An early warning system for space-time cluster detection
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Abstract. A new topic of great relevance and concern has been the design of efficient early warning systems
to detect as soon as possible the emergence of spatial clusters. In particular, many applications involving spatial
events recorded as they occur sequentially in time require this kind of analysis, such as fire spots in forest areas
as in the Amazon, crimes occurring in urban centers, locations of new disease cases to prevent epidemics, etc.
We propose a statistical method to test for the presence of space-time clusters in point processes data, when the
goal is to identify and evaluate the statistical significance of localized clusters. It is based on scanning the three-
dimensional space with a score test statistic under the null hypothesis that the point process is an inhomogeneous
Poisson point process with space and time separable first order intensity. We discuss an algorithm to carry out the
test and we illustrate our method with space-time crime data from Belo Horizonte, a large Brazilian city.

1 Introduction in the space-time volume under study.

Suppose that data are available consisting of the locations Based on the score function, we derive and present a
PP . . g ol ... hew space-time cluster detection scan statistic for space-
and reference times of events occurring within a specified

coaraphical reqion and time period. It is common to test time point processes in section 2. In Section 3, we discuss
geograp 9 P ' the computer issues involved on the methodology imple-

yvhg;he; trherer 'T spact(ia _tllmr? dclusrtelrlntg r(r)1f e\;elntsl, af[ﬁ(rairn"’ld'mentation. In Section 4, we apply the methodology to three
Justing for purely spatial and purely temporal CluStenng. ;o 4ata sets and conclude in Section 5.

Thatis, itis of interest to test whether cases which are close
in space are also relatively close in time, and vice versa. If o )
so, the data exhibispace-time clusteringr in epidemio- 2 ldentifying Space-Time Clusters

logical terminology, space-time interaction. Assume that we observe random point events generated by
The most popular statistical technique for testing spa- a Poisson point process in a space-time regior= A x

ce-time interaction with point process data was proposed|o, 7], whereA is a bi-dimensional polygon. Usually, there

by Knox (1964). Specifying a spatial and a temporal criti- s substantial spatial and temporal heterogeneity and this is

cal distance, it is possible to indicate when a pair of events modelled by the space-time intensity function denoted by

is close in space or close in time. The test is based on they(z, y, ¢).

numberX of pair of events which are simultaneously close Given the observed events, the Poisson log-likelihood

in space and in time. A large numbér would be an in- is given by

dication that cases which are close in space tend also to be

close in time leading to space-time interaction. n
Knox test and the later developments by Mantel (1967), = Z log A (2, yi» i) — /A A, y, t)dedydt
Diggleet al(1995), Baker (1996), Jacquez (1996), and Kull- =1

dorff and Hjalmars (1999) are global tests in that they test  The null hypothesis of no space-time interaction im-
for space-time clustering throughout the data, without iden- plies that the intensity function is a product of two func-

tifying specific clusters. That is, the tests do not aim at de- tjons, one depending only on the spatial locationy) and
tecting and localizing clusters. This is appropriate when the gnother depending only an

test is aimed at for example finding evidence of whether

a disease is infectious or not. When spatially localized Hy : Mz, y,t) = As(z,y) A (t)

episodic or epidemic outbreak occurs, the identification of

clusters is important since the space-time interaction will LetC = Cs x Cr be a fixed and arbitrary space-time cylin-
appear in the form of raised incidence on localized regions der with C's being a convex region il andC'r a time in-



terval. Consider a local alternativé. . to H, given by
HC,(-: : )\(.I, Y, t) = AS(zv y)AT(t) (1 + EIC'(xv Y, t))

wheree > 0 and!¢ is the indicator function thate, y, t) €

C. Therefore, this alternative considers a situation where
locally, at the cylindeiC, the point process deviates from
the space-time separability hypothesis by the larger than

As in Kulldorff (1997), our Monte Carlo test identi-
fies also secondary clusters besides the cyliidewhich
maximizes the score statisti¢ defined in (3). That is, it
identifies clusterg’s, C3, ... non-overlappingwvith C; and
with score statisticd/c, > Ug, > Ug, > ... signifi-
cantly larger than thél —«) quantile threshold based on the
Monte Carlo reference distribution bf = maxc U under

expected events density under the null hypothesis (in caséh€ null hypothesis. We need to consider non-overlapping

€ > 0).
The score statistics is given by
ol

&|E=O = N(O) -

)\S(a:,y)dmdyx/ Ar(t)dt (1)
Cs Cr

where N (C) is the number of events withi@'. It can be
shown that, under the null hypothesis, (1) becomes

al Cs x [0, T)] E [N (A x Cr)]
Oe E[N (A x [0,T))]

After some algebraic manipulation, we found that the
standardized test statistic is given by

N(C) = N (Cs x [0,T]) N (A x Cr) /N(A x [0,T])
/N (Cs x [0, T]) N (A x Cr) /N(A x [0,T7)

ez = V(€ — 2L

Uc =

which is the locally most powerful test in the sense that
it maximizes the derivative of the power functioneat 0
(Cox and Hinkley, 1974, page 113).

Usually we have no prior knowledge of space-time
clusters location and then the test developed can not be ap
plied since we have no cluster candidatd¢o use. Hence,
our proposed test is based on the scan statistic

U= sup {Uc} (3)
which searches over all possible cylindéfs In practice,
the scanning in (3) is undertaken over a smaller class of
cylinders for several reasons, not described here for lack of
space.

The sampling distribution of/ defined in (3) is in-
tractable. As a consequence, its null hypothesis distribution
is obtained by a Monte Carlo procedure conditionally on

cylinders because other cylinders, almost coinciding with
C1, will have a likelihood and score statistic close to that
of C. Hence, the second most significant cylinder should
not be defined based only on the second ranked cylinder
but rather in the second ranked cylinder among those that
do not intersect”;. It should be noted that the test results
for the secondary cluste€s,, Cs, ... are conservative (Kull-
dorff, 1997).

3 Computer Implementation Issues

In the scan procedure, we need to consider only the min-
imum enveloping cylinder of a given subsgtof events.
Becausg N (C) — u)//p is a decreasing function ¢f, it

is maximized at the minimum value @f for fixed N(C).
SinceC, = Cg1 x Cp1; C Cy = Cgo x Cpg implies that
N(051 X [O,T])N(A X OTI) < N(CSQ X [O7T])N(A X
Cr2), we havels, < Ug,. Therefore, it suffices to scan all
distinct subsetg of events and their associated enveloping
cylinders.

We additionally restrict the spatial cylindef%; to be
circles centered in an observed eventHence, the space-
time cylinderC(€, e) = (xe, Ye, 1, tm, tar), CENtEred at €

&, with space cylindelCs(€,e) = (x¢,y.,r) and time
cylinderCr(€,e) = (tm,tar), is defined by:

t = mint
mn fee 4
t maxt
M s f

r max(d(e, f)

fe€

Ve =202+ (e — 7))

As relevant cylinders have at leasf, events, a naive ap-

the realizations of the process spatial and temporal compo-proach to the scan algorithm is to generate all subsets with

nents. Under the null hypothesis, the sampling distribution
of U is the distribution induced by random permutation of
the timest;,7 = 1, ..., n keeping fixed the spatial locations
(xi, yi); 1= 1, ey T

The observed value; of U is ranked amongst val-
uesus, ..., u,, generated by recomputing tbéestatistic af-
term — 1 independent random permutations of the times
t;,1 = 1,...,n. If u; ranksk-th largest, the one-sided exact
attained significance level is/m.

This Monte Carlo method is computer intensive and
naive algorithms should not be used for large datasets. Al-
gorithmic considerations are discussed in Section 3.

size greater than or equal tg,. This naive approach has
O(n®) order which can be reduced t(n*) if we pre-
process time and space cylinders, as we explain next.
Space-time cylinders generation is performed by pre-
computing space and time cylinders. This induces two e-
vents orderings that allows cylinders’ size evaluation to be
performed in constant time)(1)). We iterate through e-
vents, get time and space cylindarghe pre-computed or-
deringsand define space-time cylinders by their intersec-
tion. We denote by>* the space-time cylinder whose test
statistic valud/c- is maximum. We assighic« = —oo in
the beginning of the algorithm. If we let the keywdabp-



po be the iteration over a set in a previously specified order, times, maintaining a list of already identified best space-

the high-level description of our algorithm is: time cylinders. This approach reevaluatés statistics for
many cylinders”' but does not require complex data struc-
Scan Procedure tures. LetG be the list of non-overlapping cylinders. Ini-
Input: event set with associated temporal and spatial rartialy, it is empty and, at each instance of loNjp1, a new
Output: C* andU¢~ space-time cylinder is included i@ or the procedure ter-
SL1. for each event do minates if there is no such cylinder.
SL2. loop-poover Cr that containg do
SL3. loop-pooverCys centered ire do Non-overlapping Scan Procedure
SS1C «+ Cs x Cr Input: event set, temporal and spatial ranks and
SS2 computeN (C), N(Cs), N(Cr) Output: Cf,C3,...,Cy and their test statistitic values
SS3if N(C) > s,, andUg > Uc~, thenC* «— C G0
return C* andUc+ NL1. dob times
found — FALSE
This algorithm has complexit@)(n*), as we show in the for each event do
Appendix. for each validCr that containg do
for each validC's centered ire do
C«—CgxCp
3.1 Monte Carlo Procedure NS2 if C do not overlap any cylinder i&* then
The null distribution ofU is obtained conditioning on the found — TRUE
observed times and positions of the events. We permute the computeN (C), N(Cs), N(Cr)
events’ time indexes and apply the scan procedure to ob- if N(C) > s, andU¢s > Ug+, thenC* «— C
tain the space-time clustér with largestUo value. This if (found)
is repeated independently a large numpef times. Previ- thenincludeC* in G
ously computed temporal and spatial ranks are reused. The elsereturnG@
algorithm for this Monte Carlo procedure is: return G
Monte Carlo Procedure The complexity of this procedure depends on the num-
Input: event set, temporal and spatial ranks, number  berb of desired cylinders, both because of logp1 and
Output: p-dim array!l with largestU¢ value in each stepNS2 We perform the basic scantimes and, in each
permutation. one of those, all previously generated cylinders should be
ML1.fori = 1topdo inspected in steplS2 The final complexity i< (b?n?).

MS1. generate a permutation of events time index
MS2. update temporal ranks
MS3. call ScanProcedure
MSa4. [[p] < value ofU statistic For illustration, we use the crime incidence data from a
return! large Brazilian city, Belo Horizonte, during 1995-2001 col-
lected by the Patia Militar de Minas Gerais based on their
Considering that generating a random permutation ta- Police records of crime events. Each crime event was geo-
kesO(n) operations, the computational complexity of the referenced by the coordinates of its occurrence place (in
procedure i) (pn?) since loopML1 complexity is domi- ~ meters) and occurrence day.
nated by steMS3. We deal with robberies of three types of stores: drug-
stores, bakeries, and lottery houses. Most of these robberies
were gun armed robberies. We also consider homicides, a
different kind of crime to contrast to the store robberies. We
A first approach to generate non-overlapping best space-have data from 1995 to 2000 for store robberies and from
time cylinders is to visit each cylinder just one time and 1995 to 2001 for homicides. The total number of events
to store a list of candidates. As this list may contain up were 582, 765, and 2216 for the lottery houses, drugstores,
to O(n*) cylinders, efficient data structures are essential to and bakeries robberies, respectively, and 1356 for homi-
maintain low computational complexity. Here, we took a cides.
different approach since we expect that the nunbladrde- We ran the usual Knox test with two spatial and tem-
sired non-overlapping cylinders is relatively low with re- poral thresholds: 2 and 3 kilometers and 20 and 30 days.
spect of the number of relevant cylinders. Instead of stor- We used 999 Monte Carlo simulations in the tests. Table 1
ing candidate cylinders, we perform the scan procedure presents the results. While homicide shows no evidence of

4 Space-time clusters in crime data

3.2 Non-overlapping scan algorithm
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Figure 1. Maps of Belo Horizonte with four types of crime. Figure 2: Zoomed maps of Belo Horizonte with the signif-
The upper row shows the 765 drugstore robberies (left) andicant space-time clusters; by type of crime, in the same
the 2216 bakery robberies (right). The bottom row shows order as Figure 1. Bakery robbery is the only crime with
the 582 lottery house robberies (left) and the homicides two significant space-time clusters, the others having only
(right). The first three range from 1998 to 2000 while homi- one significant cluster (at 0.05 value).

cides data range from 1998 to 2001.

space-time clustering, bakery and drugstore robbery have

small p-values while the evidence for lottery robbery de- One store was robbed twice in each of the lottery and drug-

pends on the threshold used and even then it is only borderstore clusters. A more extreme pattern was found in the

line significant. second bakery cluster with one store robbed three times.
To run our scan procedure in the same dataset, we used’here were no obvious spatial pattern connecting clusters

a minimum of 5 events in each cylinder and we limit the from different crimes.

cylinders to contain at most 15% of the observed events and Concerning time, the shortest bursts of spatially local-

to not cover more than 15% of either the arkar the total ized violence was that associated with the two clusters of
time interval[0, 7]. We used 999 Monte Carlo simulations bakery robberies. They first and second clustgéfsand
to generate the null hypothesis distribution. C; lasted 8 and 17 days starting on February, 28 2000 and

We foundC’ as a significant (at 0.05 level) space-time March 29, 2000 respectively. Drugstore and lottery rob-
cluster in all four crimes, with bakery robberies presenting beries had longer clusters lasting 68 and 81 days starting on
alsoCj5 as a significant cluster (see Table 1). The number April 03, 1997 and May 23, 1995, respectively. The homi-
of events in the most significant cluster was 5, 7, 6, and 5 cide cluster was detected on February 03, 2000, lasting 58
events for bakery, drugstore, lottery robberies, and homi- days.
cide, respectively. The second significant cluster of bakery The significant clusters of bakery robberies showed
robberies had 5 events. Although the homicide space-timeextreme patterns. Clustér; lasted only 8 days and, al-
cluster presented borderline significance, we can see thathough occurring in different parts of the city, the second
the scan test identified clusters in homicide and lottery rob- cluster started only 3 weeks after the first one had disap-
beries, whereas Knox test did not. This suggests that ourpeared. This lasted only 17 days and contained five events
method could be more sensitive to the presence of localizedrelated with 3 different stores, one of them being robbed
clusters than Knox test. three times during this period and five times during the to-

Figure 2 presents the maps from Figure 1 zoomed total study period. The time lags between the five successive
show the significant space-time clusters we detected withevents in this second space-time cluster were 5, 2, 6, and
our scan procedure. The cluster covering the largest areal days. To improve visualization in Figure 2, the repeated
was drugstore robbery with 1.52 kilometers of radius while robbed store events coordinates were jigged by random nor-
the other clusters ranged from 370 to 760 meters. Hencemal random variables with men zero and standard deviation
the events within the clusters are tightly clustered in space.60.



Crime 2 km 3 km cy cs Appendix: Algorithm Complexity
20 days| 30 days
Bakery robb. 0.01 0.01 | 0.030| 0.032
Drugstore robb.| 0.01 0.01 | 0.012| 0.154
Lottery robb. 0.05 0.22 | 0.028 | 0.220
Homicide 0.10 0.11 | 0.048| 0.344

The algorithm has two steps. The first one finds the rel-
evant time and space cylinders and this takks logn)
andO(n?log n) complexity, respectively. The second step
finds the space-time cylinders as intersections of space and
time cylinders and this take8(n*) running time. There-
fore, a single execution of the scan procedure takes

Table 1: Table with the p-values of Knox and scan tests.
The results are separated according to either the thresholds
used in the test (Knox) or the firs€'() and second()
most significant cylinders (scan test). The null hypothesis
distribution was determined by 999 Monte Carlo permuta-
tions of the observed times.

O(nlogn) + O(n?logn) + O(n*) = O(n*)

running time. It take)(pn*) to obtain the null hy-
pothesis distribution withp independent permutations of
time indexes. In order to obtain thheron-intersecting most
significant cylinders, we need(b?n*) running times. We
describe these calculations with more detail.

5 Conclusion Temporal and spatial ranks input

Recently, there has been interest on space-time surveillanc&€t W) < t@) < ... <t be the ranked values of the
observed times angh; be the maximum length of a time

systems for the early detection of disease outbreaks, but " i i .
very few studies have provided solutions to this problem. cylinder. The ;et of time cylindeiS induced by the ob-
Rogerson (2001) proposed to use a cumulative sum approaésﬁa rved events is

for space-time point processes data, each event being scored
according to a local Knox statistic. Theophilides (2003)
uses multiple Knox test (1964) in multiple local area, so see
whether one or more exhibit space-time clustering within We derive the time cylinders from the time ranked val-
that local area. Their method is very different from the one yes and these are obtainedn log ) running time if we
proposed here. Kulldorff et al. (2002,2003) have devel- yse optimal sorting algorithm, such gsicksort

oped a space-time permutation scan statistic for the early  The set of relevant space cylindets is the union of
detection of disease outbreaks, which is currently in usethe space cylinders centered at eventset (z., . ) be the

by the New York City Department of Health for syndromic  center of a space cylinder ad,, < dey < ... < df, be
surveillance. They use a Poisson based likelihood ratio teskhe ranked distances of the other observed events to event
statistic rather than the score test proposed in this paper. All,  Note thatd®,, = 0 since it is the distance betweerand

of these methods are prospective in nature, in that they are. f 1, is the maximum radius of a space cylinder, the set
looking for recent outbreaks, as opposed to our retrospec-f space cylinder€y is

tive method, which aims at detecting space-time clusters at
any location and time.

In conclusion, our method has many desirable featu- Cs =
res: it does not require population data; it identifies the
space-time clusters; it does not require time and distance{ (me’ye’d?s)) le;s €{1,...,n},5 2 2, andd(, < md}'
critical thresholds as Knox test does, it adjusts for purely ] o i
spatial and purely temporal clustering, and it provides sta- The distance ranked values are sufficient to define spa-

tistical inference for each individual cluster detected. We €€ cylinders. They can be evaluated bysorting algo-

think it will be of great use in many practical applications. "ithms. Therefore, we nee@(n”logn) running time to
generate the spatial cylinders.

Scan procedure complexity
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through events in their temporal ordering determiniagd
fin O(logn) time. LoopSL2 is implemented by letting
m vary fromi till r;(e) wherer.(e) is evente temporal
rank. For a fixedn, valid time cylinder<Cr = (t (), t(ar))
are those that contains(M varies fromr,(e) to f) and
respects time threshola,. There are at most_" ,(n —
i) < n? such cylinders (depending on the, value), thus
SL2is performed)(n?) times. The size of a time cylinder
Cr = (t(m), tar)) in SS2is M — m + 1 events and can be
evaluated in constant time.

For a fixed time cylindeCr, space cylinders gener-
ated in loopSL3 should contain at least the-th andM/-th

time events in order to minimize the re-generation of space-

time cylinders. Let,, ande,; be those events. The space
cylinder minimum radius is = min{d(e, e,,),d(e,enr)}.
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Let! be the distance rank of this radius, which can be deter-graphical disease surveillance using a scan statidtar-

mined inO(logn). Spatial cylinders in loofsL3 are of the
form Cs = {(z¢, ye, df)) | 1 < s < g}, whered( ) > mq
org = n+ 1. Loop SL3 is performedO(n) times. The
evaluation ofN (Cys) in SS2is exactlys, and takes constant
time.
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The space-time cylinders are the intersection of eventsand other tests for space-time interactRiametrics 55 (2):

in a spatial and a time cylinder. For a fixéd- in loop

SL2, spatial cylinders are considered in increasing radius

in loop SL3. Hence, a new spatial cylinder must include all
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a sequential scan is used to determine the intersection of

Cr andCs = (xc, Ye, dfl)), by comparing the timeg. of
eventse € (g to the time interval ofC'r. For each new

Cs, anew eventis included and the comparison is repeated.

It results that the computation of all' in stepSS3for a
loop SL3is O(n) (which is also the complexity oV (C)).
OperationsV(Cr), N(Cys) and the test statistic&- are all
O(1).

The resulting computational complexity of the algo-
rithm is the pre-processing timé&)(n logn) for time rank
andO(n?logn) for space rank, plus the space-time cylin-
ders generation which has complexity

|SL1|(O(log n) + |SL2|(O(log n)+
ISL3|[0(SS + O(SS2 + O(SS3))).

where —S— denotes the number of times lo&is
executed. From the previous discussidnl| = O(n),
IL2] = O(n?) and|L3|[O(S1) + O(S2) +O(S3)] = O(n).
Therefore, the final complexity of our scan algorithm is
O(n?).
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