medium, high, 
extreme).  Even the most sophisticated Kalman 
Filter models still show a pattern of 
underestimating the rise of the hydrograph, and 
that is probably the point that deserves most 
attention in future studies. There is substantial 
room for improvement in the fields of better 
precipitation forecasts and rainfall-runoff 
transformations (either of a statistical of physical 
nature) that provide better streamflow forecasts 
in response to either the prediction or the 
occurrence of precipitation. 
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