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Abstract. Based on previous Mathematical Morphology results on the decomposition of mappings between com-

plete lattices, constructive decompositions of fuzzy measures by intersection of possibility measures or union of

necessity measures are presented.

1.  Introduction

The search for uncertainty models culminates at the end

of the seventies with the paper by Zadeh [1] on the

Theory of Possibility. In Banon [2] we have a whole pan-

orama of definitions and relationships between the main

subsets of fuzzy measures used to model uncertainty.

Among the most popular models are the one based

on possibility measures and its dual version based on

necessity measures. These models are interesting

because, as pointed out by Nguyen [3], they can be char-

acterized by distributions (or, equivalently, by fuzzy

sets).

In this paper, one more advantage is pointed out. It

is shown that one can decompose (or represent) any

fuzzy measure as a conjunctive combination of possi-

bility measures or as a disjunctive combination of

necessity measures. Actually, these decompositions

appear to be a special case of the decomposition of map-

pings between complete lattices presented by Banon &

Barrera [4, 5] in the framework of Mathematical

Morphology applied to image processing.

As part of our main result, it is interesting to note that

the possibility measures involved in the decomposition

of a probability satisfy the possibility/probability con-

sistency principle and that the combination of weak

sources of information modeled by possibility measures

may represent exactly a stronger source of information

modeled by a probability. This observation can be inter-

esting as part of the debate between probability and

fuzzy sets [6, 7].

In Section 2, we recall the important contribution of

Achache [8] to derive the different ways to characterize

the possibility and necessity measures. In Section 3, we

introduce two decompositions results extracted from

Mathematical Morphology. Finally, in Section 4, we

give an example of a probability decomposition in

terms of possibility measures.

2.  Axiomatic Definition and Characterization of

Possibility and Necessity Measures

Let � be a nonempty set and I the interval [0, 1] of real

numbers.

A fuzzy measure � on �(�) or simply � (the collec-

tion of all subsets of �) is an increasing (isotone) map-

ping from (�, �) to (I, �) (where � is the inclusion

between sets and � is the usual order relation between

real numbers) such that �(�) � 0 and �(�) � 1 [9].

Since (�, �) and (I, �) are complete lattices, any

fuzzy measure satisfies both of the equivalent state-

ments

max �(�) � �(��) (�� �) (1)

�(��) � min �(�) (�� �), (2)

where �(�) denotes the image of � through �.

If (1) remains true by replacing � with � then �

is called a possibility measure [1]. If it is (2) that remains

true then � is called a necessity measure [10].

Possibility (resp., necessity) measures commute

with union (resp., intersection) and are called dilation

(resp., erosion) in Mathematical Morphology [11, 4,

12].

We denote by � the set of possibility measures and

by � the set of necessity measures.

If �� � and �� �, then we must have �(�) � 0

and �(�) � 1; but we may have �(�) � 1 and

�(�) � 0. When �(�) � 1 and �(�) � 0, these mea-

sures are said to be normalized.

Let U � � and v � I, the mappings �U,v and �U,v

from � to I given by

�U,v(X) ��
	



0 if X � �
v if X � U and X � �
1 otherwise

(X � �) (3)

and



�U,v(X) ��

�

1 if X � �
v if U 	 X and X � �
0 otherwise,

(X � �) (4)

are, respectively, examples of possibility measure [2]

and necessity measure. The latter is called simple sup-

port function by Shafer [13].

Let �
(I)

 or simply � the partial order between map-

pings from � to I, induced by  � on I, that is,  given by

�1 � �2 � (�1(X) � �2(X) (X � �)).

We know [8] that (�, �) and (�, �) are complete

lattices.

By rewriting Proposition 2 of Achache [8], we have

that the set of Galois connections (G.c.) [14] between

(�, 	) and (I, �) is the graph of a dual lattice–iso-

morphism between � and �(I,�), the set of erosions

from (I, �) to (�, 	). In the same way, the set of

Galois connections between (�, 
) and (I, �) is the

graph of a dual lattice–isomorphism between � and

�(I,�), the set of dilations from (I, �) to (�, 	).

The former set of G.c. (�, �) forms a complete lat-

tice with respect to the partial order given by

(�1, �1) � (�2, �2) � �1�
(I)
�2 and �1�

(�)
�2,

where �
(�)

 is the partial order induced by 	 on �.

The latter set of G.c. (�, �) forms a complete lattice

with respect to the partial order given by

(�1, �1) � (�2, �2) � �1�
(I)
�2 and �1�

(�)
�2.

The set I� of mappings from � to I forms a complete

lattice with respect to the partial order given by

f1 � f2 � (f1(�) � f2(�) (�� �)).

Depending on the context, the mappings from � to

I are called possibility distributions [1] or  necessity dis-

tributions.

Let �c be the complementation on sets. By rewriting

Corollary 4 of Achache [8], we have the following prop-

ositions.

Proposition 1 (characterization of possibilities) – The

mapping f � (�, �) from the complete lattice I� of pos-

sibility distributions on � to the complete lattice of G.c.

between (�, 	) and (I, �), defined by

�(X) � max f (X) (X � �) (5)

and

�(t) � {�� � : f (�) � t} (t � I),

is a dual lattice–isomorphism. Its inverse (�, �) � f is

given by

f (�) � �({�}) (�� �)

or equivalently

f (�) � f�(�) ��min {t � I : �� �(t)} (�� �).

�

Proposition 2 (characterization of necessities) – The

mapping f � (�, �) from the complete lattice I� of

necessity distributions on � to the complete lattice of

G.c. between (�, 
) and (I, �), defined by

�(X) � min f (X) (X � �) (6)

and

�(t) � {�� � : t � f (�)}c (t � I),

is a lattice–isomorphism. Its inverse (�, �) � f is given

by

f (�) � �({�}c) (�� �)

or equivalently

f (�) � f�(�) ��max {t � I : �� �(t)} (�� �).

�

Proposition 1 (resp., 2) leads to two different charac-

terizations for a possibility  measure � (resp., necessity

measure �) on �(�).

The first one, given by (5)  (resp., (6)) shows that any

� (resp., �) can be expressed in terms of a mapping (dis-

tribution) from � to I.

The second one can be derived from the fact that

(�, �) (resp., (�, �)) is a G.c.; then, for any X � �,

�(X) � ��(X) ��min {t � I : X 	 �(t)} (7)

(resp.,

�(X) � ��(X) ��max {t � I : �(t) 	 X}). (8)

That is, any � (resp., �) can be expressed in terms

of an erosion in �(I,�) (resp., a dilation in �(I,�)).

We observe that the erosions in �(I,�) are increas-

ing families of subsets of � indexed by I and having �

as greatest element. The dilations in �(I,�) are increas-

ing families having � as least element.

3  Fuzzy measure decomposition

Let � be a fuzzy measure on �(�). By observing that

for any U � �, there exists a �� � (resp., �� �)

such that �� � (resp., �� �) and �(U) � �(U)

(resp., �(U) � �(U)), namely �� �U,v (expression

(3)) (resp., �� �U,v (expression (4))), with v � �(U),

one can prove the following lemma in the same way as

for Lemma 6.1 of Banon & Barrera [4].

Lemma 3 (fuzzy measure decomposition) – Any fuzzy

measure � on �(�) can be written

�� inf{�� � : �� �}

� sup{�� � : �� �}. �

In other words, any fuzzy measure can be decom-

posed or represented in terms of an intersection of

normalized possibility measures or an union of normal-

ized necessity measures.

By applying Theorem 1.2 of Serra [11] we have the

following constructive decompositions.



Theorem 4 (constructive decomposition of fuzzy mea-

sures) – Any fuzzy measure � on �(�) can be written

��	 (�U,�(U) : U � �)

�
 (�U,�(U) : U � �),

where �U,v and �U,v are given, respectively, by (3) and

(4). �

By applying Corollary 6.1 of Banon & Barrera [4]

we can state our main result. It is an alternative and

more general way to constructively decompose a fuzzy

measure.

Theorem 5 (general constructive decomposition of

fuzzy measures) – Any fuzzy measure � on �(�) can

be written

��	 (�� : �� �(I,�) and ��� �)

�
 (�� : �� �(I,�) and �� ��),

where � is the identity mapping from I to I, and where

�� and �� are given, respectively, by (7) and (8). �

In the decomposition by an intersection, the condi-

tion on the erosions � is that the compositions of � by

� are anti–extensive. In the decomposition by an union

the condition on the dilations � is that the compositions

of � by � are extensive.

In terms of possibility and necessity distributions,

we have, for any X � �,

�(X) �	 (max f�(X) : �� �(I,�) and ��� �)

�
 (min f�(X) : �� �(I,�) and �� ��),

where f� and f� are given, respectively, in Propositions

1 and 2.

The decomposition given in Theorem 5 can be sim-

plified by dropping out redundant terms.

A subset � of � (resp., � of �), such that, for any

� � � (resp., � � �) �� � � (resp., �� ��), is
said to satisfy the inf–decomposition (resp., sup–decom-

position) condition for � iff., for any �� � (resp.,

�� �) such that ��� � (resp., �� ��), there exists

� � � (resp., � � �) such that �� � (resp.,

� � �).

Under theses conditions, the decomposition formu-

lae of Theorem 5 become [4, Section 7]

��	 (�� : �� �)

�
 (�� : �� �).
When the elements of � (resp., �) are all maximal

(resp., minimal) then the above decompositions are said

to be minimal. Nevertheless, simpler decompositions

may still exist as it is shown in Section 4.

By dropping out unredundant terms we can approxi-

mate the fuzzy measure � by an interval whose upper

and lower limits are, respectively, an intersection of

possibility measures and an union of necessity mea-

sures:

�� [
 (�� : �� �),	 (�� : �� �)],

where � � � and � � �.

4  Example of probability measure decompositions

in terms of possibility measures

We now assume that � is finite. Let n be number of ele-

ments of �, n � #�. A probability measure on �(�),

as a fuzzy measure [2] can be decomposed, as shown in

Section 3, in terms of possibility measures.

As an example, we consider the case of a probability

� on �(�) with a uniform (i.e., constant) distribution,

that is,

�(X) � (#X)�n (X � �(�)).

Since � is finite, the decomposition of � can be

simplified by choosing I � {0, 1�n, 2�n, ���, 1}

The decomposition derived from Theorem 4 has 2n

terms. Two typical possibility distributions are given in

Figure 1 for n � 4. The distribution value is 1 outside

a given subset of � and is k�n inside it (where k is the

number of elements in the subset).

Fig. 1 – Typical possibility distributions 

in the decomposition by Theorem 4.

1

0

2�4

3�4

1�4

�� {a, b, c, d} {a, b, c, d}

I

The minimal decomposition derived from Theo-

rem 5 has n! terms. Two typical possibility distributions

are given in Figure 2 for n � 4.

Fig. 2 – Typical possibility distributions 

in the minimal decomposition by Theorem 5.

1

0

2�4

3�4

1�4

�� {a, b, c, d} {a, b, c, d}

I

The n! terms in the minimal decomposition corre-

spond to the n! maximal chain in (�(�), �) between

� and �.

Actually, we can find simpler decompositions by

observing that we can cover �(�) with � n

n�2
� maximal

chains, if n is even, or � n

(n � 1)�2
� chains, if n is odd.

These maximal chains, that we call chains of interest

can be found by using the search technique given below.



For any i � 0, 1, ���, n and any A � �, let

� i � {X � � : (#X)� i}

�
�

i,A
� {X� � : (#X)� i and A 
 X}

�
�

i,A
� {X� � : (#X)� i and X 
 A}.

Let n be even (resp., odd), to each element X of �n	2

(resp., �(n�1)	2) we associate the chain of interest that

contain X.

Let 0� i � n	2 (resp., 0� i � (n� 1)	2), to

find the successors (w.r.t. the chains of interest) in � i�1

of the elements in � i, we go through the following

steps:

1 – let � be the empty subcollection of �;

2 – let � be � i;

3 – let A be an element of �;

let B be an element of 
�
�

i�1,A
�� (B is a successor

of A);

let � be �� {B};

if � is � i�1 then end;

else let � be �� {A};

if � is empty then go to 2

else go to 3.

Let n	2� i � n (resp., (n� 1)	2� i � n), to

find the antecedents (w.r.t. the chains of interest) in

� i�1 of the elements in � i, we go through the above

steps, just by replacing 
�
�

i�1,A
 with 

�
�

i�1,A
 and succes-

sor with antecedent.

For example, for n� 4 we have 6 chains of interest.

By applying the above search technique we can get the

6 possibility distributions of Figure 3.

Fig. 3 – Possibility distributions in the minimal

decomposition of a probality by Theorem 5.

1

0

2	4
3	4

1	4

�� {a, b, c, d} {a, b, c, d}

I

{a, b, c, d}

{a, b, c, d}{a, b, c, d}

1

0

2	4
3	4

1	4

�� {a, b, c, d}

I

We verify, for example, that

�({b, c})� #{b, c}	4� 2	4

�� (1, 2	4, 1, 1, 1, 3	4)� 2	4

and

�({a, c, d})� #{a, c, d}	4� 3	4

�� (1, 1, 3	4, 3	4, 1, 1)� 3	4.
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