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Abstract: This paper presents a data model for cyclic geographic events useful for next-
generation geographic information system design. The paper introduces a 
structure that captures all possible temporal relations between occurrences of 
cyclic events, as well as the frequency in which each temporal relation occurs. 
Based on such a structure, this paper proposes a new set of temporal 
constraints and a methodology that selects from different temporal 
configurations of the cyclic events, the configuration that best represents the 
imposed temporal constraints. 
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1. INTRODUCTION 

The world is a dynamic place and for over a decade the geographic 
information science research community has had a strong interest in being 
able to capture dynamic or time-varying phenomena (Langran 1992). There 
has been a focus on developing spatio-temporal data models (Peuquet and 
Duan 1995; Abraham and Roddick 1999), including models that treat 
moving objects (Pfoser and Theodoridis 2003), and visualization of dynamic 
objects (Campos et al. 2003). Recently, there has been an effort to develop 
event-based approaches for geographic information science where events 
become the principal component of modeling (Worboys and Hornsby 2004).  

Events are abstractions of interconnected phenomena and activities of the 
real world. These abstractions, however, do not represent standalone actions 
or behaviors. The happenings of events depend on the fulfillment of some 
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conditions (i.e., prior or concurrent events) and imply some consequences in 
the modeled world. This interdependence between events combined with the 
complex nature of geographic phenomena imposes additional requirements 
for the conceptualization of a temporal data model. This model requires 
more elaborate temporal structures that capture the complexity of geographic 
events as well as a formal representation of the relationships between such 
events. 

This paper considers a special category of events that include, for 
example, the movement of trains between cities, a person’s daily routine of 
driving to work and then home again, or the movement of tides. These kinds 
of happenings occur repeatedly in a cyclic manner. Computational models 
need to be able to handle such cyclic events and the relationships among 
them. This paper focuses on the temporal characteristics of cyclic events and 
treats the relationships between events that can be expressed in terms of 
temporal constraints.  

The remainder of this paper is structured as follows: Section 2 reviews 
the mechanism of temporal constraints between two intervals. Section 3 
discusses the limitation of using temporal constraints between two intervals 
when dealing with cyclic events. Section 4 describes a structure to represent 
the set of temporal relations that hold between two cyclic intervals. Section 5 
introduces instances of temporal constraints used to relate cyclic intervals 
and proposes a rationale to select the temporal arrangement of the cyclic 
intervals that best represent the intended constraints. Section 5 presents 
conclusions and indicates future work. 

2. TEMPORAL CONSTRAINTS BETWEEN 
INTERVALS 

A critical issue in the conceptualization of a temporal data model is the 
characterization of the fundamental temporal entity and the set of relations 
that holds between such entities. Many GIS applications adopt temporal 
intervals as the temporal representations of events and Allen’s set of thirteen 
temporal relations as the basic relationships that hold between two intervals 
(Allen 1983). Choosing intervals as the temporal construct that corresponds 
to the time when an event is happening yields a simple but powerful 
abstraction of the temporal characteristics of events. These characteristics 
are represented by an interval’s structural elements, that is, Evi = (Si ,Ei) , 
where Evi  is the temporal representation of the event i, and Si and Ei are the 
interval’s start and end points, respectively.  

Values assigned to the intervals’ endpoints are called unary temporal 
constraints (Meiri 1996). These values may vary from a single absolute 
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value (e.g., Si = 3, Ei = 5) to complex expressions representing multiple 
values or ranges of values (e.g. Si = 5∨ Si = 7, Ei ≥ 1∧ Ei ≤ 3). Complex 
expressions allow unary temporal constraints to capture, for example, 
uncertainties and incomplete knowledge about the temporal characteristics 
of events. These expressions, however, do not capture any temporal 
relationships that exist among events, valuable information that models the 
relative order between events (Frank 1998).  

A common approach for relating two events is to impose a temporal 
relationship between two intervals. These relationships are called binary 
temporal constraints or temporal constraints for short. Thus, temporal 
constraints represent known relationships between events that occur in a 
geospatial domain.  

The usual way of representing dependencies between temporal 
representations of two events is through triples of the form (Evi ,Ev j ,τ ). In 
these triples, the objects Evi and Evj are temporal representations of two 
events and the object τ is an instance of a temporal constraint that must hold 
between these intervals.  

Instances of temporal constraints are any kind of information that relates 
two intervals. These instances can be divided into two groups: qualitative 
and quantitative temporal constraints. Qualitative constraints are represented 
by a disjunction of basic temporal relations. Thus, instances of such 
constraints may vary from values that impose a basic temporal relation to 
complex expressions involving disjunctions of many temporal relations. 
Instances of temporal constraints of the kinds before and meets, for 
example, correspond to imposing basic temporal relations between the 
intervals. Other instances of temporal constraints can be defined in order to 
represent more abstract relationships. A temporal constraint 
startTogether, for example, defines an instance of a temporal 
constraint in which only the start points of the intervals are constrained. This 
temporal constraint is represented by a disjunction of the temporal relations 
starts and startedBy. Quantitative constraints limit permissible values of the 
distance between two points of the related intervals. These constraints are 
often needed to capture relationships between geographic phenomena that 
cannot be expressed in terms of disjunction of temporal relations. The 
temporal constraint centered, for example, relates the midpoint of two 
event intervals. There is no disjunction of basic temporal relations able to 
capture such a configuration. Table 1 shows some triples of temporal 
constraints and the corresponding relationship that must hold between the 
endpoints of the related intervals.  
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Table 1. Triples of temporal constraints and the relationships between the intervals’ endpoints 
Temporal Constraints Endpoint Relations 
 (Evi,Evj, before) Si < Sj  ∧  Ei < Ej 
 (Evi,Evj, meets) Si < Sj ∧ Ei = Sj 
 (Evi,Evj, startTogether) Si = Sj  
 (Evi,Evj, centered) (Si + Ei)/2 = (Sj + Ej)/2 

 
The temporal characteristics of events including their temporal 

constraints can be depicted in a graphical representation. Consider, for 
example, four events associated with an aircraft operation (i.e., refueling, tire 
pressure checking, taxiing, and take-off). Each event has a known duration 
and can be modeled as a temporal interval (Figure 1). Labeled arrows 
between intervals illustrate the temporal constraints. In this scenario, if the 
airplane needs to depart before the scheduled time, the other events must be 
rescheduled in order to guarantee that the plane does not depart without fuel 
or without the tire pressure being checked.  

 

 

Figure 1. Representation of temporal constraints between events relating to an aircraft’s 
operation. 

The mechanism of representing temporal constraint between pairs of 
intervals to capture relationships between events falls short, however, when 
the events have a cyclic pattern of repetition. These kinds of event patterns 
require a more complex temporal model and a new set of temporal 
constraints that take into account the particularities of cycles.  The next 
section discusses the limitations using instances of temporal constraints for 
two intervals to relate the temporal characteristics of cyclic events. 

3. RELATING CYCLIC EVENTS WITH TEMPORAL 
CONSTRAINTS BETWEEN TWO INTERVALS  

The temporal representation of cyclic events is a sequence of intervals 
that do not overlap. In such a representation, each interval corresponds to an 
occurrence of the cyclic event, called the cycle’s activity. The gap between 
two occurrences of a cyclic event, if it exists, is referred to as the cycle’s 
inactivity. The union of the cycle’s activity and inactivity intervals defines 

refuel 

tires taxiing 

take-off 

meets 

before 

centered t 



113 

the cycle’s period. Consider, for example, a small portion of a timeline 
where occurrences of a cyclic event are depicted (Figure 2). The gray 
rectangles in the figure represent the cycle’s occurrences or periods of 
activity and the white rectangles represent the temporal gap between two 
occurrences of the cycle. In this paper, we consider cycles with an infinite 
number of repetitions or with frame-times much larger than the cycles’ 
period. Frame-time is an interval that encompasses all cycle occurrences 
(Terenziani 2003). The rationale discussed in this paper, however, can be 
easily extended to treat cycles that have only a finite number of repetitions. 

The temporal characteristics of a cyclic event are represented by the 
structural elements of the collection of the cycle’s occurrences and the gap 
between them, that is, CycEvi = (Si ,Ei ,D) , where Si = {Si

1,...,Si
n ,...}  and 

Ei = {Ei
1,...,Ei

n ,...}  represent the collection of periods of activity’s start and 
end points, and D is the duration of the period of inactivity (i.e., 
Si

n +1 = Ei
n + D).  

 
 
 
 
 
 

Figure 2. A segment of a timeline showing the temporal representation of a cyclic event. 

Individual occurrences of a cyclic interval can be retrieved from this 
model. The k-th occurrence of the cyclic event i, for example, is defined as 
CycEvi

k = (Si
k ,Ei

k ) . In this way, it is possible to relate occurrences of cyclic 
intervals using instances of temporal constraints between two intervals (i.e., 
the mechanism for constraining pairs of intervals can be adapted to relate 
two cyclic intervals). The main modification is to allow elements in the triple 
of temporal constraints to be a certain occurrence of a cyclic interval.  

Consider, for example, an application controlling the scheduling of two 
buses in an urban environment. Each bus travels a certain route many times 
and between each run, the buses rest for a certain amount of time. The 
temporal characteristics of the buses movement can be modeled as a 
sequence of intervals that do not overlap (i.e., cyclic intervals). Each interval 
represents the time needed for a bus to complete the route and the gap 
between the intervals corresponds to the break of the driver (Figure 3). 
Consider also that the two buses serve different routes in the financial 
district and the city has a policy that states that “whenever possible there is 
at least one bus running in the financial district”. Taking into account the 
periods of activity and inactivity, it is possible to schedule these buses in a 
way that enforces the city’s policy.  

 

periods of activity periods of inactivity 
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Figure 3. An arbitrary segment of a timeline showing the temporal representation of two 
cyclic events (Bus 1 and Bus 2) and a temporal constraint centered, which relates two 
occurrences of the cyclic intervals. 

The temporal configuration shown in Figure 3 guarantees that there is 
always one bus running in the financial district. Thus, this configuration can 
be registered in the model through a temporal relationship between a run of 
each bus. One possible solution is to relate the k-th occurrence of Bus 1 with 
the l-th occurrence of Bus 2 with a temporal constraint that relates the 
midpoints of these occurrences, that is,  (CycEvBus1

k , CycEvBus2
l ,centered). 

Imposing a temporal relationship between occurrences of each bus, 
however, is not robust enough to capture the knowledge from the application 
domain (i.e., the city policy concerning the schedule of the buses in the 
financial district). This relationship reflects only a solution found by a 
person that sets up the schedule of the buses based on the duration of each 
run. These kinds of temporal constraints limit the capability of the 
application to react to a change in the environment and to maintain the 
requirements of the application domain (i.e., known or desired relationships 
between cyclic events). For example, a new construction site will close off 
some streets in the route of Bus 2. This means that each run of this bus and 
the time between each run will be shorter (the duration of the rest of the 
driver is proportional to the duration of each run). The new temporal 
configuration of Bus 2’s behavior and the fact that a temporal constraint 
relates only the midpoints of an occurrence of each cyclic interval no longer 
reflects the city’s policy. Changing the duration of the periods of activity and 
inactivity of Bus 2 and preserving the temporal relationship between two 
runs of the buses generates a temporal configuration where at some times, 
both buses are not running (Figure 4).  

When two cycles are involved, a temporal relationship between two 
occurrences of cyclic intervals may not always be the most representative. 
Other occurrences will have different temporal relationships, with the 
possibility that the imposed relation is the less relevant (i.e., the relation 
occurs less frequently than other relations). Thus, a new set of instances of 
temporal constraints is needed to capture relationships that take into account 
temporal relations between all occurrences of a cyclic interval. A temporal 
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constraint such as “maximize the occurrence of periods of non-concurrent 
activities”, for example, gives the above application the information needed 
to find a new temporal configuration with at least one bus always running in 
the financial district. There is no guarantee, of course, that it will be possible 
to find such a temporal configuration, but the application can compute a 
configuration in which simultaneous periods of inactivity are distributed 
evenly during the day, minimizing the occurrence of long periods where no 
bus is running in the designed area. 

 
 
 
 
 
 
 
 

Figure 4. Graphical representations of the new temporal configuration of Buses 1 and 2. The 
oval highlights the period in which neither bus is running. 

In order to treat temporal constraints between cyclic events, an exact 
account of the temporal relations between all occurrences of the cyclic 
intervals is needed. The next sections discuss the representation of temporal 
relations between cyclic intervals. 

4. A REPRESENTATIVE SET OF TEMPORAL 
RELATIONS BETWEEN CYCLIC INTERVALS 

Prior to treating temporal constraints between cyclic intervals, it is 
helpful to review some structural and ontological aspects of the underlying 
conceptualization of a model of time supporting cyclic events.  Critical 
issues include: 
• What are the possible temporal relations that hold between occurrences 

of two cyclic events?  
• What is the temporal relation that occurs most often? 

Previous studies have addressed the issue of temporal relations between 
collections of intervals. These studies can be divided into three main groups. 
The first group (Ladkin 1986; Leban et al. 1986; Balbiani et al. 1988; Morris 
and Khatib 1997) considers relations among generalized sequences of 
recurring events, that is, these studies do not consider any constraints in the 
formation of the elements of the sequence. The second group (Frank 1998; 
Hornsby et al. 1999; Osmani 1999) takes into account the cyclic pattern of 
the sequence of intervals but limit their scope to the particular case in which 
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the cycles have the same period. The third group considers cycles with 
different periods (Cuckierman and Delgrande 2000; Terenziani 2003), but 
limit the representation of temporal relations to a disjunction of Allen’s set 
of temporal relations (Allen 1983). This paper is more related with the 
second and third groups of study but our reasoning process depends on a 
more detailed representation of temporal relations that considers cycles with 
different periods as well as including the frequency of occurrence for each 
temporal relation that holds between occurrences of a cycle. 

A temporal relation between occurrences of cyclic intervals is called 
correlation (Morris et al. 1996). Depending on the temporal characteristics 
of the cycle, the number of correlations can be infinite. After a certain 
amount of time, however, the pattern of correlations also repeats in a cyclic 
fashion. Thus, a finite subset of correlations can be chosen to represent all 
possible temporal relations that hold between occurrences of the cyclic 
intervals. We call this collection of temporal relations the characteristic set 
of correlations. The characteristic set of correlations is a multiset of 
correlations that capture all possible temporal relations between occurrences 
of cyclic intervals. If a certain correlation occurs more than once in the 
collection, the multiplicity of the element in the set must reflect the 
frequency of the temporal relation when all occurrences are considered. A 
characteristic set of correlations with the elements contains, contains, and 
overlaps, for example, reflects the fact that occurrences of the cyclic 
intervals are either under a temporal relation contains or overlaps, and that 
the relation contains occurs twice more frequently than the relation overlaps.  

In order to obtain the characteristic set of correlations, it is necessary to 
compute all correlations over a specified amount of time. The minimum time 
required to capture all possible correlations as well as the frequency of each 
correlation is determined by the duration of the periods of the cycles 
involved in the process. We refer to this amount of time as the extended 
period of two cycles or the period of equivalence (E).  The duration of the 
period of equivalence equals the least common multiplier between the 
duration of the cycles. Thus, the duration of Bus 1’s period (D1) and the 
duration of Bus 2’s period (D2) are used in the computation of the duration 
of the period equivalence (DE) as follows: DE=LCM(D1, D2). LCM is a 
function that returns the least common multiplier of two integers.  Consider, 
for example, the initial temporal configuration of the buses behavior, that is, 
before some streets are closed (Figure 3). Based on the duration of the period 
of each bus behavior, the extent of the period of equivalence is computed.  
For this case, the period of equivalence is enough to cover two periods of 
Bus 1 and three periods of Bus 2 (Figure 5).  

 
 
 



117 

 
 
 
 
 
 
 
 
 
 

Figure 5. Occurrences of the Bus 1 and Bus 2 during the period of equivalence. 

The duration of the period of equivalence defines the extent of a time 
window that captures all possible correlations between two cycles as well as 
the frequency in which each correlation occurs (i.e., the set of correlations 
inside the specified time window forms the characteristic set of correlations). 
The characteristic set of correlations is independent of the position of the 
time window along the timeline. Thus, cycles’ occurrences that lie inside the 
time window can be seen as instances of classes that represent a certain 
number of consecutive occurrences of each cyclic interval. This abstraction 
allows the depiction of instances of these classes in a cyclic representation 
(Figure 6). In such a representation, the circumference of the circle equals 
the duration of the period of equivalence. A cyclic representation enhances 
the visualization of all correlations between cyclic intervals and facilitates 
the identification of the relations that form the characteristic set of 
correlations. Elements of the characteristic set of correlations are one out of 
twelve possible temporal relations between intervals in a cyclic 
representation, that is, the relations before and after are collapsed to a single 
relation called disconnected (Frank 1998; Hornsby et al. 1999). The 
characteristic set of correlations between Bus 1 and Bus 2, for example, is 
composed of the temporal relations overlaps, overlappedBy, metBy, 
contains, and meets (Figure 6). All correlations refer to the temporal relation 
of an occurrence of the outer cyclic interval with respect to an occurrence of 
the inner cyclic interval read in the clockwise direction. 

The temporal model for cyclic intervals is analogous to the Allen’s 
(1983) temporal model for two linear intervals. Both models compare two 
temporal objects and describe a temporal relation that holds between these 
objects. In Allen’s model of time, temporal objects are intervals related by 
one of thirteen basic temporal relations. In the temporal model for cyclic 
events, temporal objects are cyclic intervals (i.e., a collection of intervals) 
related by a set of temporal relations (i.e., a characteristic set of 
correlations). Different from Allen’s temporal model, where the set of 
possible temporal relations is limited to thirteen, the set of possible temporal 
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relations between two cyclic intervals can only be determined based on the 
durations of the cycles’ periods and activity intervals. Thus, temporal 
reasoning involving cyclic intervals requires the identification of all different 
temporal relations between these entities. Different configurations of 
characteristic sets of correlations represent different temporal relations 
between two cyclic intervals. By different configurations, we mean two sets 
with the same number but different kinds of elements or two sets with 
different numbers of elements. With this approach, the order of the elements 
in the characteristic set of correlations is not relevant. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. A cyclic representation of Bus 1 and Bus 2 and the corresponding characteristic set 
of correlations. 

The process of determining all possible characteristic sets of correlations 
is accomplished by incrementing and decrementing the start point of one of 
the cycle’s occurrences by one unit of time. In the linear representation 
(Figure 5), this maps to shifting one cyclic interval’s occurrences by unitary 
increments in the positive or negative direction. In the cyclic representation 
(Figure 6), the same process is accomplished by rotating one cyclic 
interval’s occurrences by angles equivalent to a unit of time in the clockwise 
or counter-clockwise direction. The number of increments or decrements 
needed to compute all different characteristic sets of correlations depends on 
the temporal characteristics of the cycles and on the granularity of the 
temporal space. For each increment or decrement, a new characteristic set of 
correlations is generated. Figure 7 depicts four possible temporal 
configurations between Bus 1 and Bus 2 and their respective characteristic 
sets of correlations. Others possible configurations of the characteristic set of 
correlations are possible but will give sets of correlations with the same 
elements in a different order and possibly with different qualitative 
characteristics (e.g., the amount of overlapping for occurrences of the 
relations overlaps and overlappedBy). These configurations are not treated in 
this paper. 
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Figure 7. Possible characteristic sets of correlations between Bus 1 and Bus 2. 

The set of all possible characteristic sets of correlations forms a model of 
temporal relations for two given cyclic events (i.e., there is no other set of 
correlations that may hold between these events). Once all possible temporal 
relations between cyclic events are known, it is possible to think about 
instances of temporal constraints that enforce a certain configuration among 
the set of possible characteristic set of correlations. Instances of such 
constraints as well as the rationale used to select a specific configuration are 
discussed in the next section. 

5. TEMPORAL CONSTRAINTS WITH INSTANCES 
OF CYCLIC CONSTRAINTS 

Characteristic sets of correlations provide valuable information that can 
be used to impose temporal constraints between two cyclic events. These 
sets inform not only all possible correlations between the cyclic intervals but 
also the frequency of occurrence of each correlation. Thus, instances of 
temporal constraints can exploit this kind of information and enforce a 
temporal configuration in which a certain correlation occurs more or less 
frequently.  

We propose a new set of instances of temporal constraints for cyclic 
events based on the semantics of the characteristic sets of correlations. We 
call this set of values, cyclic constraints. Instances of such constraints are 

{startedBy, overlaps, 
overlappedBy,  overlaps} 

{contains, overlaps, 
overlappedBy, overlaps}

{overlappedBy, overlaps, 
metBy, contains, meets} 

{finishedBy, overlappedBy, 
overlaps, overlappedBy} 

21 

43 
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values of the form maximizeRelation and mininimizeRelation, 
where Relation assumes one of the following values, disconnected, 
meets, overlaps, startTogether, containment, equal, finishTogether, 
overlappedBy, or metBy. Containment is a temporal relation represented by 
the disjunction of the basic temporal relations contains and containedBy.  

Based on instances of cyclic constraints, we propose a rationale to select, 
among all possible characteristic set of correlations, the configuration that 
best captures an intended constraint. The first criterion used in our rationale 
is to select a temporal configuration of the cyclic intervals in which the 
characteristic set of correlations has the largest (or smallest) number of a 
chosen relation. The first option is used for temporal constraints of the kind 
maximizeRelation while the second option is used for temporal 
constraints of the kind mininimizeRelation. 

Consider, for example, all possible temporal configurations between 
occurrences of Bus 1 and Bus 2 depicted in Figure 7 and the city’s policy of 
having always a bus running in the financial district. The requirement of the 
application domain can be represented, for example, as a cyclic temporal 
constraint of the form maximizeDisconnected. The idea here is to try 
to fill the gaps of periods of inactivity for one cyclic interval with periods of 
activity of the other cyclic interval. Given the set of instances of cyclic 
constraints, we consider that such a temporal constraint is the one that best 
reflects the requirement of a city concerned with bus schedules. The criterion 
of maximizing the temporal relation disconnected, however, is satisfied by 
all characteristic sets of correlations. Since the relation disconnected does 
not hold between occurrences of these cyclic intervals, all configurations 
have the same frequency (i.e., no occurrence of such a relation).  

When more than one configuration satisfies an intended relation, we 
propose an additional criterion to break the tie. This second criterion is based 
upon the frequency of closest temporal relations (in a topological sense) that 
occur in the set of correlations. By closest temporal relations we mean the 
notion of conceptual neighborhood introduced by Freksa (Freksa 1992). 
Conceptual neighborhoods of temporal relations describe how similar two 
intervals are based on atomic deformations of one of the intervals. Figure 9 
depicts the structure of the conceptual neighborhood for the set of relations 
between occurrences of cycles. Nodes in the graph represent temporal 
relations and the links connect conceptual neighborhood relations. In such a 
graph, the temporal relations before and after are collapsed into a single 
relation disconnected. Thus, the link between the two nodes representing the 
relation disconnected highlights the fact that the nodes represent the same 
relation and not a conceptual neighborhood. The graph in figure 8 is based 
on the structure of the b-neighborhood graph proposed by Freksa (Freksa 
1992), which is obtained by the redefinition of an interval’s start and end 
points in a way that preserves the length of the interval. We use such a graph 
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because in our reasoning it is the same mechanism used to obtain different 
configurations of the characteristic set of correlation between two cycles. 

 
 
 
 
 
 
 
 
 
 

Figure 8. Conceptual neighborhood structure describing temporal relations between 
occurrences of cycles. 

Based on the conceptual neighborhood of temporal relations, we define a 
second criterion for selecting the best configuration. The second criterion 
selects among the characteristic sets of correlations that of satisfy the first 
criterion the set that has greatest (or least) frequency of conceptual 
neighbors. For example, if it is desirable to maximize the temporal relation 
disconnected between Bus 1 and Bus 2, and the temporal relation 
disconnected does not occur in the set of correlations, then the closest 
configuration is the one with greatest frequency of the relations met and 
metBy (i.e., the conceptual neighbors of the relation disconnected). Applying 
the criterion of conceptual neighborhoods results in the first configuration 
being selected as the “closest” one that satisfies the intended relation (Figure 
7).  

The process of breaking a tie with conceptual neighborhoods is recursive 
in the sense that it can be extended for different degrees of conceptual 
neighborhoods. Thus, if the immediate conceptual neighborhood is not 
sufficient to distinguish among different configurations, the second-degree 
conceptual neighborhood can be used, and so forth. If the highest level of 
conceptual neighborhood is reached without discerning a unique 
configuration, we consider that these configurations are indistinguishable 
with respect to conceptual neighborhood and every configuration satisfies 
the intended relation. 

The temporal configuration between the buses selected by the criteria of 
frequency of temporal relations is actually the same configuration shown in 
Figure 3 (i.e., the configuration selected by a person taking into account the 
city’s policy and the temporal characteristics of the buses behavior). In the 
latter case, the temporal relationship between the buses was registered in the 
model through a temporal constraint relating the midpoints of an occurrence 
of each cyclic interval (i.e., the temporal constraint centered).  The model 
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with cyclic constraints, however, is more robust (i.e., the model is able to 
react to a modification in the characteristic set of the cyclic intervals and still 
keep known relationships between the cyclic events). Consider, for example, 
the temporal characteristics of Bus 2’s behavior when some streets on the 
route of the bus are closed (Figure 4). Considering the temporal 
characteristics of Bus 1 and the new temporal characteristics of Bus 2, a new 
period of equivalence can be computed. In this case, the extent of the new 
period of equivalence is enough to cover one period of Bus 1 and three 
periods of Bus 2. Thus, the process of incrementing and decrementing the 
start point of one cyclic interval by one unit of time yields the set of all 
possible characteristic sets of correlations between Bus 1 and the new 
temporal configuration of Bus 2 (Figure 9). 

Since the temporal constraint registered in the model is of the kind 
maximizeDisconnected, the process of selecting the best configuration 
from a characteristic set of correlations begins with sets of correlations with 
the greatest number of temporal relations disconnected. As in the previous 
case, the temporal relation disconnected does not occur in the set of possible 
characteristic sets of correlations (Figure 9). Thus, maximizing disconnected 
is satisfied by all possible configurations. Considering the frequency of 
conceptual neighborhoods (i.e., met and metBy), results in the first and the 
second configuration being selected (Figure 9). The process continues with 
the second degree of conceptual neighborhood (i.e., overlaps and 
overlappedBy) to break the tie between these two configurations. 
Considering the second degree of conceptual neighborhood, the first two 
configurations are still undistinguishable. This process continues up to the 
highest degree of conceptual neighborhood without being able to distinguish 
the first or second configurations. Thus, in this case we consider that both 
configurations satisfy the intended cyclic constraint and either one can be 
chosen. 

Although the fourth configuration is also a possible configuration of the 
bus schedules that satisfies the city’s policy in the financial district, the 
criterion of frequency of temporal relations ruled out this configuration. The 
main reason for that is because the characteristic set of correlations reflects 
only binary temporal relations (i.e., relations between two occurrences of 
cyclic intervals). Therefore, it is impossible to distinguish, for example, 
between the incidence of the relations overlaps and overlappedBy in the 
fourth and sixth configurations. 
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Figure 9. Possible characteristic sets of correlations between Bus 1 and the new configuration 
of Bus 2. 

Among all possible temporal configurations of the buses, the sixth, 
seventh and eighth configurations are the worst configurations considering 
the city policy regarding the schedule of the buses. These configurations 
have the longest periods of simultaneous inactivity of the buses. 
Coincidently, the approach of relating the buses’ cyclic intervals with an 
instance of a temporal constraint that relates only two occurrences of the 
cycle, discussed early in this paper, results in the selection of the sixth 
configuration. It highlights the fact that using such instances of temporal 
constraints to related cyclic intervals can lead not only to a selection of a 
undesirable configuration, but to a selection of a configuration that 
represents the worst-case scenario. 

6. CONCLUSIONS AND FUTURE WORK 

This paper introduces a model to treat temporal relationships between 
cyclic events, a special category of events commonly encountered in GIS 
applications. The proposed model is based on a structure that captures the set 
of possible temporal relations between occurrences of cyclic events. This 
structure captures also the frequency in which each temporal relation occurs 
when all occurrences of the cyclic events are taken into account. Based on 
such a framework, this paper proposes a new set of temporal constraints to 
capture relationships between cyclic events (i.e., cyclic constraints) and a 
rationale to select among different temporal arrangements of the cyclic 
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intervals, the one that best represents the imposed temporal constraint. This 
paper shows that the model of cyclic constraints is more robust than the 
usual approach of relating two intervals. This model is able to express the 
complex relationships that can exist between cyclic events and react to a 
modification in the temporal characteristic of cyclic events while 
maintaining a known or desired relationship. 

Although the proposed model proves more robust than the usual 
approach of relating two intervals, this model could be extended by 
incorporating some metric information about the temporal relations between 
two cyclic events. This kind of information has the potential to differentiate 
distinct configurations that are considered the same when only qualitative 
measures are taken into account.  In the cases in which the characteristic set 
of correlations is formed by temporal relations disconnected, overlaps, 
contains, and their converses, for example, an increment or decrement in one 
cyclic interval’s occurrences do not necessarily change the characteristic set 
of correlations. For these relations, the temporal location of the intervals can 
vary in a range of values and still keep the same temporal relation. Thus, 
these different configurations of sets of correlation are undistinguishable in 
respect to the frequency in which each correlation occurs. In order to 
distinguish a certain configuration among set of correlations with the same 
frequency of these temporal relations, a qualitative criterion (i.e., a weight) 
for these temporal relations is needed.  
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