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RESUMO

Neste artigo, um modelo de interação, entre um sensor de baixa

resolução com largo campo de visada a bordo de um satélite de observação da terra, e

a superfície da terra é apresentado. O sensor simulado é obtido através da composição

de um algoritmo de simulação digital por um sensor de alta resolução e menor campo

de visada. Uma nova técnica de desenvolvimento de filtro digital é proposto para

aproximar um filtro Gaussiano ideal. O filtro resultante pode ser implementado em

qualquer plataforma existente de processamento de imagens. Finalmente, dois retal-

hos de imagem, da maneira que eles seriam produzidos pelo SSR (Satelite de Senso-

riamento Remoto) da MECB (Missão Espacial Completa Braasileira) a partir de uma

cena LANDSAT–TM (Thematic Mapper) são apresentados como exemplo.



ABSTRACT

In this paper, a model of the interaction, between a large–field–

of–view low–resolution sensor on board an earth observation satellite, and the earth

surface is presented. The simulated sensor is obtained through the composition of a

digital simulation algorithm by a smaller field–of–view and higher resolution sensor.

A new digital filter design technique is proposed to approximate an ideal Gaussian

filter. The resulting filter can be implemented on any existing image processing plat-

form. Finally, two image patches as they would be produced by the SSR (Remote

Sensing Satellite) of MECB (Brazilian Complete Spatial Mission) from a LANDSAT–

TM (Thematic Mapper) scene are presented as an example.
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1  INTRODUCTION

In order to evaluate the future images that would be produced by the

SSR (Remote Sensing Satellite) of MECB (Brazilian Complete Spatial Mission), an impor-

tant task is to perform some previous sensor simulations.

The simulated large–field–of–view low–resolution sensor is obtained

through the composition of a digital simulation algorithm with a smaller field–of–view and

higher resolution sensor. The digital simulation algorithm consists in a batteries of linear

digital filters.

In this paper, we propose a new technique to design such linear digital

filters. This technique is based on the assumption that the MTF (Modulation Transfer Func-

tion) of both sensors can be approximated by a centered Gaussian type function (Leger et

al., 1986). With this assumption, the 2D MTF of the ideal simulation filter is Gaussian and

simply characterized by two parameters. With these two parameters at hands, the proposed

design technique consists in specifying the parameters of the simulation digital filter. The

digital filter is supposed to be the convolution product extended to n identical Moving

Average (MA) filters whose coefficients follow a Gaussian law. The parameters to be speci-

fied are the size N of the impulse response support of the MA filters and the number n – 1 of

convolution products. These parameters must satisfy an inequality relation that derives

from the spread constraints on the impulse response of the digital filter to be designed. Once

the parameters N and n are chosen, the coefficients of the MA filters are obtained by solving

a polynomial equation.

In Section 2, we present the sensor–earth surface interaction model.

The definition of some usual resolution parameters and their relationships are recalled.

Because the simulated sensor has a wide field–of–view,  the earth surface curvature has to

be considered and the resolution parameter value changes from point to point.
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In Section 3, we introduce the simulation process. This process con-

sists in applying linear digital filters to the images produced by a high resolution sensor and

to derive the pixel values of the simulated image by interpolation. Such filters are typically

non translation invariant and have adaptive finite impulse response.

In Section 4, we introduce the digital filter design technique.

Finally, in Section 5, we use and evaluate the above technique through

the simulation of the sensor on board the SSR.  For such sensor simulation, the design filters

are applied to LANDSAT–TM (Thematic Mapper) images.

2  SENSOR–EARTH SURFACE INTERACTION MODEL

The sensor on board an earth observation satellite transforms any

earth scene into a collection of digital images. We will denote an earth scene by f and a digi-

tal image by g.

2.1 – SET OF EARTH SCENES

By a earth scene f, we actually mean an equivalent scene with respect

to a given spectral sensitive curve (Begni et al., 1986), that is, assuming that the scene is

Lambertian, f can be seen simply as a function from a surface S (representing the earth sur-

face) to �, the set of real numbers (a subset of which representing all the possible spectral

radiance values with respect to a given spectral sensitivity curve – one for each spectral

band of the sensor). Mathematically, we write f ∈  �� . Figure 1 shows a graphical illustra-

tion of a particular earth scene f. With respect to the point x on the earth surface S, the earth

scene f assumes the spectral radiance value f(x).
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Fig. ���Graphical illustration of a particular earth scene f.

2.2 – SET OF DIGITAL IMAGES

A digital image g is a function from a subset E of ��, the set of real

pairs, to �. A pair (y, g(y)) formed by an element y of E and the corresponding element g(y)

of � through g is called pixel of g. Given the pixel (y, g(y)), y is called its position and g(y) its

value. Mathematically, we write g ∈  �� . Figure 2 shows a graphical illustration of a partic-

ular digital image g that has as domain E a rectangle of �, the set of integer pairs. With

respect to the position y in E, the digital image g assumes the value g(y).

In Figure 2, the array of black points represents the set E of pixel posi-

tions.

2.3 – SENSOR MODEL

By sensor model we mean a model for the sensor–earth surface inter-

action. The model for the sensor is represented as a collection of functions �� , i = 1, ..., m,

where the ith function ��  transforms an earth scene f into an ith digital image g� .
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Fig. ���Graphical illustration of a digital image g.
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For passive sensors, like the “Thematic Mapper” (TM–LANDSAT),

the “Haute Résolution Visible” (HRV–SPOT) and the “Satélite de Sensoriamento Remoto”

(SSR–MECB), if we disregard the digital conversion process, we can assume that each ��  is

the composition of a  Sampling Process (SP) represented by a geometrical transformations

t�  from �� to S with a Continuous Linear Mapping (CLM) represented by a function h�  from

S to �� , that is, for any earth scene f ∈  ��  and any pixel position y ∈  E,

g� (y) = (�� (f))(y) = �
S

 f(u)h� (u)(t� (y))du,   i = 1, ..., m. (1)

We will denote a collection of m digital images produced by the sensor

by {g� }�
� or simply {g� }� Figure 3 gives a graphical illustration of the sensor model.

A particular geometrical transformation t� , or simply t, maps any pixel

position y in E (⊂ ���) to the point t(y) on the earth surface S (see Figure 4 ). At  each pixel

position y, it corresponds a given detector and a given instant. The point t(y) is the projec-

tion on the earth surface , through the sensor, of the center of such detector at that instant.
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Fig. ���Sensor model.
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Fig. ���Graphical illustration of a geometrical transformation t.
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A particular continuous linear mapping from ��  to �� , represented

by h� , or simply h, transforms an earth scene f into a blurred earth scene f� . In other words,

for any earth scene f ∈  ��  and for any x ∈  S,

f�(x) = �
S

 f(u)h(u)(x)du. (2)





The blurred earth scene indicates how the sensor “see” the original

earth scene.

The value at u in S of h is a function that maps any point x in S to the

real value h(u)(x) (see Figure 5). The function h is called adaptive point spread function of

�

�

��
�	�������

�

�

Fig. ���Graph of the value at u of a particular adaptive point spread function h.
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the sensor. The adaptive point spread function defines the spatial resolution of the sensor at

the earth surface level.

A particular function h(u) can be interpreted as the transformation of

an ideal point scene ��, the Dirac function from S to � located at u, by the continuous linear

mapping given by Expression (2), that is, for any x ∈  S,

h(u)(x) = �
S

 ��(v)h(v)(x)dv. (3)

The above sensor model is appropriate for large–field–of–view sen-

sors. Because of the sphericity of the earth, the sensor–earth surface interaction model is not
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translation invariant. In other words, the transformation of an ideal point scene is position

dependent and the point spread functions have to be adaptive.

Finally, from Expressions (1) and (2), we observe that at position y the

pixel value g(y) produced by the sensor is simply a sample of the blurred earth scene located

at t(y),

g(y) = f�(t(y)). (4)

We call detectors line the smaller straight line segment that contains

all the detector centers and view plane the plane that contains the optical center p of the

telescope and the virtual detectors line (see Figure 6.)

Fig. ��View plane.
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In order to get a tractable model for the sensor–earth surface interac-

tion, the earth surface will be assumed ellipsoidal, the view plane will contain a normal at S

that passes through the optical center of the telescope, and the value at u of the adaptive

point spread function of the sensor will be derived from a separable real valued function

h’(u) defined on T�, the tangent plane in u at S, that is, for any x ∈  S,

h(u)(x) = 
h’(u)(su(x))������� ∈  Sp ,

0�  otherwise,
(5)

where p is the optical center of the telescope in the view plane that contains u (see Figure 7);

Fig. ���Geometrical  construction of su(x) for a point x in the view plane.

������������������u����S�
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��

where S�  is the set of points x of S that are “visible” from the optical center p (see Figure 7);

where s�(x) is the intersection between the straight line xp and the tangent plane T� (see

Figure 7).

Because of the drastically different scales between the ellipsoidal

earth surface and the spatial resolution of the sensor, we can approximate the earth surface S

around the point u by its tangent plane T�. For that reason, we will also call h’ the adaptive

point spread of the sensor and will denote it simply by h.
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The above separability assumption on h means that there exits two

functions h�(u) and h� (u) from � to � such that, for any u in S and z in T�,

h(u)(z) = h�(u)(z�)h� (u)(z� ), (6)

where z� and z�  are the coordinates of the point z with respect to the coordinate system with

origin in u and formed by the tangents in u at the along track and across track paths drawn on

S, respectively.

The functions h� and h�  are called 1–D adaptive point spread func-

tions for the along track and across track directions, respectively, and they define the spa-

tial resolution of the sensor for these two directions.

2.4 – PARAMETERS OF THE SENSOR MODEL

In this subsection, we recall the definitions of some usual resolution

parameters and their relationships.

Let us denote simply by h the value at u ∈  S of any of both 1–D adap-

tive point spread functions. We will use the letter H to represent the Fourier Transform of h.

For a symmetrical function h such that H(0) = 1, the value at u of the 1–D adaptive modula-

tion transfer function of the sensor for the chosen direction �H/H(0)� is simply H. For the

sake of simplicity, we will refer to h as a point spread function and to H as a Modulation

Transfer Function (MTF).

The variance (using the Probability Theory terminology) of the func-

tion h, denoted by ��, is the positive real number given by

�� = (�
�

(x – �)�h(x)dx)/(�
�

h(x)dx), (7)



�	

where

� = (�
�

xh(x)dx)/(�
�

h(x)dx). (8)

Figure 8 shows the standard deviation � for a given symmetrical func-

tion h.

The Full Width Half Peak of the function h, denoted FWHP, is the pos-

itive real number that satisfies (see Figure 8)

(FWHP
2

,
h(0)

2
) ∈  graph of h. (9)

�

�	

���

�� � �

	
�	
�	�	��

�������
�	�	����

����

Fig. ���Definition of � and FWHP.

�

The Effective Instantaneous Field Of View of the function h, denoted

EIFOV, is the positive real number that satisfies (see Figure 9)

( 1
2EIFOV

, 1
2

) ∈  graph of H/H(0). (10)

The attenuation factor of the modulation transfer function at half the

sampling frequency � for the chosen direction, denoted �, is the real number that satisfies

(see Figure 9)
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Fig. ���Definitions of EIFOV and �.
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(
�

2
, �) ∈  graph of H/H(0). (11)

The sampling frequency � for the chosen direction is 1/�, where � is

the distance between two consecutive sample positions along that direction (see Figure 10.)

Fig. �	��Detector array projection on a tangent plane at nadir.
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If we assume that h is a 1–D Gaussian function with variance ��, that

is,

 h(x) = 1
�(2�)1�2

exp(� x2

2�2
)   (x ∈  �), (12)

then the function H is given by

H(y) = exp(� 2�2�2y2)   (y ∈  �), (13)
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and we can establish, from Expressions (9)–(13), the following relationships between the

parameters �, FWHP, EIFOV and � (Banon,1990)

FWHP
�

 = (8ln(2))���  (= 2.35482), (14)

EIFOV
�

 = �(2ln(2))����  (= 2.66822), (15)

�

�
 = �(2ln(1/�))����  (= 2.16809 for � = 0.35). (16)

Expression (16) can still be written

� = exp(�
�2�2

2�2
). (17)

Table 1 gives the numerical relationships between the above parame-

ters for � = 0.35.

TABLE 1 – RESOLUTION PARAMETERS RELATIONSHIPS IN THE GAUSSIAN
CASE.

� ���� ����� �������	����

��� � 	��������� 	������������ 	�������

������ ��������� � 	������������ ��	�����

������� ������� �����	������ � ����	���

�������	������ ����	��� 	���	�	����� 	����������� �

If, for the chosen direction, the distance � between two consecutive

sample positions is equal to the instantaneous field of view, denoted IFOV, as shown in Fig-

ure 10, then we can establish from Expression (16) the following relationships between �

and IFOV

� = 1
�

(2ln(1/�))��� IFOV. (18)

In particular, for � = 0.35, from Table 1,
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� = 0.46124�IFOV. (19)

FWHP = 1.08613�IFOV. (20)

EIFOV = 1.23068�IFOV. (21)

For both directions, the parameters �, �, FWHP and EIFOV depend

on the point u on the earth surface, and they define, in the neighborhood of u, the spatial

resolution of the sensor. The greater is � or the smaller are �, FWHP and EIVOF, and the

thinner is the spatial resolution.

2.5 – IFOVS DETERMINATION

For a given u ∈  S, we are interested in finding the size IFOV� and

IFOV�  of a rectangle in the tangent plane in u at S which projection on S best approximates

the detector projection on the earth surface (see Figure 11.) For this purpose, we will con-

Fig. ����Rectangle approximation of a detector projection onto the earth sur-
face (downward view).
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�
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�

sider the curvature of the S section in the view plane that contains u.



��

We now consider the following parameters within the view plane (see

Figure 12):

let q be the orthogonal projection of the optical center p onto the earth surface;

let r be the length of the segment up;

let d be the size of the square representing the detector shape;

let f be the focal length of the telescope;

let 	 be the view angle upq;

let c be the curvature center;

let 	�  be the angle ucq;

let r�  be the curvature radius at u;

let h be the satellite altitude.

Fig. ����Acquisition geometry of a pixel.
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From Figure 12 we can establish that

IFOV� = rcos(�	�)(d/f)   (from triangle uq�p), (22)

IFOV�  = IFOV�cos(�	�)/cos(�	� + 	� )   (from the zoomed part of Figure 12), (23)

r = (r�  + h)cos(�	�) – (r�
� – (r�  + h)�sen�(�	�))���    (from triangles jpc e juc), (24)

	�  = arcsen(rsen(�	�)/r� )   (from triangles uq�p e uq�c). (25)

In other words, under the Gaussian assumption and � = 0.35, for a

given u ∈  S, the parameters ��(u) and �� (u), in the expression of h(u)(z),

h(u)(z�, z� ) = 1
2��1(u)�2(u)

exp(� (
z1

2

2�1(u)2
�

z2
2

2�2(u)2
))   ((z�, z� ) ∈  T�), (26)

are given by, from Expression (19),

��(u) = 0.46124�IFOV�, (27)

�� (u) = 0.46124�IFOV� , (28)

where IFOV� e IFOV�  are obtained from Expressions (22) to (25).

3  SIMULATION PROCESS

3.1 – VARIANCES PROPERTY IN LINEAR MAPPINGS COMPOSITION

Let h1 and h2 be the adaptive point spread function of two sensors

called here Sensor1 and Sensor2, respectively. Let us assume that h1 and h2 are such that,

for any u ∈  S, there exists a unique function �	(u) from S to � such that, for any x ∈  S,

h2(v)(x) = �
S

 h1(v)(u)�	(u)(x)du   (v ∈  S). (29)

If f1�  and f2�  are the blurred earth scene obtained by transformation of

the earth scene f through the continuous linear mappings represented, respectively, by h1



�

and h2, then the above assumption guarantees that f2�  can be derived from f1�  through the

continuous linear mapping represented by �	. More precisely, for any x ∈  S,

f2�(x) = �
S

 f1�(u)�	(u)(x)du. (30)

This result is illustrated in Figure 13 .

Fig. ����Alternative option to obtain the blurred earth scene relative to Sensor2.
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Let us approximate, as in Subsection 2.3, the earth surface S around

the point v in S by its tangent plane T�  and let us assume that there exists a unique function

�	�  from T�  to � such that, for any z ∈  T� ,

h2(v)(z) = �
Tv

 h1(v)(u)�	�(z – u)du. (31)

Returning to the separability assumption of Subsection 2.3, Expres-

sion (31) also applies to the 1–D adaptive point spread functions for each of the along and



��

across track directions, that is, with the notational convention of Subsection 2.4, for any

z ∈  �,

h2(v)(z) = �
�

 h1(v)(u)�	�(z – u)du. (32)

In other words, h2(v) is the result of the convolution product of h1(v)

and �	� .

Let us assume that, in both directions and for both sensors, the 1–D

adaptive point spread function, say h, is “centered” at v (v = (0, 0), with respect to the coor-

dinate system used in Expression (6)), that is, satisfies, for any v ∈  S,

(�
�

 uh(v)(u)du)/(�
�

 h(v)(u)du) = 0. (33)

In this case, in both directions, the solution �	�  satisfies, for any

v ∈  �,

(�
�

 z�	�(z)dz)/(�
�

 �	�(z)dz) = 0. (34)

Let �1�
��2� and ��� be the real valued functions defined on S and such

that their values at v in S are the variances of the functions h1(v), h2(v) and �	� , respectively.

We have, for any v ∈  S,

�2�(v) = (�
�

 z�h2(v)(z)dz)/(�
�

h2(v)(z)dz) (35)

(from Expressions (7), (8) and (33))

 = (�
�

 z��
�

 h1(v)(u)�	�(z – u)dudz)/(�
�

h2(v)(z)dz) (36)



��

(from Expression (32))

 = (�
�

 h1(v)(u)�
�

 z��	�(z – u)dzdu)/((�
�

h1(v)(u)du)(�
�

�	�(z)dz)) (37)

(by the distributivity property and a convolution property)

 = (�
�

 h1(v)(u)(���(v) + u�)du)/(�
�

h1(v)(u)du) (38)

(from Expressions (7), (8) and (34))

 = (�
�

 h1(v)(u)���(v)du + �
�

u�h1(v)(u)du)/(�
�

h1(v)(u)du) (39)

 = ���(v) + �1�(v)   (from Expressions (7), (8) and (33)) (40)

Therefore, from Expressions (35) to (40), we have the following vari-

ances property, for any v ∈  S,

�2�(v) = ���(v) + �1�(v). (41)

Expression (41) is actually the Bienaymé equality (Loève, 1955,

p.12) of the Probability Theory. From Expression (41), we see that a necessary condition to

guarantee the existence of the solution �	�  in equation (31) is

�1�(v) � �2�(v). (42)

Furthermore, when h1(v) and h2(v) are two Gaussian functions, we

know (e.g., by using the convolution theorem of the Fourier Transform Theory (Jain,

1989)) that the solution �	�  is also a Gaussian function.



��

3.2 – CONTINUOUS SIMULATION PROCESS

Let Sensor1 and Sensor2 be the two sensors of Subsection 3.1. We are

now considering the simulation of Sensor2 through the composition of a linear filter with

Sensor1.

By assuming that the adaptive point spread function h1 for Sensor1 is

the same for all the images, that is, it does not depend on i, and by using the result illustrated

on Figure 13, we can derive the continuous simulation process for Sensor2 shown in Figure

14.

Fig. ����Continuous simulation process for Sensor2.
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The continuous simulation process is based on the blurred earth scene

f1�  relative to Sensor1 and cannot be implemented unless f1�  is reconstructed from its sam-

ples. In the next subsection we propose a digital simulation process that avoids the explicit

reconstruction of f1� .

3.3 – DIGITAL SIMULATION PROCESS

In place of the continuous simulation process, we propose the digital

simulation process shown in Figure 15. Instead of the digital images collection {g2� �, the
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Fig. ����Digital simulation process for Sensor2.
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digital simulation process produces a simulated digital images collection denoted { ��2� },

that should be a good approximation of {g2� }.

 The simulated digital images collection is the result of the transfor-

mation of a collection of calibrated digital images produced by Sensor1 through a Digital

Simulation Algorithm (DSA) which design depends on Sensor2 model.

We will denote a collection of m calibrated digital images produced by

Sensor1 by {(g1� , �1� ��
� and a collection of n simulated digital images produced by the

DSA by { ��2� } �
�.

A calibrated digital image (g1, �1 is a pair formed by a digital image

g1, produced by Sensor1 observing an earth scene f, and the function �1 given by Expres-

sion (1) that transforms f into g1. In other words, for each calibrated digital image (g1, �1,

together with g1, we know the geometrical function t1 and the adaptive point spread func-

tion h1 that participate in the definition of �1. In the digital simulation process, the cali-

brated digital images collection {(g1� , �1� � is used by the DSA in place of the blurred

image f1�



��

Let us denote by E1 and E2 the domains of the images produced by

Sensor1 and Sensor2, respectively. The DSA for Sensor2 is then given by, for any cali-

brated digital images collection {(g1� , �1� ��
�, any y � E2 and any j = 1,... n,

��2� (y) = 

��

��
�

�

�

	
i
Ij(y)

	
v
E1

g1i(v)hi, j(v)(y)

	
i
Ij(y)

	
v
E1

hi, j(v)(y)
if Ij(y) ��

0 otherwise,

(43)

where I� (y) are the sets of indices given by

I� (y) = {i ∈  {1, ..., m}: t2� (y) ∈  B� }, (44)

where

B�  = t1� (bounding rectangle in �� that contains E1); (45)

where h���  are functions from E2 to � �� .

In other words, for any pixel position y in E2, the digital simulation

algorithm produces the pixel value ��2� (y) of the simulated digital image from (if any) the

calibrated digital images (g1� , �1� ) that cover t2(y) in the sense that t2(y) ∈  B� . Figure 16

shows a pair i, j in such situation .

In Expression (43), the functions h���  can be seen as adaptive discrete

point spread functions of batteries of adaptive discrete linear filters that transform the digi-

tal images g1�  in � ��  into a digital image ��2�  in � �� . For a given y ∈  E2, any

j = 1, ..., n and any i ∈  I� (y), such functions are given by

h���� (v)(y) = h� (y����  – v)   (v ∈  E1), (46)
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Fig. ���Geometrical  data involved in the digital simulation algorithm.
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where y����  are elements of E1 such that t1� (y���� ) is the nearest neighbor of t2� (y) among

t1� (E1) (the set of all the projections of pixel positions of g1� ) as shown in Figure 16;
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where h�  are functions from � to � that we call the local point spread functions.

Here, the use of the nearest neighbor rule is convenient because it cor-

responds to an implicit use of a zero order interpolator for the f2� reconstruction. Since the

most significant frequencies of f2� lie below half the sampling frequency of Sensor1, this

zero order interpolator would behave as an ideal interpolator and would lead to an almost

perfect reconstruction of f2�.

Let M be the support of h� , that is,

M = {z ∈  �: h� (z) � 0}. (47)

Figure 17 shows a typical graph of h�  restricted to M.

�
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	 �

Fig. ����Graph of hy restricted to M (the grid nodes).
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In Figure 16, we have represented the set M���� (y���� ) defined by
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M���� (y���� ) = (M# ) � ����  ∩ E1 (48)

where (M# ) � ����  represents the translate by y����  of the transpose of M, that is,

(M# ) � ����  = {y����  – z: z ∈  M}. (49)

Actually, M���� (y���� ) is the support of h���� (�)(y), therefore, from Ex-

pressions (46) – (49), Expression (43) becomes

��2� (y) = 

��

��
�

�

�

	
i
Ij(y)

	
v
Mi, j(yi, j)

g1i(v)hy(yi, j� v)

	
i
Ij(y)

	
v
Mi, j(yi, j)

hy(yi, j� v)
if Ij(y) � �

0 otherwise,

(50)

In the next subsection, we investigate a technique to design the adap-

tive discrete linear filters represented by the h���� , and ultimately by the local point spread

function h� .

4  DIGITAL FILTER DESIGN

Let h be a function from  to �. As in the continuous case (see Sub-

section 2.4), the variance of the function h denoted by var(h) is the positive real number

given by

var(h) = ( 	
k


(k – �)�h(k))/( 	
k


h(k)), (51)

where

� = ( 	
k


 kh(k))/( 	
k


h(k)). (52)
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We denote by sd(h) the standard deviation of h, that is the square root

of var(h)�

In order to simulate  properly the large–field–of–view Sensor2 from

the smaller field of view Sensor1, we will use the previous assumptions made on passive

sensor model and we will consider some other ones.

We will assume that Sensor1 field of view is sufficiently small

compared to the earth surface in order to admit that, around a point y in E1, the geometrical

transformation t1 is a linear transformation from �� to the tangent plane in t1(y) at the earth

surface S, that is, for any � ∈  �, we have

t1(�y) = �t1(y)   (y ∈  ��). (53)

We will assume that the distance between two consecutive sample

positions is � in both directions. With this assumption the geometrical transformations t1�

are completely characterized by

t1(��
��) = (�, �). (54)

We will assume that the local point spread functions h�  of Subsection

3.3 are separable. We will denote simply by h any of both corresponding 1–D functions

from  to �, as we did in Subsection 2.4. We will refer to h as a point spread function.

The Gaussian assumption on the 1–D functions h1(v) and h2(v), and

ultimately �	�  of Subsection 3.1 suggests (see Banon 1990 and Santos 1992) to write the

point spread function h in the following form

h = h 
���

$  ... 
��� �� ��

$�� h, (55)

where 
���

$ denote the ith convolution product;



�

where n is a positive integer that indicates the number minus one of convolution products in

Expression (55), n =  1 meaning no convolution product and simply h = h;

with h given by, for any k ∈  ,

h(k) = 
������������ �∈ �!"

	��������%#&'()�*'#

 �

(56)

where KN, the support of k’, is given by

KN = {k ∈  : �k�� (N – 1)/2} with the support size N = 2l + 1 and l ∈  �;

where w ∈  (0, 1) ⊂  �;

where a ∈  �+is a gain value such that

	
k
KN

h(k) � 1. (57)

The representation of the point spread function h as a convolution

product extended to n identical function h’ is a valuable feature for designing h. In most

image processing computational platform, the number N of coefficients that can be entered

is bounded above (e.g., N � 7) and the variance specification for h can then be achieved by

repeating n – 1 times the filtering operation characterized by h’.

The value of a that satisfies Expression (57) is given by

a � 1� 	
k
KN

wk2
. (58)

From Expression (51) and Bienaymé equality, the variance of the

above function h is given by

var(h) = 
2n(	k2wk2)

1� 2(	wk2)
, (59)



��

where the sum is over the set KN� = {k � KN: k > 0}.

The correct simulation condition for h2(y) is obtained when the ex-

pression below is satisfied

t1(sd(h)) = ��(t2(y)). (60)

In other words, the standard deviation projection of h on the earth surface is equal to the

standard deviation of �	�  of Section 3 (with v = t2(y)).

In Expression (60), t1(sd(h)) should be written t1((sd(h), 0)) or

t1((0, sd(h))) depending on the chosen direction.

From Expressions (53) and (54),  an equivalent simulation condition

can be obtained from

��

��
 = 

2n(	k2wk2)

1� 2(	wk2)
, (61)

where � stands for ��(t2(y)).

Given �, �, N and n, we are interested in finding the parameter w that

satisfies Expression (61). We observe that Expression (61) can be written as a polynomial

equation in w (of degree ((N – 1)/2)�),

�����) + 	
k
K

N�

(�� – n��k�)wk2
 = 0� (62)

Solving Equation (62) in w with the restriction that w � (0, 1) leads to

the determination of h  (and therefore of h�  and h���� ) through the Expressions (55), (56) and

(58). For N = 3 the above equation is of degree one and corresponds exactly to the simula-

tion condition presented in Banon (1990). In this case, the solution of Equation (62) is given

by
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w = 
�2��2

2(n� �2��2)
(63)

and the non zero values of function h’ are

h(0) � 1�(1� 2w) and h(�1) � h(1) � w�(1� 2w). (64)

Let f be the polynomial function defined by

f(w) = c	 + 	
k
K

N�

c wk2
(65)

with

c	 = – ��/2, (66)

and

c  = n��k� – ��� (67)

An equivalent simulation condition is then given by the polynomial

equation

f(w) = 0. (68)

The polynomial equation (68) has (N – 1)/2)� roots. The Descartes

Rule (Marins, 1985) says that the number of real positive roots of a polynomial equation,

with real coefficients, is never greater than the number of signal changes in the sequence of

its non zero coefficients, and if it is less, then it is even. Therefore, the equation f(w) = 0 has

no more than one real positive root, since by Expressions (66) and (67) c	 is negative and

c�, ..., c�"�������  is an increasing sequence of real numbers, indicating that if there exists one

signal change, then it is unique.
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The polynomial function f is continuous in the (0, 1) interval and

f(0) = c	< 0, then, by Bolzano Theorem (Cláudio e Marins, 1988), a sufficient condition to

have at least one root in this interval is

 f(1) > 0. (69)

Therefore, under the above condition, by Descartes Rule and Bolzano

Theorem, we guarantee the existence of one and only one real positive root in the (0, 1)

interval for the equation f(w) = 0.

Figure 18 shows the graph of f for � = 96.24, � = 30, N = 13 and n = 1.

Fig. ����Graph of f.
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To solve Equation (68), we can use the Newton–Raphson method

(McCracken and Dorn, 1964; Cláudio e Marins, 1988)

w ��+��  = w�  – (f(w� )/f’(w� ))   i = 0, ... (70)



�	

Here f’(w) = 	
k
K

N�

k�c w(k2�1).

Figure 18 indicates that chosing w	 = 1 we should get a good precision

in a few iterations.

Returning to the condition expressed in (69), we see that �, �, N and n

must satisfy

�

�
 < K(N, n), (71)

where

K(N, n) = ((2n/N)( 	
k
K

N�

k�))��� . (72)

Table 2 gives some typical values for K(N, n) and N + (N - 1)(n – 1)

which represents the size, in the chosen direction, of the support M.

In order to find the filter design parameters N and n from the parame-

ter � and �, we just have to read in Table 2 the values of N and n such that K(N, n) is greater

than �/� and among the possible solutions we choose the more convenient ones.
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TABLE 2 – FILTER DESIGN PARAMETERS. 

K(N, n)
N� (N � 1)(n� 1)

�

" � � � � �  � � � �	

	��� ���� ���� ��� ���� ��		 ��� ���� ���� ����
� � � � � �� �� �� �� �� ��

���� ��		 ���� ���� ��� ��� ���� ��		 ���� ����
� � � �� �� �� �� �� �� �� ��

��		 ���� ��� ��		 ���� ���	 ���� �� �		 ���
� � �� �� �� �� �� �� �� �� �

���� ��� ���� ��� ���� ��� ��� ���	 ���� ���
� � �� �� �� �� �� �� � �� ��

��� ���� ���� ��� ��	� ���� ���� ���� ���� �	�		
�� �� �� �� �� �� � �� �� �� �	�

���� ���� ��� ���� ���� ���� ���	 �	��� ����� �����
�� �� �� �� �� � �� �� �� �	� ���

���� ��� ���� ��� �� �	��� ����� ����� ���� ���
�� �� �� �� �� �� �� �� ��� ��� ���

���	 ��� ���� ���	 �	��� ���		 ���� ���� ����	 �����
�� �� �� �� � �� �� ��� ��� ��� ��

(continued).
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TABLE 2

(conclusion).

�

" �� �� �� �� �� � �� �� �� �	

���� ���� ���� ��	 ��� ���� ���� ��� ��� ���
� �� �� �� �� �� �� �� �� �� ��

��� ���	 ���	 ���� ���� �� ���� �		 �� ���
� �� �� �� �� � � � �� �� ��

�� ��� ���� ���� ���	 ��		 ���� ���� ���� ����
� � �� �� �� �� �� �	� �	� ��� ���

��� ���� ���� �� �	�		 �	��� �	�� �	��� ����� �����
� �� �� �	� ��� ��� ��� ��� ��� ��� ��

�	��� �	��� ����	 ����� ����� ���� ���	� ����� ����� �����
�� ��� ��� ��� ��� ��� �� ��� ��� ��� �	�

����� ���� ����� ���		 ����� ����� ����� ����� ���� ����
�� ��� ��� ��� �� ��� ��� �	� ��� ��� ���

����� ����� ����� ���� ���� ����� ����� ����� ����� �����
�� ��� �� ��� ��� ��� ��� ��� ��� �� ���

���� ���� ��� ����� ����� ���	 �	��	 �	��� ����� �����
�� ��� ��� �	� ��� ��� ��� ��� ��� �	� ���

For example, in order to find the filter design parameters N and n for

� = 96.24 and � = 30, that is, for �/� = 3.20, we may choose among the following solutions

(which are the best ones in terms of computer time in each line and column of Table 2):

N = 3 and n = 16 (K(N, n) = 3.27, N2n = 144, N + (N – 1)(n – 1) = 33) or

N = 5 and n = 6 (K(N, n) = 3.46, N2n = 150, N + (N – 1)(n – 1) = 25) or

N = 7 and n = 3 (K(N, n) = 3.46, N2n = 147, N + (N – 1)(n – 1) = 19) or

N = 9 and n = 2 (K(N, n) = 3.65, N2n = 162, N + (N – 1)(n – 1) = 17) or

N = 7 and n = 3 (K(N, n) = 3.74, N2n = 169, N + (N – 1)(n – 1) = 13).
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Implementation and performance considerations may orient the final

choice between these five solutions.

Hence, to compute the pixel value ��2� (y) at position y we have to go

through the following steps:

1) determination of the projection t2� (y) of the pixel position y on earth (this projec-

tion can be obtained from a geometrical model for the earth, the satellite orbit, the satellite

movement equation, the camera orientation and the detectors array geometrical character-

istics (Santos, 1992));

2) determination of the set I� (y), that is the set of calibrated digital images (g1, �1)

from Sensor1 that cover  the point t2� (y);

3) for such images, determination of the pixel position y����  in E1 such that t1� (y���� ) is

the nearest neighbor of t2� (y) among the set of all the projections of pixel positions of g1� ;

4) determination of IFOV� and IFOV�  from Expressions (22) and (23);

5) determination of �2� and �2�  from Expressions (27) and (28);

6) determination of � for both directions, say �� and �� , from Expression (41), that

is,

��
� = �2�

� – �1�
��   and    ��

� = �2�
� – �1�

�;

7) determination of N and n such that (max(��, �� )/�) < K(N, n) by using, for ex-

ample, Table 2;

8) determination of w from the Newton–Raphson method (70);
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9) determination of h from Expressions (55), (56) and (58) for both directions, say

h� and h� ;

10) determination of h�  by

h� (k�, k� ) = h�(k�)h� (k� )   (k�, k� ) ∈  KN
2;

11) determination of ��2� (y) from Expressions (43) and (46), or (50).

In order to illustrate the above design technique, let us consider a more

simple example. Let the distance between two consecutive sample positions be � = 1 and

the standard deviation be �1 = 0.46124 for Sensor1 (i.e., � = 0.35 for Sensor1, see Table 1).

Let us assume that Sensor2 to be simulated has a resolution twice lower than Sensor1 reso-

lution, that is �2 = 0.92248. From Expression (41), the standard deviation � of the digital

filter is �� �1 3� � 0.79889 and, finally, �/� = 0.79889. From Table 2, N = 3 and n = 1

satisfy Expression (71). In this simple case, in both directions, from Expressions (63) and

(64), the non zero values of h’, that is, of h are, using matrix notation,

h � [0.3191 (0.3618) 0.3191], (73)

where the element inside parenthesis corresponds to the value of h at the origin.

Figure 19 shows the graphs of the following three functions H1, H2

and H
~
2:

H1(y) = exp(� 2�2�12y2)   (y ∈  �), (74)

with �1 � 0.46124;

H2(y) = exp(� 2�2�22y2)   (y ∈  �), (75)

with �2 � 0.46124;
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Fig. ����Sensor1, Sensor2 and simulated Sensor2 MTF.

0.25

0.35

H
~
2

H2

H1

H
~
2(y) = H1(y) 	

k
K3

h(k)cos(2�ky)   (y ∈  �), (76)

with h given by Expression (73).

The functions H1, H2 and H
~
2 represent the MTFs of, respectively,

Sensor1, Sensor2  and the simulated Sensor2 through the composition of the design filter

with Sensor1. They are the Fourier Transform of the respective point spread functions.

Finally, the 2–D digital filter point spread function is given by, using

matrix notation,

hth ��
�
�

0.1018
0.1154
0.1018

0.1154
(0.1309)
0.1154

0.1018
0.1154
0.1018

�
�
�
.

5  APPLICATION TO THE BRAZILIAN REMOTE SENSING SATELLITE

The digital simulation process of Subsection 3.3 has been imple-

mented to simulate the Remote Sensing Satellite (SSR) of the Brazilian Complete Spatial

Mission (MECB) from a LANDSAT Thematic Mapper (TM) scene. In this way, band 1 and

band 2 small patches have been produced.
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5.1 – SSR SPECIFICATIONS

The SSR specifications that have been used (most of them can be

found in Santana et al., 1988, 1989) are shown in Table 3.

TABLE 3 – SSR SPECIFICATIONS.

Parameter Value

altitude 639.73 km

orbit inclination 82.00�

IFOV
(scene element approximate size at nadir)

3.314 � 10–4 rad
(212 � 212 m2)

distance between two consecutive samples (�)
(approximate distance at nadir)

3.314 � 10–4 rad
(212 � 212 m2)

attenuation factor (�) 0.35

number of detectors per line 3456

number of lines 3456

5.2 – SSR PATCHES SPECIFICATIONS

The SSR patches specifications that have been used are shown in

Table 4. These specifications correspond to an off nadir simulation condition, as shown in

Figure 20. Actually, with these specifications, the SSR patches fall entirely inside the B

quadrant of the TM5 17662 image (orbit 222, point 75) of June 27, 1987.

TABLE 4 – SSR PATCHES SPECIFICATIONS.

Parameter Value

SSR scene center latitude – 24.69o

SSR scene center longitude –47.88o

patch first line SSR scene line 1

patch first column SSR scene column 31

patch number of lines
(patch projection approximate vertical dimension)

420
(89.0 km)

patch number of columns
(patch projection approximate horizontal dimension)

400
(84.8 km)
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The spectral characteristics of bands 1 and 2 of the SSR are assumed to

be, respectively, those of bands 3 and 4 of the TM sensor.

Fig. �	��Patch localization in the scene (hatch area).

1

1

3456

3456

������������
(–24.69o, –47.88o)
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5.3 – TM RESOLUTION SPECIFICATIONS

The TM resolution specifications that have been used are shown in

Table 5. The EIFOV specifications can be found in Fonseca, 1988, p. 43, and Fonseca et al.,

1993. The values of �1 are obtained from the EIFOV values through Expression (15) or

Table 1.

TABLE 5 – TM RESOLUTION SPECIFICATIONS.

Row Column

� 30 m 30 m

EIFOV 41.6 m 45.4 m

�� (actually used)
(�� obtained from EIFOV)

17 m
(15.59 m)

17 m
(17.02 m)
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5.4 – SIMULATION FILTER SPECIFICATIONS AND PERFORMANCES

The filter design parameters n and N  that have been used are n = 1 and

N = 15. The value n = 1 has been chosen because it corresponds to the most efficient solu-

tion in terms of computer time and in our implementation we did not have any upper bound

for the possible values of N. The value N = 15 has been obtained from the evaluation of �/�

and consulting Table 2. To compute �/�, we go through the following steps with respect to

the point u (see Figure 12) that corresponds to the upper left corner pixel position of the SSR

scene defined in Table 4:

1) the curvature radius r�  is 6381.35 km and a view angle 	 = IFOV� (num-

ber of detectors) /2 is 0.57266 rad (with IFOV =  3.314 � 10–4 rad and number of detec-

tors = 3456);

2) the length of up r is 777.74 km (from Expression (24), with h = 639.73 km);

3) the angle ucq 	�  is 0.06609 rad (from Expression (25));

4) the IFOV� is 216.62 m (from Expression (22));

5) the IFOV�  is 226.77 m (from Expression (23));

6) the standard deviation �2 (i.e., �� (u)) is 104.59 m (from Expression (28));

7) the standard deviation � (i.e.,��2) is 103.20 m (from Expression (41), with

�1 = 17 m);

8) the ratio �/� is 3.44 (with � = 30 m).

Actually, from Table 2 (with n = 1), N = 13 is acceptable

(K(13, 1) = 3.74). We chose N = 15 to get a better MTF Gaussian approximation as we see

on Figure 21.
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Fig. ����MTFs’ comparison.
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Figure 21 shows the graphs of the following three functions H, H13

and H15:

H(y) = exp(� 2�2�2y2)   (y ∈  �), (77)

with �� 103.20;

H13(y) = 	
k
K13

awk2
cos(2��ky)   (y ∈  �), (78)

with w = 0.9851566098 (from Expression (62), with �� 103.20, � = 30, N = 13 and

n = 1), a = 0.09328127732 (from Expression (58), with N = 13) and � = 30;

H15(y) = 	
k
K15

awk2
cos(2��ky)   (y ∈  �), (79)

with w = 0.9704356817 (from Expression (62) with �� 103.20, � = 30, N = 15 and

n = 1), a = 0.10458408803 (from Expression (58), with N = 15) and � = 30.

The functions H, H13 and H15 represent the MTFs of, respectively,

the ideal continuous filter and the digital filters with two different support sizes. They are

the Fourier Transform of the respective point spread functions.
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For both solutions, N = 13 and N = 15, the variances of the digital fil-

ter point spread functions h are the same by construction (var(h) = 103.20�), but with a

larger impulse response support, we reduce the effects of the Gibbs phenomenon resulting

from truncation. With N = 15 instead of N = 13, we better fill the original specification of

the continuous filter, that is, the value 0.3599 of the attenuation factor � at half the sampling

frequency � = 1/226.77 = 0.0044 m�1. From Expressions (78) and (79) (with y = �/2) we

have �13 = 0.2692 and �15 = 0.3029.

From Figure 21, we see that the proposed digital filter behaves prop-

erly for low frequency signals and is conservative for frequencies around half the sampling

frequency (�/2). In other words, the image obtained from sensor simulation will be theoreti-

cally slightly more blurred that it should be, nevertheless without practically any visual dif-

ference. Furthermore, the value �� 103.20 corresponds to the upper left pixel simulation,

for the other pixels the value of � is smaller and the discrepancy between � and �15

decreases monotonically.

Figures 22 and 23 show, respectively, the two small patches of the

band 1 and band 2 specified in Subsection 5.2 and obtained by SSR simulation from TM5

Band 3 and Band 4 (orbit 222, point 75, quadrant B, June 27, 1987). They show Buritama

reservoir and Araçatuba, Birigui and Penápolis cities of São Paulo state.
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Fig. ����Buritama reservoir and Araçatuba, Birigui e Penápolis cities (São Paulo State).
SSR Band 1 patch obtained by SSR simulation from TM5 Band 3,

orbit 222, point 75, quadrant B, June 27, 1987.
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Fig. ����Buritama reservoir and Araçatuba, Birigui e Penápolis cities (São Paulo State).
SSR Band 2 patch obtained by SSR simulation from TM5 Band 4,

orbit 222, point 75, quadrant B, June 27, 1987.

6  CONCLUSION

In this paper we have presented a new technique to design a linear dig-

ital filters for sensor simulation. The design technique is based on the assumption that the

point spread function of the ideal continuous filter should be Gaussian and that the point

spread function of the digital approximation filter should have the same variance. A numer-

ical table has been given that is useful to determine the minimum size of the impulse

response support of the filter. The study of the performance of the designed digital filter has
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shown that good properties can be achieved. For any support size above the lower accept-

able value the digital filter properly attenuates the low frequency components and for the

frequency components around half the sampling frequency we can reach the desired preci-

sion level for the attenuation factor just by increasing the support size.

Finally, bands 1 and 2 patches of the Remote Sensing Satellite (SSR)

of the Brazilian Complete Spatial Mission (MECB) have been obtained from a LANDSAT

Thematic Mapper scene. The chosen orbit for the SSR is such that the patches are in off

nadir acquisition conditions.

With the digital simulation process at hands, it is now possible to eval-

uate the future images that would be produced by the SSR (Remote Sensing Satellite) of

MECB (Brazilian Complete Spatial Mission) and to test the programs that will process the

raw image in order to reconstruct the original scene along a given cartographic projection.
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