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Abstract

An efficient method for generating members in a ocean wave ensemble predic-
tion system is proposed. A linearization of the wave model WAM is used to
obtain approximations of the ensemble members. This procedure was originally
introduced in a dynamical assimilation scheme where Green’s functions play a
central role. The evaluation of member approximations can be carried out in a
fraction of the time required by the full model integration. This aspect of the
method suggests a way of increasing the ensemble size as well as refining the
model resolution without increasing computational costs.



1. Introduction

Ensemble prediction is a technique in which several forecasts are produced based
on an ensemble of differentpossible objects, such as initial conditions, forcings
and/or model parameters. The advantages of an ensemble prediction system
(EPS) are well-known. Amonst its benefits are greater reliability for the solu-
tion, the generation of several possible predictions and the probabilities associ-
ated with them as well as the capability of predicting better extreme events. In
December 1992, operational EPS’s were put into activity by the US National
Meteorological Center (NCEP) and by the European Centre of Medium-Range
Weather Forecasts (ECMWF). These systems are being continuously upgraded
and are worldwide the subject of current research.

The ensemble method employed in atmospheric modelling has an analogue
for ocean wave prediction. From the present point of view, a wave ensemble
prediction system (WEPS) can essentially go in two directions to produce en-
semble solutions or members: a) to create perturbations of the forcing wind
fields or/and b) to generate perturbations of the initial wave spectrum. These
approaches are described and analysed by Farina (2002) and some potential ben-
efits of wave ensemble prediction are presented in (Janssen, 2000; Hoffschildt et
al, 2000) where the ECMWF wave ensemble forecasts, operational since June
1998, are employed.

Ensemble prediction generates a very large amount of data. This gives rise to
two problems: how to interpret these new data, giving meaningful products and
the high computational demands for generating an ensemble of forecasts. This
work will deal with the latter problem, in the context of ocean wave ensemble
prediction. Given a computational setting, the cost of a model integration in
ensemble mode is dictated by factors such as the number of members in an
ensemble and the resolutions of the model runs. Usually a compromise must
be made, reducing what is at first sight the ideal number of members and the
resolutions, in order to accommodate an operational EPS in centres where the
computational resources usage are optimized. Ideally, one would like to increase
the number of members, as this procedure would generally improve probability
forecasts as well as capture possible extreme events, unpredictable otherwise.
The resolutions used are also a very important issue. An EPS normally employs
a coarse resolution for members, keeping fine only the control run. However,
high-resolution ensemble prediction systems (HEPS) are appearing, for example,
Buizza et al (2003) recently showed qualitative performance improvement and
benefits of a HEPS.

Evidently, a mechanism able to reduce the cost in the generation of the mem-
bers propitiates the increase in the number of members as well as the resolutions
refinement. In this paper we essentially compare two wave EPS; the usual one
where the members are obtained by full nonlinear integration of the wave model
and another where the members are calculated by the approximated linearized
model. These wave EPS’s are based on forcing provided by an atmospheric EPS.
A fast method for generating approximated members in a ocean wave ensem-
ble is proposed. This method uses a linearization of the third-generation wave



model WAM, introduced by Bauer et al (1996), where Green’s functions play a
central role and a mean of evaluating member approximations in a fraction of
the time required by the full model integration. We noticed that the evolution
of these member approximations gives information on severe sea-states often
not predicted by the usual ensemble members. Similar linearization approaches
are described for ocean general circulation models in (Stammer and Wunsch,
1996; Menemenlis and Wunsch, 1997).

The outline of the paper is the following. Section 2 briefly presents the wave
model and in section 3, the wave ensemble prediction system is described with
the exposition of the fast method and the linearization used in its construc-
tion. An extension to this method is also discussed in this section, where a
subensemble is defined by using a local dimension concept. Section 4 introduces
the perturbation method used to get the atmospheric ensemble forcings. This
method is employed by the operational EPS of the Centro de Previsao de Tempo
e Estudos Climdticos (CPTEC). Section 5 introduces and analyses the numer-
ical results. In section 6, we make some concluding remarks and perspectives
are discussed.

2. Wave Model

To model the waves, we adopt the wave model WAM (Komen et al, 1994), which
is a tested and powerful tool for operational wave prediction. The essential
structure of this model and the governing equation is presented below. We
assume that in deep water, the evolution of the ocean wave spectrum can be
described by the wave action balance equation:

%F(k, 2,8) = Sk @, 8) + Sin(k, @, 1 U) + Sas(k, , 1), (1)
where k is the wavevector, x is a point on the mean free surface, t is time,
and F(k,z,t) is the wave energy density, with the wave action defined by
F(k,z,t)/w(k), where w is the intrinsic angular frequency. The term S,; is
the wave energy variation rate at wavevector k and at the position x due to
the wave-wave nonlinear interactions. This process of interaction is weakly non-
linear in the sense that resonance is contributing only for group of four waves

in deep water, case where the dispersion relation is given by |k| = w?/g. A
representation of this process is given in terms of the Boltzmann integral:
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where N; = N(k;,t) (N = N(k,t)) is the wave action spectrum and Tpi23
denotes the kernel of this integral equation.

The expression of Ty123 may be seen in Hasselmann, 1962). Equation (2) in-
corporates conservation of action, moment and energy. The resonance condition



ki + ko = ks + k4; w1 + we = wy + ws present in the delta distributions selects
those wave groups that contribute to Sp;. In the model, (2) is not actually
used; an approximation of this, called DIA (discrete interaction approximation)
is instead employed and its details can be seen in (Komen et al, 1994).

The term S;;, gives the energy rate transferred from the wind U (z,t) to the
wave surface and Sy, represents the wave energy dissipation rate.

In order to solve equation (1), the knowledge of the spectrum F' at a time ¢
and the wind field forcing U (x,t) must be prescribed. One of the most widely
used parameters obtained from the solution of the problem modelled above is
the significant wave height Hy, defined as the average height of the 1/3 highest
waves. It can be shown that (Ochi, 1998)

H, =4VE,

where F is the total wave energy at position & and at time ¢, given by

E:/ F(k,x,t) dk.
0

3. Methodology

In the present work, we will consider an ocean wave EPS on which exclusively
the forcing of the system, i.e., the surface wind fields U;j(=,t),1 < j < N
are perturbed. The respective model integrations produces N solutions, or
members. The initial wind fields can be generated by the breeding method
(Toth and Kalnay, 1997), perturbations based on empirical orthogonal functions
(EOF) (Zhang and Krishnamurti, 1999) or by singular vectors (Molteni et al.,
1996). In section 4 we describe how we got the wind fields perturbations based
on EOF’s. These perturbations were used for the numerical experiments in the
section 5.

The number of members in an ensemble prediction system can be large and
its computation extremely costly. This fact is seen by recalling that each mem-
ber, or solution, requires the integration of the balance equation (1). Typically,
we will be interested in using the maximum possible number of members and in
practice the effective computation of the members is only limited by available
computational resources. Thus, if N is the number of members, the cost in a
EPS, adding the control, is proportional to

(N +1)s, (3)

where s is the computational cost for calculating the solution of (1).

The idea of the method to be described in this section is to obtain approx-
imations of each member and with low computational cost. Before presenting
how these approximations are obtained, let us show how the balance equation
can be linearized, which is an important issue in its own right.



3.1. Linearization

We adopt the linearization procedure proposed by Bauer et al., 1996 and intro-
duced in the context of assimilation of wave data into the WAM model. This
scheme uses impulse response, or Green’s functions and its steps will be followed
now.

Equation (1) can be written as

DF
S(F,U) = —
(FU) =2
where S = S,y + Sin + Sqs denotes the total source term. Thus, a perturbation
u of the wind field and the correspondent wave spectrum e are related through
the Taylor expansion
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where % denotes the functional derivative of S with respect to F. Let us

now invoke the assumption that the differences between the spectra originated
from two perturbed wind fields in the ensemble obey a linear dynamics. This
hypothesis is partially corroborated by the numerical experiments in (Farina,
2002) and was employed in the same of related physical situations by Bauer et
al., 1996, Stammer and Wunsch, 1996 and Menemenlis and Wunsch, 1997, for
instance. Thus, neglecting the O(|u|?), O(e?) and O(|ule) terms, we have
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where L = (& — A) with A = £Z. Formally, we can write
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Using Green’s functions GG, we can express e explicit by
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Thus, the error ro(e,u) in approximating S(e,u) with expression (4) is for
sufficiently smooth S, such that

lim Z r2(e, u) _
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and the eror in e is therefore of order L=1(ra(e, u)).



In practice, however, the expression (5) must be simplified if we wish to tackle
the problem computationally. With this goal, we use the behaviour observed
in the dynamics of wind seas, namely that for a small perturbation e(k,z,t),
there exist a highly localized domain in space and time on which a perturbation
is more influential. We then assume that this characteristic can be modelled
by delta distributions acting on influence points €o(k,x,t) and 19(k,x,t) that
represent these domains. Thus, we write

Glk,,1:6,7) g0 = B(E — €0)3(r = o)W (K, @,1). ©)
From (5) and (6), we have
€(k,$,t) = W(kawat) : UO(QB,t), (7)

where ug = w(€g,70). The impact function W = (W7, Ws) must be deter-
mined in such a way to represent the past evolution of the sea state and &g
and 7o(k,x,t) are found using the wave age parameter, a ratio between the
wave group velocity and the wind velocity. We then see that ug is indirectly a
function also of k. The parameters

W7€0 and T()(k,il?,t) (8)

can be calculated using values of the source functions already in use and re-
quired by the control integration of equation (1). Such an integration, where
the functions in (8) are produced, we refer to as an enhanced integration of the
model. See (Bauer et al., 1996) for further details of this procedure, although
there this terminology is not used. As no additional source function is necessary,
the computation of e(k,x,t) can be carried out during the control, and nonlin-
ear, integration of the model. As the main cost in the WAM model is due to the
evaluation of its source functions, the added computational cost comparatively
is then very small. However, the memory storage requirement of this enhanced
integration increases.

3.2. Fast method

Let us now describe the fast wave ensemble method. Suppose the pair of data
(Fo(k,x,t9),Uq(x,t)) are prescribed. From these we get the control solution,
the spectrum Fy(k,x,t), for all ¢ in the time interval considered. N other
solutions, or members of the ensemble Ex = {Fj(k,z,t);1 < j < N} are
obtained from the data of the ensemble Dy = {(Fj(k,x,t0),Uj(x,t));1 < j <
N}. We now choose a subensemble, By, formed by the M members of Dy that
have greatest degree of linear independency or variance. These concepts will be
made precise in the next section.

The ensemble solution is then obtained in the following way. Fy and the
members of Bys are calculated by full, nonlinear integration of the model and
the other members, by

Fj=Fjp+ej, j#7jb,



where Fj, € By and e; are computed using
ej(k,il:,t) = W(k7$vt) : (UJ - Ujb)(kvxat)' (9)

The spectrum Fj, is chosen in By by minimizing ||U; — U jp||.

This algorithm complexity can be assessed in the following way. The cost of
an ensemble prediction system, as mentioned by (3), is proportional to (N +1)s.
In the fast method, the number of full integrations has cost of O(M + 1), so that
its total cost is O(M + 1) + ¢, where ¢/M is the overhead cost in an enhanced
integration. Neglecting the overhead cost, the acceleration of the fast method
will be proportional to (N + 1)/(M + 1). Computing only the control solution
Fy by the full, nonlinear model, i.e., taking M = 0, the scheme proposed is then
roughly N + 1 times faster than the conventional EPS. This option is adopted
in the numerical experiments reported in section 5.

3.3. Determining By

We will consider determining the subensemble Bys. This procedure is inspired
by Patil et al. (2001), where the local dimensionality of the atmosphere is
studied. See also (Francisco and Muruganandam, 2003).

Divide the spatial domain, that usually consists of the oceanic portion of the
globe, in subdomains where local dimensions will be determined. Fixing t = t,,,
consider k points on each of these subdomains where the fields U;(z,t,,),1 <
Jj < N are evaluated. Considering the two components of the vector U, this
discretization can be arranged in a matrix A, with 2k rows and N columns.
These columns are called local bred vectors by Patil et al. (2001) as they can
be obtained by an ensemble breeding method (Toth and Kalnay, 1997). We
look into determining the dimension of the space spanned by the bred vectors.
Empirical orthogonal functions are employed. The covariance matrix of A is
Cnxn = ATA, where A7 is the transpose of A. Since the covariance matrix
is non-negative definite and symmetric, its N eigenvalues \; are non-negative
and have eigenvectors v; such that Av; form an orthonormal basis for the space
spanned by the columns of A. Thus, the eigenvalues \; measure how much the
column-vectors of A point in the direction of v; and o7 := ); represents the
quantity of variance with respect to v;. In order to indentify a local dimension
generated by the N local bred vectors in each subdomain, define the following
statistic over the values of o;.

(Ef\;ﬁ’i)Q

N 2
Yiti0;

Y(01,02,...,0N) = (10)

Thus, ¢ assumes values in [0, N]. These values represent a local dimension of
the field U. The value of v also supplies means of determining the members
of By; in particular one can take M = int(w)) where int denotes the closest
integer. These members are the ones with greater total variance u(o?), where
1 is an average over all subdomains.



4. Atmospheric perturbations

The procedure employed to generate the atmospheric perturbed initial condi-
tions is based on the method introduced by Zhang and Krishnamurti (1999)
originally proposed for hurricane forecasting using the Florida State University
global model. This method, called EOF-based perturbation, was developed ob-
serving the fact that during the initial integration period of atmospheric mod-
els, perturbations to a reference state grow linearly. By this hypothesis, one
can construct an ensemble of optimal perturbations using empirical orthogonal
functions. This approach is outlined by the following steps.

1. n random small factors, with the same order of magnitude of the forecast-
ing errors are added to the control analysis.

2. The resulting n fields are integrated for 36 hours (optimal interval) storing
the solutions at every 3 hours.

3. The control forecast is subtracted from each of the n solutions at each
time increment of 3 hours. This generates n temporal series.

4. A EOF analysis of the temporal series is carried out on a domain of in-
terest. This analysis allows to find eigenvectors (modes) associated to the
largest eigenvalues. These modes are the optimal perturbations.

5. The optimal perturbations are rescaled in order to make its standard de-
viation of the same order of the initial perturbations.

6. Adding and subtracting these optimal perturbations from the control anal-
ysis, an ensemble of 2n initial perturbed states are produced.

Thus, two groups of members in the ensemble can be identified: the negative
and the positive. This classification will be used to section 7.

The optimal interval 36 h was introduced by Zhang and Krishnamurti (1999)
observing that the perturbations present an approximately linear growth until
36 h. This supports the application of EOFs to determine the optimal pertur-
bations.

Aiming at hurricane prediction, Zhang and Krishnamurti (1999) proposed
perturbations with respect to the hurricane initial condition and computation
of the empirical orthogonal functions in a neighbourhood of the hurricane. This
approach is effective in studying the evolution of a localized extreme event. How-
ever, for the atmosphere general circulation, the application of perturbations at
some specific event does not seem reasonable. Then, two main modifications
are introduced to the EOF-based perturbation method. The first deals with
the perturbed region that originally was confined to the neibourhood of the
hurricane. For global prediction, Coutinho (1999) noticed that restricting the
perturbations to subdomains limited in latitude and longitude, as for instance,
a rectangular region over South America does not produce good results. The
domain isolation would affect the perturbations growth in regions relevant to



synoptic systems evolution. Coutinho’s results also show that considering more
extensive regions, such as 45 S to 30 N, 0 E to 360 E, improves performance of
the method. In the present study, we performed perturbations in the domain
(65 S,10 N) as we aim to studya case focusing on the rough South Hemisphere
oceans. The second modification refers to the initial perturbations intensity and
to the optimal perturbations rescaling. In (Zhang and Krishnamurti, 1999), it
is suggested that the initial perturbations be of the order of 3 hours forecast-
ing errors: 3 m/s for the wind and 0.6 K for temperature. Originally it was
also recommended that the standard deviation of the optimal perturbations in
relation to the total average should be of 1.5 m/s for the wind and 0.7 K for
the temperature. Since the perturbation region was altered, more appropriate
values for the initial perturbations and for the rescaling have been tested. Thus,
increased values of 5.0 m/s and 1.5 K, suggested by Daley and Mayer (1986)
showed better results than the original ones with respect to the performance of
the ensemble mean, measured by anomaly correlations.

The atmospheric model used for the generation of the WAM model forcing,
the wind stress is CPTEC/COLA global model (Cavalcanti et al., 2002). This
spectral model was executed with horizontal resolution of 1.875 degrees, 28
levels sigma and with subgrade physical processes through parametrizations.
The control initial conditions were obtained from NCEP. The wind stress used
by the wave model spinup is from the above initial condition while the forecasted
wind field ensemble were generated by the integrations of the CPTEC/COLA
global model in the ensemble mode, for a period of 144 hours. For the initial
condition of 16 June 2000, adopted in an experiment in section 5, a total of 20
perturbed fields were produced.

5. Numerical results

The WAM configuration used in the experiments has a global domain, with
wind stress updated every 3 hours. The spatial and wind grids have resolution
of 1.875 degrees. Further, the WAM model was implemented with additional
steps to incorporate the capability to produce the impact function W and the
influence points &g (k, x,t) and 79(k, x,t) during its integration. This procedure
allows constructing linearized solutions such as F, = Fy + re, where Fj is the
control solution and r is a fitting factor. Note that, we take M = 0 in the
numerical experiments we are about to report.

Firstly, consider a simple and idealised situation where a uniform wind field
blowing from South to North with speed of 10 m/s at the height of 10 metres.
Let this situation be the control one. In order to make a comparison, consider a
similar setting with the difference that the wind speed is 11 m/s. Consider now
a point in an open, deep ocean, subject to the waves and away 6 degrees from
the location where the wind starts to blow. In this case, from equation (9), the
perturbation is given by the second component of the impact vector function,
ie, e =Ws(f,8). The two situations are depicted in figure 1 which shows the
two spectra obtained from the nonlinear model integration, the approximation



F,(f,0) and the perturbation e(f, 8), as functions of frequency and direction and
for t = 6 days. This figure shows a good and promising agreement between the
approximation, the linearized solution and the spectrum generated by nonlinear
integration with the 11 m/s wind speed forcing. This numerical experiment
reproduces closely a similar simulation presented in Bauer et al. (1996) and the
results support each other.

‘Figure 1 near here.

For the next study case which we offer, realistic data are taken. Twenty wind
field perturbations are generated by the EOF-based method explained in sec-
tion 4. These perturbations are separated in two groups of 10, denoted by
1P, 2P,..., 10P and 1N,2N,...,10N, where P and N here stand for positive and
negative, respectively.

The time of the simulation is within a South Hemisphere winter. This is the
season when the South Oceans, the roughest overall!, are more agitated. So, the
events we analyse are located on this half of the globe. To allow spinup of the
wave model and to incorporate swell in the wave field, the control wave model
run is started cold on 15 May 2000 and integrated until 00.00 UTC 16 June
2000, when the initial spectrum condition is used by all members of the EPS.
Parallel to this procedure, all approximating members obtained by linearization
are generated by the fast method. See diagram in figure 2.

‘Figure 2 near here. ‘

Figure 3 shows the control spectra, the member 3P and its linearized spectra
along with the perturbation e used to get the approximation. The point where
this bimodal sea occurs is * = (6.5N,210F) at time ¢ = 6 days. These data
represent a 144 h prediction for 00.00 UTC of 22 June 2000. The wind speed is
5.5 m/s blowing at an angle of 138°, from East, measured clockwise. The mean
wave direction is 250°, the mean period is 10.5 seconds and H,; = 2.24 metres.
Thus, the wave spectrum spectrum at the point studied reflects a windsea with
swell. Even after this extended period of time, we can see that linearized solution
clearly reproduces some of the characteristics of the 3P member. Perhaps,
the main difference between the control and the 3P member is their respective
connection and disconnection shown in the graphic of the two spectral modes;
the one due to the windsea blowing from North East and the other due to
the swell from South West. In the perturbation spectrum, there is a (f,6)-
region with negative values forcing the disconnection, separation of the two
modes in the approximation. Similarly there is strongly positive region in the
perturbation inducing an enhancement of the northernmost mode, in agreement
with the original ensemble member. However, there is also a peak, roughly at
(23Hz, 240°) that makes the approximation inherit characteristics of the control

! Based on satellites altimeter data from 9 years, Young (1999) presented global statistics of
significant wave heights and concluded that the Southern Ocean clearly has the most extreme,
year round, wave conditions.



spectrum in the southern mode. This heritage aspect are also noted in other
examples to come. The extra features present in the approximated member can
be explained by the fact that the results are obtained from a 144 h prediction
when the linearization is by hypothesis no longer fully valid.

Figure 3 near here.

Figures 4 and 5 show the ensemble spread and ensemble mean for the 12.00
UTC of 17 June 2000, predicted 36 hours before by the nonlinear WEPS and by
the linearized WEPS, respectively. The ocean wave and atmospheric conditions
for the events that we study were characterized by a strong swell front of the
coast of Argentina, a windsea in the North East of Australia and a predimantely
windsea state in the South Atlantic, due to strong winds on that area.

The ensemble means are found to be very similar. We also notice that
the ensemble spread is larger in the nonlinear WEPS almost everywhere, with
exception of a region of windsea in the North East of Australia. In the figures 6
and 7 probabilities distributions of significant wave heights above 1, 2, 4 and
6 metres are shown for the two WEPS. Although the results are similar in the
different EPS’s, we note the stronger peaks at the probabilities above 4 m near
North East Australia and in some areas of the South Atlantic, in the linearized
WEPS. Next we analyse individual cases.

‘Figure 4 near here. ‘

‘Figure 5 near here. ‘

‘Figure 6 near here. ‘

‘Figure 7 near here. ‘

Figures 8 and 9 show the significant wave heights for 12.00 UTC of 17 June 2000,
predicted 36 hours before by the member 1P, by its linearized approximation
and by the control run. We notice the approximation is a combination of the
control and the member 1P. Focusing our analysis at latitudes higher than 20
S where the perturbation produces relevant differences, it is seen that some of
the strong wave events predicted by member 1P and absent in the control are
present in the 1P approximation. For instance, the peak regions near (40W ,555)
and in the South of New Zealand. This desirable characteristic occurred also in
the other member comparisons that we performed.

‘Figure 8 near here. ‘

‘Figure 9 near here. ‘

For predictions of longer range, the linearization hypothesis starts to break
down and although the approximations are smooth excessive spatial variation
in observed. Nevertheless very interesting aspects have been observed in our
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comparisons. For this reason we now show some of the results for 144 hours
forecasts. Consider the ensemble spreads and means illustrated in the figures 10
and 11. One important feature observed is that, unlike the results for the 36
h prediction, the spreads for 144 h prediction show overall larger values in the
linearized WEPS than in the nonlinear WEPS. The ensemble means have sim-
ilar values on translated contour lines. The approximated WEPS shows higher
spreads in South Australia, North Indian Ocean and on the South West and
East of South America. We remark that the nonlinear WEPS indicates a larger
spread at roughly 80-90 E and 50 S. The figures 12 and 13 represent the prob-
ability distributions for the 144h forecast. These distributions for waves higher
than 2 metres are more uniform in the nonlinear WEPS while the linearized
WEPS shows smaller probabilities values. The regions with high probability
of wave heights above 4 metres are roughly equivalent for both systems with
the exception of the 35 % —65 % probability shown in the area near the NW
of Australia and SW of Sumatra. The probability distributions for wave higher
than 6 m are similar in both systems with some extra areas suggesting strong
events by the approximated WEPS, mainly in the South Pacific.

‘ Figure 10 near here. ‘

‘ Figure 11 near here. ‘

‘ Figure 12 near here. ‘

‘ Figure 13 near here. ‘

Concluding the experiments exposition, figures 14 and 15 show the Root Mean
Square errors between the ensemble members and the reference solution (solid
line) and between the approximation and the reference solution (dashed line).
The results are obtained from the simulation of the realistic case described
above (see figure 2). In fact, the RMSE in the 36 h approximation are overall
smaller than the nonlinear members themselves. This gives an added value for
the linearized solutions. On the other hand, the RMSE for the 144 h approxi-
mation are always larger then the original members’ RMSE, as expected. It is
interesting however to note both curves in figure 15 have its maxima and min-
ima alternating in the same order, making the delineation of the curves similar.
We observe that no particular geographical dependence has been shown by the
linearized WEPS.

‘ Figure 14 near here. ‘

‘ Figure 15 near here. ‘

6. Conclusions

A method for evaluating approximations of members in a ocean wave ensem-
ble prediction systems is developed. These approximations are obtained by a

11



single run of the wave model using a linear relation between the difference of
two ensemble forcings and the respective wave spectra difference. Since all the
members approximations can be obtained in a single run, the reduction in the
computational cost of a EPS is proportional to the number of the members if
one substitutes the approximations for the original members.

Numerical results show that typically a member approximation is a combi-
nation of the member to be approximated and of a control solution obtained by
nonlinear integration of the model. In the results with forecasts of 36 hours, the
following behaviour has been observed. Smooth fields of significant wave heights
for the approximations are obtained, supporting the validity of the linearization
hypothesis. Even though the ensemble spread is larger in the nonlinear WEPS,
the probability distributions suggest areas of strong wave activity better pre-
dicted by the linearized WEPS. Some severe sea-states are shown to be predicted
only by approximating members. The overall global root mean square errors of
the approximations outperform the corresponding nonlinear members errors.

For forecasts of 144 hours, the linearization hypothesis breaks down, even
though interesting results are observed. The selected cases studied indicate and
confirm the high sensitivity of the wave model to wind fields.

It is important to observe that for forecasts of 36 hours the ensemble spread
in the nonlinear system is slightly larger than the linearized one. However, this
situation is inverted as the prediction time increases: The linearized WEPS
presents areas of larger spreads, compared to the nonlinear WEPS.

The question of how the linearized members would perform with better
quality winds predictions and also how well they agree with observational data
are points of interest that deserve to be investigated further.

The results suggests that in forecasts of the order of 144 hours, the approxi-
mations be calculated in addition to the conventional ensemble members. This
would double the size of the ensemble with small computation cost and could
provide forecast information not present in the original WEPS. The two classes
of members in the new ensemble should be clearly indentified and separetely
treated, when forecasts are interpreted. We note that due to the hypothesis
used in subsection 3.1, the method may not be applicable in areas dominated
by ocean swell.

The results are still preliminary and one direction of further research is the
attempt to improve the approximations accuracy in short-range forecasts by
using a higher-order approximation.
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List of figures

Fig. 1 Spectra at a point in an open ocean away 6 degrees from a uniform
wind field blowing from South to North with speed of 10 m/s (the control case)
and of 11 m/s at the height of 10 metres. The spectra at the top are obtained
from the nonlinear model integration. At the bottom of the figure are the ap-
proximation Fy(f,6) of the 11m/s spectrum and the perturbation e(f,0), as
functions of frequency and direction and for ¢ = 6 days.

Fig. 2 Scheme showing the procedure adopted for the realistic simulation
of June 2000. The control wave model run is started cold on 15 May 2000 and
integrated until 16 June 2000. All the ensemble members are integrated from
16 June to 22 June. The reference state is obtained from a 12 h run with the
best winds available.

Fig. 8  Spectra as functions of frequency (Hz) and direction for simulation of
June 2000 described in the text. For this situation, the mean wave direction is
250 degrees from East and measured clockwise, the peak period is 10.5 seconds
and Hy; = 2.24 metres.

Fig. 4 The ensemble spread (shaded) and ensemble mean (contour) of sig-
nificant wave heights for 12.00 UTC of June 2000 predicted 36 hours before by
the nonlinear WEPS.

Fig. 5  The ensemble spread (shaded) and ensemble mean (contour) of sig-
nificant wave heights for 12.00 UTC of June 2000 predicted 36 hours before by
the linearized WEPS.

Fig. 6  Probabilities distributions of the 36 h significant wave heights predic-
tion for 12.00 UTC of 17 June 2000 above 1, 2, 4 and 6 metres are shown for
the nonlinear WEPS.

Fig. 7 Probabilities distributions of the 36 h significant wave heights predic-
tion for 12.00 UTC of 17 June 2000 above 1, 2, 4 and 6 metres are shown for
the linearized WEPS.

Fig. 8  Global significant wave heights for 12.00 UTC of 17 June 2000, pre-
dicted 36 hours before by the member 1P, by its linearized approximation and
by the control run.

Fig. 9  Significant wave heights about South America, for 12.00 UTC of 17
June 2000, predicted 36 hours before by the member 1P, by its linearized ap-
proximation and by the control run.

Fig. 10  The ensemble spread (shaded) and ensemble mean (contour) of sig-
nificant wave heights for 00.00 UTC of 22 June 2000 predicted 144 hours before
by the nonlinear WEPS.

Fig. 11 The ensemble spread (shaded) and ensemble mean (contour) of sig-
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nificant wave heights for 00.00 UTC of 22 June 2000 predicted 144 hours before
by the nonlinear WEPS.

Fig. 12 Probabilities distributions of the 144 h significant wave heights pre-
diction for 00.00 UTC of 22 June 2000 above 1, 2, 4 and 6 metres are shown for
the nonlinear WEPS.

Fig. 13  Probabilities distributions of the 144 h significant wave heights pre-
diction for 00.00 UTC of 22 June 2000 above 1, 2, 4 and 6 metres are shown for
the linearized WEPS.

Fig. 14  Root mean square 36 h predictions error between the ensemble mem-
bers and the reference solution (solid line) and between the approximation and
the reference solution (dashed line). The members are denoted by the numbers
1 to 20, in the order 1N, 1P, 2N, 2P, ..., 10N, 10P. The control is represented
by abscissa 21.

Fig. 15 Root mean square 144 h predictions error between the ensemble mem-
bers and the reference solution (solid line) and between the approximation and
the reference solution (dashed line). The members are denoted by the numbers
1 to 20, in the order 1N, 1P, 2N, 2P, ..., 10N, 10P. The control is represented
by abscissa 21.
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Figure 1: Spectra as functions of frequency (Hz) and direction for the idealised situ-
ations described in the text.
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Figure 2: Scheme showing the procedure adopted for the realistic simulation of June

2000.
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Control Member 3P

Figure 3: Spectra as functions of frequency (Hz) and direction for simulation of June
2000 described in the text. For this situation, the mean wave direction is 250 degrees
from East and measured clockwise, the peak period is 10.5 seconds and H, = 2.24
metres.
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Figure 4: The ensemble spread (shaded) and ensemble mean (contour) of significant
wave heights for 12.00 UTC of June 2000 predicted 36 hours before by the nonlinear
WEPS.
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Figure 5: The ensemble spread (shaded) and ensemble mean (contour) of significant

wave heights for 12.00 UTC of June 2000 predicted 36 hours before by the linearized
WEPS.

20



Significant wave height > 1.0 m

60N
EQ ol SR B g
30S 3051k - =

60S

60W

120W

180

60E  120E 180 12'ow B60W 0 0 60E  120E

Percent 5 95

Si nificqnt wave height > 4.0 m

Si nificcnfc wave height > 60 m
son R ;

30Nd 30N

EQ EQ

3OS 30S

T I T T S S— -
60E 120E 180 120W OW 0 0 60E 120E 180 120W  60W 0

608

Figure 6: Probabilities distributions of the 36 h significant wave heights prediction
for 12.00 UTC of 17 June 2000 above 1, 2, 4 and 6 metres are shown for the nonlinear
WEPS.
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Figure 7: Probabilities distributions of the 36 h significant wave heights prediction
for 12.00 UTC of 17 June 2000 above 1, 2, 4 and 6 metres are shown for the linearized
WEPS.
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Figure 8: Global significant wave heights for 12.00 UTC of 17 June 2000, predicted
36 hours before by the member 1P, by its linearized approximation and by the control
run.
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Figure 9: Significant wave heights about South America, for 12.00 UTC of 17 June
2000, predicted 36 hours before by the member 1P, by its linearized approximation
and by the control run.
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Figure 10: The ensemble spread (shaded) and ensemble mean (contour) of significant
wave heights for 00.00 UTC of 22 June 2000 predicted 144 hours before by the nonlinear
WEPS.
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Figure 11: The ensemble spread (shaded) and ensemble mean (contour) of significant

wave heights for 00.00 UTC of 22 June 2000 predicted 144 hours before by the nonlinear
WEPS.
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Figure 12: Probabilities distributions of the 144 h significant wave heights prediction
for 00.00 UTC of 22 June 2000 above 1, 2, 4 and 6 metres are shown for the nonlinear
WEPS.
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Figure 13: Probabilities distributions of the 144 h significant wave heights prediction
for 00.00 UTC of 22 June 2000 above 1, 2, 4 and 6 metres are shown for the linearized
WEPS.
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Figure 14: Root mean square 36 h predictions error between the ensemble members
and the reference solution (solid line) and between the approximation and the reference
solution (dashed line). The members are denoted by the numbers 1 to 20, in the order
1IN, 1P, 2N, 2P, ..., 10N, 10P. The control is represented by abscissa 21.
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Figure 15: Root mean square 144 h predictions error between the ensemble members
and the reference solution (solid line) and between the approximation and the reference
solution (dashed line). The members are denoted by the numbers 1 to 20, in the order
1IN, 1P, 2N, 2P, ..., 10N, 10P. The control is represented by abscissa 21.
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