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ABSTRACT 

Forecasts from Eta/CPTEC model, expressing the future atmospheric conditions, are used as inputs in 
Artificial Neural Networks (ANNs), in order to achieve more reliable short-term forecasts for the incident 
solar radiation. Global solar radiation measurements performed by two stations of the SONDA project 
located in south Brazil (Florianópolis and São Martinho da Serra) are used as the targets during ANNs 
training and for forecasts evaluation. Solar radiation forecasts from ANNs present higher correlation 
coefficients and lower errors than the Eta model output for shortwave radiation on ground. The well-know 
bias observed in solar radiation forecasts by the Eta model was removed by the use of ANNs. The 
improvement in RMSE obtained with ANNs over the Eta model was higher than 30%, estimated with a skill-
score. This improvement is a response to a constant demand from the energy sector for more accurate 
ways of forecasting the solar energy power, so as to support the management of the national generation 
and distribution systems of electricity. 
 

 

1. INTRODUCTION* 
 

The study of the incident solar radiation 
has several implications for agriculture, 
illumination and heating of buildings and 
residences, and, of course, for meteorological 
research. In addition, owing to the fast increase 
in importance of the solar energy resource as 
viable and promising source of renewable 
energy, its demand for solar radiation studies 
has expanded accordingly. 

Economical and environmental reasons 
have motivated the increasing use of alternative 
and renewable sources of energy in Brazil and in 
the rest of the world: environmental damages 
caused by fossil fuels consumption; concerns 
about the elevation of atmospheric carbon levels 
and consequent temperature increasing and 
climate changes; the commitment for reduction 
of carbon dioxides (and other greenhouse 
gases) emissions by the countries that ratified 
Kyoto Protocol; the perspectives of oil depletion 
in next decades (Bentley, 2002; Geller, 2003); 
the increasing demand for energy to support the 
new expanding economies such as China, India 
and Brazil (Goldenberg and Villanueva, 2003); 
the demand from energy matrixes for 
complementary resources to overcome 
instabilities such as that observed in 
hydroelectric generation during dry seasons; and 
causes such as the international crises that 
impact the oil price. 

Solar energy is one of the most 
promising options of renewable energy 
resources in Brazil. Since most of the Brazilian 
territory is located in the inter-tropical region, a 
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high potential of solar energy is accessible along 
whole year (Colle e Pereira, 1998). The current 
disadvantages of this energy resource are the 
high costs, the inconstant and unknown 
availability, and the dependence on the weather 
and climate conditions. Solar energy costs are 
expected to fall in next decades, due to 
technologic advances and market demands. On 
the other hand, while technologic advances are 
foreseen, studies are required for a more reliable 
assessment of the regional availability, the 
temporal variability and the predictability.  

There is a worldwide demand from the 
electricity energy sector for accurate forecasts of 
solar energy resources so as to manage co-
generation systems. In addition, accurate short-
term forecasts of solar radiation is an important 
information for the management of energy 
dispatch in transmission lines, since the solar 
radiation influences the heat dissipation by the 
cables. 

Forecasting solar irradiation, even one 
day in advance, is a complicated task. Part of 
the difficulties arises from the solar radiation 
dependence on clouds and meteorological 
conditions, which intrinsically involves non-linear 
physical processes. Other difficulties are linked 
with the inaccuracy of weather forecasts by 
numerical models, due to the complexity of the 
non-linear processes involved, and also due to 
the difficulties of forecasting the optical 
properties for the future state of the atmosphere. 

Mesoscale weather forecast models 
usually have radiation parameterization codes, 
since solar radiation is the main energy source 
for atmospheric processes. The Eta model that 
runs operationally in the Brazilian Center of 
Weather Forecast and Climate Studies 
(CPTEC/INPE) has outputs for many 
meteorological variables, including solar 
radiation incidence on ground. However, these 
radiation forecasts are greatly overestimated.  
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As an attempt to get better predictability 
for the solar energy resources using Eta model, 
Artificial Neural Networks (ANNs) were used as 
a statistical post-processing model. This study 
aims to developing an operational process to 
forecast the incident solar radiation to be 
supplied to corporate stakeholders in energy 
generation and distribution. Therefore, it 
constitutes an application of meteorology to the 
production sector of the society.  
 
2. DATA AND METHODOLOGY 
 

The solar radiation incident on a 
perpendicular plane on the Earth’s top of 
atmosphere (top of atmosphere will be referred 
as TOA hereafter) is almost constant in time. 
Despite variations of ± 0.6 W·m-2 along the 11-
year solar-activity cycle and ± 3.4% along the 
year, due to the eccentricity of the Earth’s orbit 
around the Sun, the so-called solar constant is 
about 1368 W·m-2. Considering the incidence on 
a horizontal plane on TOA, some geometrical 
factors should be considered to compute the 
solar irradiance, since the solar zenith angles 
depends on latitude, declination (variable along 
the year) and time of day. 

The atmosphere modifies the solar flux 
up to its incidence on ground. Absorption and 
scattering are the main processes that affect the 
solar radiation transmittance through the 
atmosphere. Clouds are the main factor that 
controls the solar radiation incidence. (For more 
details about solar radiation and atmospheric 
influences see Kidder e Vonder Haar, 1995; 
Liou, 1980; or Robinson, 1966; Iqbal, 1983). 

To model solar radiation, the 
atmospheric optical properties should be known. 
These properties depend on clouds, aerosols, 
humidity and other factors. Forecasting solar 
irradiation depends on the anticipate knowledge 
of the future atmospheric conditions. Despite the 
intrinsic uncertainties, the numerical weather 
prediction (NWP) models provide information 
about many meteorological variables.  

The statistical refining used in this work 
consists on feeding the outputs of a mesoscale 
model in ANNs. These outputs represent the 
future atmospheric conditions. Further, the 
calculated solar radiation on the top of 
Atmosphere (TOA) was also supplied to ANNs, 
as the quantity that is modeled by the 
Atmosphere. The goal is to obtain a solar 
radiation forecast with error levels lower than the 
forecasts provided directly by the mesoscale 
model through its radiative code, for a given site 
of investigation.  

In this work the Eta/CPTEC model was 
used as the mesoscale model to have its solar 
radiation forecasts refined by statistical post-

processing. The actual data used as reference 
for training ANNs and for evaluation of forecasts 
were the solar radiation measurements taken 
from two SONDA-project stations, located in 
south Brazil. 
 
2.1. Eta/CPTEC model 
 

The Eta model is an international 
mesoscale weather forecast model and runs 
operationally at Brazilian Center of Weather 
Forecast and Climate Studies (CPTEC/INPE) 
since 1996. The model area covers the most of 
South America continent and neighboring 
oceans: latitudes between 50.2ºS and 12.2ºN, 
and longitudes between 83ºW and 25.8ºW. The 
version that is running since 1996 has 40 km of 
horizontal resolution and 38 vertical levels. 

Detailed descriptions about Eta model 
can be found in literature: Mesinger et al. (1988), 
Janjić (1994), Black (1994) and Ničhović et al. 
(1998). Finite difference schemes are applied to 
the model system of equations in space and 
time. The discretization of the model domain is 
done with the semi-staggered Arakawa E-grid in 
the horizontal and the Lorenz grid in the vertical. 
One of the features of this model is the vertical 
coordinate, η (Mesinger, 1984), defined as 
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where pt is the pressure at the top of the model 
atmosphere, psfc and zsfc are the pressure and 
height of the model bottom boundary (surface), 
and pref is a reference pressure vertical profile. 
The bottom surface heights can take only 
discrete values since the orography is 
represented by step-like functions and the tops 
of model mountains coincide with the η-
coordinate surfaces (Ničhović et al., 1998). The 
constant η-surfaces are relatively horizontal, so 
that the errors associated with the determination 
of the pressure gradient force along a steeply 
sloped coordinate surface are minimized. 
 The radiation parameterization uses the 
schemes of Lacis and Hansen (1974) for 
shortwave radiation, and Fels and Schwarztkopf 
(1975) for longwave radiation. Chou et al. (2002) 
showed that Eta/CPTEC model systematically 
overestimates the solar radiation incidence and 
the surface fluxes of sensible and latent heat. 
This bias in solar radiation was also observed by 
Hinkelman et al. (1999) using the Eta/NCEP 
model. 
 The Eta/CPTEC model runs twice a day, 
with initial conditions at 00UT and 12UT. The 
initial conditions are the NCEP analyses. The 
lateral boundary conditions are taken from the 
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CPTEC/COLA Atmospheric Global Circulation 
Model (AGCM) and updated every 6 hours. 
 Every day, Eta/CPTEC model provides 
two sets of data (00UT and 12UT) comprising 
forecasts for future instants, 6-hourly spaced, 
coinciding with the synoptic times (6, 12, 18 and 
24UT). Currently, the 40-km Eta/CPTEC model 
is integrated from the initial condition time to 7 
days (or 168 hours) forward, providing forecasts 
for 29 future synoptic times (reference times).  

Some of the predicted variables are 
instantaneous for their reference times. Other 
variables are averages, integrals or cumulative 
quantities related to the 6-hour period before the 
reference time. In each future synoptic time, and 
each predicted variable, there are available data 
for all model area, in grid-points spatially spaced 
by 0.4º of latitude and longitude. In this work, 
Eta-data for just two grid-points, located near 
two radiometric stations (described in next sub-
section), were extracted and used. 

Among the whole set of predicted 
variables disposed by Eta/CPTEC model, there 
are variables provided with values for several 
vertical atmospheric levels (profile variables) and 
variables with a single value representing the 
whole vertical atmospheric column or surface 
conditions (single variables). For the current 
study, just single variables were used. 
Altogether, a set of 31 variables were taken, 
comprising data for: surface temperature, 
humidity, pressure and wind; precipitation; 
clouds; surface fluxes of sensible and latent 
heat; shortwave and longwave radiation fluxes; 
besides other quantities. 
 The variable representing the Eta model 
forecast of solar radiation incidence, called ocis, 
represents the forecast that the refining models 
(ANNs) aim to improve. In this work, this Eta-
forecast is evaluated using radiation 
measurements, and its performance is 
compared with the ANNs forecasts. 
 
2.2. SONDA radiometric stations 
 

SONDA (Sistema de Organização 
Nacional de Dados Ambientais para o Setor de 
Energia – National Organization System of 
Environmental Data for the Energy Sector) is an 
INPE project coordinated by CPTEC that aims to 
install and maintain a network of radiometric and 
aeolic stations so as to improve the database of 
environmental data. These data are required for 
the survey and the exploration-planning of solar 
and aeolic energy resources in Brazil. 

In this work, measurements of global 
solar radiation performed by SONDA stations 
using Kipp & Zonen CM-21 pyranometers (Kipp 
& Zonen, 2006) were used. The data were taken 
from two stations located in south Brazil: 

− Florianópolis (SC): FLN station 
(Lat.: 27.60ºS; Long.: 48.52ºW) 

− São Martinho da Serra (RS): SMS station 
(Lat.: 29.44ºS; Long.: 53.82ºW) 

 The locations of these stations are 
showed in Figure 1. Their radiation data are 
available as mean irradiances for each 1 minute, 
along 24 hours of each day. The data used 
comprise periods from January/2001 to 
October/2005 for FLN, and from July/2004 to 
October/2005 for SMS. The Eta model data for 
each location were taken for these same 
periods. 
 

 
Figure 1: SONDA radiometric stations in south 

Brazil: FLN and SMS stations. 
 
2.3. Data samples 
 
 The solar radiation forecasts provided by 
Eta model (ocis variable) are values 
representing whole 6-hour intervals: the 
forecasts available for each reference time are 
the averages of solar irradiances along the 6-
hour periods preceding the reference times. In 
order to achieve the same time-scale, the solar 
radiation measurements (with 1-minute 
resolution) were averaged in 6-hour intervals 
and represented by its final times. Both data, 
measured and forecasted, were converted to 
energy integrals, expressed in MJ·m-2 (mega 
joules per squared meter). 
 Those Eta model forecasts disposed as 
instantaneous values in each reference time 
were averaged with the value for the preceding 
reference time in order to obtain a value that 
better represent the variable along the 6-hour 
intervals. Thus, all forecasted and measured 
values have now the same temporal resolution 
and represent the same time-intervals. 
 Solar radiation incident on TOA was 
calculated according Iqbal (1983), with 1-minute 
resolution, for the locations of both SONDA 
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stations and for the whole data periods. These 
values were averaged and disposed in units of 
MJ·m-2 similarly the process performed with 
radiation measurements, described before. 
During these calculations the mean solar zenith 
angle and the mean air mass were also 
determined, so as to be used as additional 
inputs in ANNs.  

From Eta variables, two more quantities 
were calculated: relative humidity and wind 
speed. Altogether, 36 variables can be used as 
predictors in ANNs, among Eta forecasts and 
additional calculated quantities. 

Since the 36 predictors and the variable 
to be simulated (measured solar radiation) are 
disposed in 6-hour variables, each variable has 
values for 4 times in each day: 6:00, 12:00, 
18:00 and 24:00UT; each of them representing 
the intervals 0:00-6:00UT, 6:00-12:00UT, 12:00-
18:00, and 18:00-24:00UT, respectively.  

Among these intervals, the highest 
fraction of daily solar energy occurs between 
12:00 and 18:00UT, in both studied stations and 
along whole year (63 – 80% of daily total 
amount). Because of this, we just evaluate solar 
radiation forecasts for this daily time-interval in 
this work. Hereafter, this interval will be just 
referred as Rad18UT. 

To forecast solar radiation for the period 
Rad18UT of a day, we can use the outputs of 
several Eta model-runnings: the 00UT-running of 
the same day; the 00UT- or 12UT-runnings of 
the preceding day; or the runnings of more days 
in advance. In this work we analyze just the 
forecasts with minimal antecedence, obtained 
from the Eta-model’s 00UT-runnings generated 
in the same days to be forecasted. These 
forecasts are referred as P00UT. 

So, from Eta model variables calculated 
in the beginning of each day, we have the 
atmospheric and surface average conditions 
predicted for the period Rad18UT of the day. 
The refining models (ANNs) take these variables 
as the predictors that control the solar energy 
transmission from the TOA to the ground. 

Several tests were performed applying 
different sets of predictors in ANNs, in order to 
find a reduced set of variables that can led to a 
performance similar that obtained with the use of 
36 predictors. It was found a set of 8 predictors, 
including: solar radiation on TOA, relative 
humidity, surface temperature, precipitable water 
amount, zonal wind speed at 10-m height, and 
predictors for cloud fractions. The ANNs using 
36 and 8 predictors will be called ANN-36p. and 
ANN-8p., respectively. 

After a data-quality verification applied to 
the data periods of each site, 1150 valid days for 
FLN and 472 valid days for SMS were taken for 
the analyses. These data were subdivided in 

three sets: training set (575 days for FLN and 
236 days for SMS), validation set (288 days for 
FLN and 118 days for SMS) and test set (287 
days for FLN and 118 days for SMS). Training 
set is used for ANNs’ learning and validation set 
is used for real-time evaluation of learning 
process and to determine the end of training. 
The test set is used for simulations and to 
evaluate de performance of solar radiation 
forecasts supplied by ANNs and Eta model.  
 
2.4. Artificial Neural Networks (ANNs) 
 

Artificial Neural Networks (ANNs) are 
computing systems which attempt to simulate 
the structure and function of biological neurons. 
The networks generally consist of a number of 
interconnected processing elements, called 
neurons. In feedforward networks, the neurons 
are disposed in layers. Signals flow from the 
input layer through to the output layer via 
unidirectional connections, called synapses. 
Synapses connect each neuron with the neurons 
of neighboring layers (Haykin, 1994). 

Figure 2 presents an artificial neuron. 
The input values (xi) are weighted by values 
associated with each synapse (wij), called 
synaptic weights. All weighted values are adding 
together and with another value called bias (bj). 
This sum is the activity level of the neuron (υj). 
The output of a neuron is finally computed by an 
activation function (φ(υj)), generally a linear or 
hyperbolic-tangent function. The use of non-
linear function as hyperbolic-tangent function 
allows ANNs to learn non-linearity behaviors and 
complex patterns.  

 

 
Figure 2: Artificial Neuron models and its parts. 

Source: Adapted from Haykin (1994). 
 
There are several structures of ANNs, 

but feedforward is the most used. Feedforward 
ANNs with multiple layers of neurons are 
commonly called multilayer perceptrons. In this 
work we have trained multilayer perceptrons 
using as inputs the meteorological data 
generated by the Eta/CPTEC model, and other 
theoretically calculated values as the solar 
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radiation on the TOA. These ANN models are 
illustrated by Figure 3.  

 

 
Figure 3: Artificial Neural Network model used. 

 
Preliminary tests revealed that, for the 

purposes of this study and with the specific sets 
of available inputs, better ANNs’ performances 
are acquired using 2 hidden layers of neurons. 
Table 1 shows the best neurons distributions 
verified for each ANN-model. The number of 
neurons of input and output layers is equivalent 
to the number of inputs and the expected output. 
 
Table 1: Layers’ neurons in of each ANN model. 
 ANN-36p. ANN-8p. 
Input layer 36 8 
First hidden layer 36 16 
Second hidden layer 18 8 
Output layer 1 1 
 

During the training-phase the training 
algorithm uses the training set of data to adjust 
the network parameters (weights and bias), in 
order to reduce the errors in output. For each 
iteration, the output produced with a set of inputs 
is compared with the target (or the expected 
value, in this case, solar radiation 
measurements), and incremental corrections are 
calculated for each network parameter, aiming to 
reduce the error in output.  

The validation set is used to verify the 
performance of the ANN with an independent 
data sample, not directly used in learning. This 
verification allows to check the generalization 
capacity along the training and to determine 
automatically the appropriate moment to stop 
the training, avoiding overlearning. The most 
widespread training algorithm used for multilayer 
perceptrons are the Backpropagation algorithm 
(Rumellhart et al., 1986). In this work, we use a 
modified version of Backpropagation, called 
Resilient Backpropagation or Rprop (Riedmiller 
and Braun, 1993). 

 After training, the weights and bias are 
fixed, and the ANN is ready to be used in 
simulations, using the test set of data. The 
performances of the ANNs are calculated using 
just the test set.  

2.5. Forecasts evaluation 
 

The test set of data was used for 
evaluation of both, ANN ant Eta model forecasts. 
The forecasted values (forecasts – F) were 
compared with measured values (observations – 
O), and deviations between them (F - O) are 
calculated. The performance of the models was 
checked with two statistical indices: mean error 
(ME) or bias, and root mean squared error 
(RMSE). ME provides information about the 
systematic errors of the models, indicating the 
amount of overestimation or underestimation in 
the forecasted values. RMSE provides an 
estimative of the mean absolute deviations 
between forecasts and observations. 

To ease the comparison, both indices 
are normalized and expressed as percentages 
of the mean measured global solar radiation 
value. The resulting non-dimensional scores (or, 
relative errors) are:          
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where N is the number of pairs (forecast and 
observation) used in the evaluation (in this work, 
it is equivalent to the number of days in the 
evaluated data set). It was also calculated the 
Person’s correlation coefficient (R): 
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The determination coefficient (R2) was 
calculated taking the square of correlation 
coefficient. 
 To calculate the improvement of a 
forecast over some reference forecast, we used 
the skill-score, calculated as follows: 
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where Score can be the ME% or the RMSE% 
calculated for the new forecast, Scoreref is the 
score calculated for a reference forecast (the old 
forecast or the forecast over which we want to 
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calculate the improvement) and Scoreperf is the 
score value expected for perfect-forecast (zero, 
for ME% and RMSE%).  
 
3. RESULTS 
 

In a preliminary analysis using all data 
for both stations, Eta model forecasts and 
measurements of solar radiation were 
compared. As previously observed by other 
authors (Chou et al., 2002; Hinkelman et al., 
1999), it was observed a significant positive bias 
(overestimation) in solar radiation forecasts by 
Eta model.  

Table 2 show the performance scores 
calculated for the solar radiation forecasts by Eta 
model (P00UT-Rad18UT), using all data (1150 
days for FLN and 472 days for SMS). It is 
important to underline that all analyses 
presented in this section are accomplished with 
P00UT-Rad18UT forecasts. 
 Since the data in training and validation 
sets were used for ANNs adjustment, ANN 
models can be evaluated just using the test sets 
of data. Because of this, Eta model forecasts 
were evaluated again, using just the data 
pertaining to the same test sets used for ANN 
evaluations (N = 287 for FLN; N = 118 for SMS). 

All analyses presented hereafter were performed 
using just the test sets of data. The evaluation 
results of solar radiation forecasts (P00UT-
Rad18UT) by Eta model and by ANNs are 
presented together for comparison. 
 
Table 2: Performance scores for solar radiation 

forecasts by Eta model (P00UT-Rad18UT), 
using all data. 

Scores FLN 
N =1150 

SMS 
N =472 

R 0.747 0.790 
R2 0.558 0.624 
ME% 24.7% 27.8% 
RMSE% 39.7% 41.9% 
 
 Figure 4 and 5 present scatter-plots, 
where the forecasts are compared with 
observations, for FLN and SMS stations, 
respectively. Besides the scatter-plots for Eta 
model, ANN-36p. and ANN-8p., it is also showed 
a plot for persistence forecast evaluation. 

Persistence forecast consists in to take 
the value observed in a previous day, as the 
forecast for the current day. It is the simplest 
forecast available in the absence of another 
method. A forecast is useful if it can lead to 
results better than the persistence forecast. 

 

 
Figure 4: Scatter-plots of forecasts against observations for persistence, Eta model, ANN-36p. and 

ANN-8p., for FLN station. 
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Figure 5: Scatter-plots of forecasts against observations for persistence, Eta model, ANN-36p. and 

ANN-8p., for SMS station. 
 
 

According to Figures 4 and 5, Eta model 
presents forecasts better than persistence, in 
general. However, we can observe the positive 
bias mentioned before. Eta forecasts are 
overestimated, especially the forecasts for days 
with low incidence of solar radiation. The scatter-
plots for ANNs show a higher proximity between 
forecasts and observations, and most part of the 
points are located near the perfect-forecast line 
(blue line). No clear differences are observed 

between ANN-36p. and ANN-8p., indicating that  
most of the 36 predictors are not necessary for 
the solar radiation forecasts.   
 Tables 3 and 4 summarize evaluation 
scores values calculated for each forecast, for 
FLN and SMS, respectively. We can observe the 
increase in correlation coefficients for ANNs over 
Eta model, and the reduction in ME% and 
RMSE%. ANN did not show systematic 
overestimation as observed in Eta forecasts.

 
 

Table 3: Evaluation scores for the forecasts of each model analyzed, for FLN station. 
Model R R2 ME% RMSE% 
Persistence 0,469* 0,220 1,6% 45,9% 
Eta 0,720* 0,519 24,6% 40,0% 
RNA-36p. 0,804* 0,646 -2,1% 26,2% 
RNA-8p. 0,790* 0,625 -0,8% 26,9% 

 
Table 4: Evaluation scores for the forecasts of each model analyzed, for SMS station. 

Model R R2 ME% RMSE% 
Persistence 0,437* 0,191 3,7% 53,8% 
Eta 0,775* 0,600 28,0% 43,2% 
RNA-36p. 0,839* 0,704 -1,7% 28,8% 
RNA-8p. 0,848* 0,720 -0,7% 27,6% 
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 The values of R, R2, ME% and RMSE% 
presented for Eta forecasts in tables 3 and 4 are 
similar to that in table 2. This indicates that the 
test sets chosen are representative of the whole 
set of data, at least for Eta forecasts. 

Figure 6 shows fragments of temporal 
series taken from the test sets of FLN and SMS 
stations. Forecasts from Eta model and ANNs 

are compared with observations for the days in 
Winter/2005 and Summer/2004-2005. We can 
observe that the ANNs forecasts are closer to 
observations than the overestimated forecasts 
from Eta model. The deviations between 
forecasts and observations were calculated in 
each day of these periods and are presented in 
Figure 7. 

 

 
Figure 6: Temporal series for forecasts and observations of both stations analyzed. The series 

corresponds to days in the test sets for FLN and SMS.  
 

 
Figure 7: Deviations between forecasts and observations calculated from the same days showed in 

Figure 6. 
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From the above results we can observe 
that an important improvement over Eta-model’s 
solar radiation forecast was achieved with the 
use of ANNs supplied with the future 
atmospheric-state data from Eta-forecasts. 
However, no significant differences were 
observed between ANN-36p. and ANN-8p., and 
the use of just 8 predictors are enough for a 
good performance. To quantify the improvement 
acquired by the use of ANNs over the Eta model 
forecasts of solar radiation, the skill values were 
calculated using RMSE% score, and the results 
are presented in Table 5. We can conclude that, 
in general, ANNs lead to improvements higher 
than 30% in RMSE%. 
 

Table 5: Skill-score calculated with RMSE% 
score for ANNs over Eta model. 

Skill(RMSE%,Eta) FLN SMS 
ANN-36p. 0.344 0.333 
ANN-8p. 0.328 0.361 
 
4. CONCLUSIONS 
 

It was observed an increasing in 
performance by the use of ANNs (using a set of 
Eta model forecasts as inputs) over the 
forecasts of solar radiation directly provided by 
Eta model. The comparison of forecasts with 
observations, accomplished in the SONDA 
project stations of Florianópolis (FLN) and São 
Martinho da Serra (SMS), showed a similar 
performance between the ANNs using 36 and 8 
predictors, and both these models provide 
forecasts better than the Eta model, in general. 
The bias normally observed in the Eta forecasts 
of solar radiation, was not observed in ANNs 
forecasts, and improvements higher than 30% 
were acquired in terms of RMSE%-reduction. 
The improvements in predictability from Eta 
model to ANN models were observed in 
correlation coefficients as well: from 0.72 to 0.80 
at FLN, and from 0.78 to 0.85 at SMS. 
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