

DESIGN AND IMPLEMENTATION ISSUES FOR
EXPLORATIVE LOCATION-BASED
APPLICATIONS: THE NEXUSRALLYE

Daniela Nicklas, Nicola Hönle, Michael Moltenbrey, Bernhard Mitschang
Universität Stuttgart, Institute of Parallel and Distributed System, Universitätsstr. 38, 70569
Stuttgart, <firstname.lastname>@hermes.informatik.uni-stuttgart.de

Abstract: Explorative Location-based Applications (eLBA), define a new class of
applications that rely on both positioning (i.e. location information) and
georeferenced information in addition to a flexible and efficient system
infrastructure that supports a mobile and ubiquitous usage.

In this paper we define first a modeling framework to design eLBAs that builds on the
concept of tasks as a very valuable system/user interaction and application
structuring concept. In addition, we report on a system framework, the Nexus
platform, that efficiently provides access to georeferenced information and
positioning information. Our sample application, the NexusRallye, is used to
exemplify important aspects of our solution platform and to show its
advantages as compared to other approaches.

Key words: location-based services, context-awareness, mobile applications

1. INTRODUCTION

How can georeferenced information help people to find their way in an
unknown environment? If you have a new job or are enrolled to an
university, you have to learn about the locations and the facilities on the
campus. Navigation applications only help on short notice: you find a
specific way, but you do not get extensive spatial knowledge about the
surroundings that you urgently need to act independently.

Normally, you learn this by try and error. Some organisations offer
introductional guided tours for freshmen. But the information you need is

168

often already there: on web pages, in databases, maybe already
georeferenced for other applications (e.g. navigation). With this, location-
based services in general become feasible. But sustainable learning can be
achieved much easier by action and not just by information presented.
Hence, there is a need for applications that provide georeferenced
information and support the learning process by an explorative user-
interaction paradigm: We call these explorative location-based applications
(eLBA).

What makes an application explorative? Surely, a user can use any
information system in an explorative way. An explorative application
demands this from the user. But then, why should someone want to use such
a demanding application? There has to be a proper motivation: first, the user
must have the time for exploring. Secondly, there must be a visible
advantage for the user (e.g. usable knowledge). And thirdly, a reward for
using the application should be given.

An easy way to get people to do or learn something is to let them have
fun. Hence, an important subclass of eLBAs are games, especially location-
based quiz games, also called rallies (see Figure 1). Here, one or more users
(called players) take a certain amount of time (e.g. “two hours on orientation
day”) to solve a number of tasks, that are related to the location they are
playing in. The rally could be cooperative (the players work as team) or
competitive (they try to be better and faster than the others). Normally, there
is a jury (humans or software) that assesses the performance of the players
and offers some kind of rewards (gifts, points, etc...).

Figure 1. Related Application Classes

169

Our sample application, the NexusRallye, is targeted at freshmen who

want to learn more about the university campus. This game is an electronic
variant of a well established paper-based version which has been
successfully used for several years, but it offers new possibilities like finding
moving objects or dynamic changeable tasks.

We think that eLBAs, especially the subclass of computer games, are an
interesting and inspiring application domain for context-aware systems
research. It is even likely that the “killer application” everybody in this
research area is looking for will be from the entertainment sector.

In Section 2, we relate our paper to other work. Section 3 describes the
task-oriented approach and the requirements for our sample application. The
tasks, positions of players and other context information are held in a spatial
world model managed by the Nexus platform, which is described in Section
4. The functions and the design of NexusRallye itself is proposed in Section
5, before we conclude the paper in Section 6.

2. RELATED WORK

In Figure 1, we show how the application class of eLBAs relates to other
application classes. Context-aware applications adapt their behaviour to the
user’s context, i.e. her environment or situation (Dey and Abowd, 1999).
The field of pervasive computing strives for disappearing or ubiquitous
technologies, which requires context-information (Weiser, 1991). Location-
based services (Voisard and Schiller, 2004) are applications that focus on the
location context. There are already commercial products in this class, e.g.
georeferenced mobile phone applications (location-based information
system), which are often based on commercial platforms for location-based
systems (Webraska, IntelliWhere, Openwave, and Esri, to name a few). As
already mentioned, the focus of this paper are eLBAs, and, more specific,
rallies, which fell also into the application class of computer games.

There are several research projects that developed context-aware games
(Björk et al., 2001, 2002; Piekarski and Thomas, 2002; Starner et al., 2000).
Most of them are focused on special aspects like user interaction, that can be
shown in a game scenario.

The first commercial location-aware game was launched in 2004 by
SingTel (2004) in Singapore. Gunslingers is a multi-player network game
where players move around, and eventually track and engage other players
(“enemies”) within their physical vicinity. They can earn virtual money and
real prizes (like cell phones) by “shooting” other players or even take

170

assignments for extra bonuses. However, this game shows only a small range
of the opportunities context-aware gaming can offer.

3. TASK-ORIENTED APPROACH

To implement a rally we chose a task-oriented approach as user-
interaction paradigm. Tasks ask the user to do something, e.g. answer a
question or go to some location. In the following section, we classify
different categories of tasks, and depict the advantages a task-oriented
approach offers.

After this, we detail on how we can build the NexusRallye from tasks and
what requirements to a system framework result from this.

3.1 Task Classification

Tasks can be put into two categories: question tasks and action tasks
(Figure 2). The first category contains tasks like multiple choice, value and
free text. Here, the participant’s answer typically depends on his presence,
i.e. the participant has to be present at a certain place or at least has to have it
visited before. A possible question might be: “How many cashiers are in the
cafeteria?”. Additionally, tasks that belong to this category may also be
independent of any context information and the participant’s location (e.g.
“What is the birthday of Konrad Zuse?”). Value tasks require a simple
textual reply (like a name) or a number (like a certain room number or
telephone number). Free text tasks offer the participant to give a creative
answer (e.g. “Write a short poem”).

Figure 2. Task Classification

The second category, action tasks, comprises tasks where the player’s
position is used to detect when the task is solved. This kind of tasks is only

171

hard to use in a paper-based version of a game, since they require

knowledge about the participant’s current position, his environment and
sometimes the position of other players. Shortly spoken, they require context
information and location awareness.

First, find-tasks with stationary targets like “find a copy machine on the
campus!” require context information about the environment where the
participant resides. Secondly, find-tasks with mobile targets like “Find
another player!” require accurate information about the participant’s own
position and those of the other players, since the target is mobile. Further
types of tasks are well conceivable, e.g. bringTo-tasks, where certain items
have to be carried to certain places. In addition you can distinguish action
tasks with specified targets and with general targets. A specified target is
unique, like a certain person or building, while a general target is one out of
a set of equal classified targets, like copy machines. So the required context
information has to support a classification mechanism.

The action tasks can be used to guide the participant to certain places
where he then discovers new tasks to solve.

We want our electronic rally to provide several advantages over a paper-
based-version of similar games. First, it allows dependencies among tasks,
i.e. some tasks only get visible after a participant solved requisite ones. This
helps guiding the participant and prevents cheating. Dependencies in paper-
based games are hard to implement if possible at all, since all tasks are
shown on the sheet from the beginning.

Secondly, not only several players and groups of players, respectively,
can play the same rally simultaneously, but also a rally designer can create
tasks which consider several rally participants, e.g. “Find another player!”.

Thirdly, a computer-based game allows automatic scoring. All tasks
except free text tasks are scored automatically during the rally’s runtime.
This allows the participant to get immediate feedback on his performance,
allows tasks to depend on the correct solution of previous tasks and allows
competition between participants and reduces the final evaluation work, that
has to be done by a jury.

Fourthly, it allows the creation of so-called Easter eggs. An Easter egg is
any task that is not explicitly referenced by other tasks. A participant
discovers an Easter egg by approaching the position where it has been
virtually hidden. This might happen by chance or by following a hint from
another task that was previously found. Additionally, whole hidden rallies
(like hidden bonus levels in classical computer games) can be implemented,
where the participant finds several new tasks which may result in bonus
points.

172

The foundation of every rally is a pool of tasks. Everyone may provide

new tasks of varying subjects and make the pool steadily growing. A rally
designer picks a bunch of tasks from the pool and assembles them to a new
rally, so existing tasks can be reused. In the sample scenario, student
associations of different faculties could share a pool of general common
tasks and add specialized ones from their subject.

3.2 NexusRallye

In order to understand the requirements to a system framework that
supports eLBAs, we want to describe the NexusRallye as a sample eLBA.

While creating a certain rally for the NexusRallye system, a rally
designer has to tie this new rally to a physical location defining the extent of
the rally. Also the tasks he picks from the pool or those that are newly
created have to be tied to physical locations which lie inside the rally’s
extent.

To help the players to find the tasks the designer can use action tasks like
“Go to the library!”. Tasks without an explicit reference like this are called
Easter eggs, as we mentioned above.

Tasks may have predecessors on which they depend, i.e., certain tasks are
not allowed to be executed until other tasks are fulfilled. Defining task
dependencies by defining predecessors, one will get some informal order of
tasks. Since we want the player to show explorative behaviour, the tasks
must not be strictly ordered like, e.g., tasks in workflow systems.

Now, our rally is ready for play. What’s the player’s view? Because
rallies are tied to locations, a participant may ask for a list with all close-by
rallies available at his location. He starts one of them by registering for it.
Then, the participant receives the first tasks for this rally. These tasks can
serve as an introduction on how the rally works. Then, he has to walk around
to find new tasks at certain places where the rally designer has hidden them.
Tasks may guide the participant to places where other tasks are hidden, thus
exploring the area that has been determinated by the task designer.

3.3 Architectural Requirements

In our vision of a rally-like eLBA we see the need for some sort of
context management. This can be done in three different ways: local (i.e. on
the client), server-side (i.e. accessible on a server, but specific for a single
application) or shared (i.e. accessible by many different applications).

173

Local context management is certainly not feasible for the NexusRallye

since there are possibly many players using it at the same time that need a
common view on their context.

Server-side context management could be an option: a NexusRallye
server could hold all context information that is needed by the application.
But modelling context is expensive. As stated in the introduction, great
amount of the information would be already there on databases or web
servers. Only the tasks themselves are specific to the rally applications.

Hence, we consider the usage of a shared context management for the
best solution. This can be done by a context management platform that has
to fulfil the following requirements:
• Data servers of the platform store environment models and context

information, e.g. plans of and information about buildings, as well as
rallies and tasks, which can be linked to locations. Also they store
information about mobile objects and their position (like the rally
participants).

• Applications are able to query this stored information in a pull mode
(direct queries) as well as in a push mode (defining events).

• Furthermore, geographic communication (sending a message in a certain
geographic area) will be useful in a rally game for group collaboration or
for spreading new tasks spontaneously.
For our NexusRallye we want the players to use small portable devices

like PDAs with wireless LAN interfaces to get new tasks and submit their
solutions. The devices have to locate themselves, e.g. using GPS or infrared
emitters. Consequently, putting the content management onto the client
would result into client overload.

4. THE NEXUS PLATFORM

As will be shown in Section 5, the Nexus platform represents a very
valuable basis to host eLBAs. Before doing this, we will give in this section
a short overview of the mission and the architecture of the Nexus platform as
shown in Figure 4. For more details see Nicklas et al. (2001).

4.1 The Mission

The goal of the Nexus platform is to support all kinds of context-aware
applications with a shared, global world model (Figure 3). To achieve this,
the platform federates local models from so-called context servers. The local
models contain different types of context information: representations of real

174

world objects like streets, rooms or persons and virtual objects that link
to digital information spaces. Sensors keep local models up to date (e.g. the
position of a person).

Figure 3. Vision of the Nexus Platform

4.2 Context Server

A context server stores a local context model. It is comparable to a web
server in the WWW. To be part of the Nexus platform, the server has to
fulfil two requirements: it has to implement a certain interface (simple
spatial queries and results in a specified XML language) and it is registered
with its service area and object types to the Area Service Register
(comparable to a spatially enhanced DNS).

There can be many different implementations of a context server. For
providing large scale geographical models, we used a spatially enhanced
database. We cope with the high update rates of the positions of mobile users
using a distributed main memory system (Leonhardi and Rothermel, 2002).
For a Aware Home we adopted a lightweight spatial server as Context
Server (Lehmann et al., 2004). Even small scaled sensor platforms like the
ContextCube (Bauer et al., 2003) can be used as context server.

175

4.3 Federation

A federation node mediates between applications and context servers. It
has the same interface as a context server, but does not store models (except
caching). Instead, it analyses an application query, determines the context
servers that could fulfil the query and distributes the query to these servers.
Then it combines the incoming result sets to a consistent view and returns it
to the application.

For query distribution and service discovery, a Nexus node uses the Area
Service Register (ASR). This service is a directory of the available local
context models and stores the address of their context server, their object
types and their extent. More details about the federation tier can be found in
Nicklas et al. (2001).

Figure 4. Architecture of the Nexus Platform

176

4.4 Additional Services

In addition to the query functionality, every Nexus node supports value-
added services. They use the federated context model to implement
advanced services having their own interface. In Figure 4, you can see three
different value-added services of the Nexus platform: The map service
renders maps based on a selected area. The navigation service computes
multimodal navigation routes across the borders of local context models.
With GeoCast, you can address a message to a geographic addressed area, to
send it to every mobile application that is currently in this region.

4.5 Information Access

A context-aware application can use the Nexus platform in three different
ways.

Pull Mode. An application can send queries to the federation to get all
kind of information about its surrounding including infrastructure, points of
interest (POIs), mobile objects (friend finder) an so on.

Push Mode. An application can register to the Event Service (Bauer and
Rothermel, 2004) to get a notification when a certain state of the world
occurs, e.g. the user has entered a building, the temperature in a room
exceeds a certain value, or two persons meet.

Value Added Services. An application can use value added services like
the map service or the navigation service to shift basic functions into the
infrastructure.

4.6 Assessment

As stated in Section 3.3, we want to use a context management platform
for our rally application. The Nexus platform fulfils our requirements of
such a platform:
• Context servers are able to store environment models and context

information, e.g. rallies and tasks, as well as information about mobile
objects and their position.

• Applications are able to query this information in pull mode as well as in
push mode, using the Event Service.

• Geographic communication (GeoCast) and other useful value-added
services are supported.

177

5. DESIGN AND IMPLEMENTATION OF THE
NEXUSRALLYE

In this Section, we describe the data model and the implementation of the
NexusRallye. Since we used the Nexus platform as a basis for our
application, we were disburdened from the details of context management.
Instead, we define the data model of the application with respect to the
Nexus data model and just have to specify the new data objects like tasks
and rallies.

Figure 5. Data Model

Figure 6. Sample Rally Scenario

178

5.1 Data Model

The NexusRallye needs context information. We refer to that information
as context model. As seen in Figure 5, the NexusRallye’s context model
contains at least five different object types: Question Tasks and Action
Tasks, Virtual Task Containers (VTC), the Rallye itself and the Players.
Depending on the actions tasks, additional objects types are needed to model
the real world, like special buildings, copy machines, or whatever must be
found or reached in an action task. A sample rally scenario can be seen in
Figure 6.
• The Task objects (Question Tasks and Action Tasks, respectively) do not

have a spatial attribute. They contain the question or action description
and the right answer (if applicable) for automatic scoring.

• Virtual Task Containers (VTCs) arrange tasks to groups and virtually
link them to a physical location (similar to a Virtual Information Tower,
see Leonhardi et al. (1999)). Every VTC is visible in a certain area in the
real world. If a participant enters such an area, the VTC gets visible and
the associated tasks are loaded to the client application. They are now
ready to be solved.
A VTC may have predecessors on which it depends, i.e. this VTC only
gets visible when all its predecessors have been solved.
Note that one or more tasks can be tied to one VTC as well as one task
can be tied to one or more VTCs, the latter facilitates the reuse of tasks in
different rallies.

• A Rallye object contains an arbitrary number of VTCs. It has a name and
description and an area describing its extent in addition to references to
these VTCs. The dependencies between VTCs are modeled in the rally
and not in the VTCs itself. Therefore, VTCs may belong to several
rallies. This reduces the overhead for designing new rallies, since VTCs
can be reused.

• To support action tasks, the Players and their positions have to be part of
the context-model to determine whether a player has reached a certain
location or met another player.

5.2 Implementation

We implemented the NexusRallye as client application for the Nexus
platform, which is described in Section 4. The Nexus platform can easily
cope with the NexusRallye’s data model. As mentioned in Section 4.5, the
client has two ways for accessing the data: First, it can query the model with
a simple, spatial query language and get the resulting objects in an XML
format. Secondly, it can register for spatial events like OnEnterArea or

179

OnMeeting and gets notified by the platform when this event occurs (e.g. the
player enters the visibility area of a VTC or meets another player).

The NexusRallye was developed for an iPAQ using Java Micro Edition
Platform. In that environment, we experienced several technical problems:
incompatibilities between Java and the hardware platform or a seemingly
non-deterministic behaviour of the Virtual Machine. The client runs well on
a standard laptop, but this device is not suitable for field trial. But we are
optimistic that future improvements of hardware and software development
environments for mobile devices will solve these problems.

We did no user studies so far because we did not want to burden students
with laptops. In the next section, we focus on the experiences during the
design and implementation periods.

5.3 Technical Experiences

The implementation of our sample rally was significantly disburdend by
the usage of the Nexus platform. All the management of the spatial context
data was handled by the platform. We just had to design the schema
extensions for task and VTC objects, store them in the model and register for
“OnEnterArea”-events with the visibility areas of the VTCs.

The concept of Virtual Task Containers facilitates reuse. Instead of
defining tasks for certain locations, they are just referenced by the VTCs.
With this, tasks can be bound to different places and also be used by
different rallies.

6. CONCLUSION

In this paper we have argued that eLBAs (explorative Location-based
Applications), define a new and interesting class of applications that rely on
both positioning information and georeferenced information. In order to
support a flexible modelling, we developed a task-based approach that
guarantees high reuse as well as system/user interaction. Furthermore,
eLBAs run supported by the Nexus platform that provides for an integrated
and efficient management of and access to position data and georeferenced
data. All the modelling and execution issues are highlighted using our
sample eLBA, the NexusRallye.

Preliminary experiences show that the task-oriented approach is very
valuable. This is especially the case, when one wants to assemble new
explorative applications based on existing and new tasks. In order to better
support this, we can imagine that task orchestration could be supported by
well-known workflow technology.

180

The work presented in this paper is just initial work that concentrated on
the technical aspect and on looking for a proof-of-concept prototype. In a
real usage environment our concept of explorativeness has to be matched
with the well-known ones found in the literature.

Hence future work will concentrate on the flexible and efficient
management of tasks and their orchestration, and on user studies with
suitable devices to proof the acceptability of the task paradigm.

ACKNOWLEDGEMENTS

The Nexus project is funded by the German Research Association (DFG)
within the Centre of Excellence (SFB) 627.

REFERENCES

Bauer, M., Becker, C., Hähner, J., and Schiele, G., 2003: ContextCube–providing context
information ubiquitously. Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops (ICDCS 2003).

Bauer, M., and Rothermel, K., 2004: How to Observe Real-World Events through a
Distributed World Model. Proc. of the 10th Int. Cong. on Parallel and Distributed Systems
(ICPADS 2004), Newport Beach, California.

Björk, S., Falk, J., Hansson, R., and Ljungstrand, P., 2001: Pirates! using the physical world
as a game board. Conference on Human-Computer Interaction, INTERACT 2001.

Björk, S., Holopainen, J., Ljungstrand, P., and Akesson, K.-P., 2002: Designing ubiquitous
computer games - a report from a workshop exploring ubiquitous computing
entertainment. Personal and Ubiquitous Computing. 6: 443–458.

Dey, A., and Abowd, G., 1999: Towards a better understanding of context and context-
awareness. Georgia Tech GVU Technical Report, GIT-GVU-99-22, 1999.

Esri: Arcloation Solutions. http://www.esri.com
IntelliWhere: Location Server. http://www.intelliwhere.com
Lehmann, O., Bauer, M., Becker, C., and Nicklas, D., 2004: From Home to World -

Supporting Context-aware Applications through World Models. Proceedings of the
Second IEEE International Conference on Pervasive Computing and Communications,
2004.

Leonhardi, A., Kubach, U., Rothermel, K., and Fritz, A., 1999: Virtual information towers - a
metaphor for intuitive, location-aware information access in a mobile environment. Proc.
of the Third International Symposium on Wearable Computers (ISCW 99).

Leonhardi, A., and Rothermel, K., 2002: Architecture of a Large scale Location Service. Proc.
of the 22nd Int. Conf. on Distributed Computing Systems (ICDCS 2002), Vienna, Austria.

Nicklas, D., Grossmann, M., Schwarz, T., Volz, S., and Mitschang, B., 2001: A model-based,
open architecture for mobile, spatially aware applications. Proceedings of the 7th
International Symposium on Spatial and Temporal Databases, SSTD 2001.

Openwave: Mobile Services Platform. http://www.openwave.com
Piekarski, W. and Thomas, B., 2002: ARQuake: the outdoor augmented reality gaming

system. Communications of the ACM 45(1):36–38.

181

SingTel., 2004: Gunslingers member page. http://guns.mikoishi.com/gunsSingTel/index.html.
Visited April 2004.

Starner, T., Leibe, B., Singletary, B., Lyons, K., Gandy, M., and Pair, J., 2000: Towards
augmented reality gaming. Proceedings of IMAGINA 2000 Conference, Monaco.

Voisard, A., and Schiller, J., 2004: Location-Based Services. Morgan Kaufmann, 2004.
Webraska Mobile Technologie: smartzone Geospatial Platform. Product Brochure,

http://www.webraska.com/News/files/SZ_Geo_Platform_1203.pdf
Weiser, M, 1991: The Computer for the Twenty-First Century. Scientific American 265,

September 1991.

