
An early warning system for space-time cluster detection

RENATO M. A SSUNÇÃO1, ANDRÉA IABRUDI TAVARES1, MARTIN KULLDORFF2

1Laborat́orio de Estat́ıstica Espacial
Universidade Federal de Minas Gerais

assuncao@est.ufmg.br, iabrudi@dcc.ufmg.br
2Biostatistician Department of Ambulatory Care and Prevention

Harvard Medical School and Harvard Pilgrim Health Care
martin kulldorff@hms.harvard.edu

Abstract. A new topic of great relevance and concern has been the design of efficient early warning systems
to detect as soon as possible the emergence of spatial clusters. In particular, many applications involving spatial
events recorded as they occur sequentially in time require this kind of analysis, such as fire spots in forest areas
as in the Amazon, crimes occurring in urban centers, locations of new disease cases to prevent epidemics, etc.
We propose a statistical method to test for the presence of space-time clusters in point processes data, when the
goal is to identify and evaluate the statistical significance of localized clusters. It is based on scanning the three-
dimensional space with a score test statistic under the null hypothesis that the point process is an inhomogeneous
Poisson point process with space and time separable first order intensity. We discuss an algorithm to carry out the
test and we illustrate our method with space-time crime data from Belo Horizonte, a large Brazilian city.

1 Introduction

Suppose that data are available consisting of the locations
and reference times of events occurring within a specified
geographical region and time period. It is common to test
whether there is space-time clustering of events, after ad-
justing for purely spatial and purely temporal clustering.
That is, it is of interest to test whether cases which are close
in space are also relatively close in time, and vice versa. If
so, the data exhibitspace-time clustering, or in epidemio-
logical terminology, space-time interaction.

The most popular statistical technique for testing spa-
ce-time interaction with point process data was proposed
by Knox (1964). Specifying a spatial and a temporal criti-
cal distance, it is possible to indicate when a pair of events
is close in space or close in time. The test is based on the
numberX of pair of events which are simultaneously close
in space and in time. A large numberX would be an in-
dication that cases which are close in space tend also to be
close in time leading to space-time interaction.

Knox test and the later developments by Mantel (1967),
Diggleet al(1995), Baker (1996), Jacquez (1996), and Kull-
dorff and Hjalmars (1999) are global tests in that they test
for space-time clustering throughout the data, without iden-
tifying specific clusters. That is, the tests do not aim at de-
tecting and localizing clusters. This is appropriate when the
test is aimed at for example finding evidence of whether
a disease is infectious or not. When spatially localized
episodic or epidemic outbreak occurs, the identification of
clusters is important since the space-time interaction will
appear in the form of raised incidence on localized regions

in the space-time volume under study.
Based on the score function, we derive and present a

new space-time cluster detection scan statistic for space-
time point processes in section 2. In Section 3, we discuss
the computer issues involved on the methodology imple-
mentation. In Section 4, we apply the methodology to three
crime data sets and conclude in Section 5.

2 Identifying Space-Time Clusters

Assume that we observe random point events generated by
a Poisson point process in a space-time regionA = A ×
[0, τ], whereA is a bi-dimensional polygon. Usually, there
is substantial spatial and temporal heterogeneity and this is
modelled by the space-time intensity function denoted by
λ(x, y, t).

Given the observed events, the Poisson log-likelihood
is given by

l =
n∑

i=1

log λ (xi, yi, ti)−
∫

A
λ(x, y, t)dxdydt

The null hypothesis of no space-time interaction im-
plies that the intensity function is a product of two func-
tions, one depending only on the spatial location(x, y) and
another depending only ont:

H0 : λ(x, y, t) = λS(x, y)λT (t)

Let C = CS×CT be a fixed and arbitrary space-time cylin-
der withCS being a convex region inA andCT a time in-

terval. Consider a local alternativeHC,ε to H0 given by

HC,ε : λ(x, y, t) = λS(x, y)λT (t) (1 + εIC(x, y, t))

whereε > 0 andIC is the indicator function that(x, y, t) ∈
C. Therefore, this alternative considers a situation where
locally, at the cylinderC, the point process deviates from
the space-time separability hypothesis by the larger than
expected events density under the null hypothesis (in case
ε > 0).

The score statistics is given by

∂l

∂ε
|ε=0 = N(C)−

∫

CS

λS(x, y)dxdy×
∫

CT

λT (t)dt (1)

whereN(C) is the number of events withinC. It can be
shown that, under the null hypothesis, (1) becomes

∂l

∂ε
|ε=0 = N(C)− E [N (CS × [0, T])]E [N (A× CT)]

E [N (A× [0, T])]

After some algebraic manipulation, we found that the
standardized test statistic is given by

UC =
N(C)−N (CS × [0, T]) N (A× CT) /N(A× [0, T])p

N (CS × [0, T]) N (A× CT) /N(A× [0, T])
(2)

which is the locally most powerful test in the sense that
it maximizes the derivative of the power function atε = 0
(Cox and Hinkley, 1974, page 113).

Usually we have no prior knowledge of space-time
clusters location and then the test developed can not be ap-
plied since we have no cluster candidateC to use. Hence,
our proposed test is based on the scan statistic

U = sup
C
{UC} (3)

which searches over all possible cylindersC. In practice,
the scanning in (3) is undertaken over a smaller class of
cylinders for several reasons, not described here for lack of
space.

The sampling distribution ofU defined in (3) is in-
tractable. As a consequence, its null hypothesis distribution
is obtained by a Monte Carlo procedure conditionally on
the realizations of the process spatial and temporal compo-
nents. Under the null hypothesis, the sampling distribution
of U is the distribution induced by random permutation of
the timesti, i = 1, ..., n keeping fixed the spatial locations
(xi, yi), i = 1, ..., n.

The observed valueu1 of U is ranked amongst val-
uesu2, ..., um generated by recomputing theU statistic af-
ter m − 1 independent random permutations of the times
ti, i = 1, ..., n. If u1 ranksk-th largest, the one-sided exact
attained significance level isk/m.

This Monte Carlo method is computer intensive and
naive algorithms should not be used for large datasets. Al-
gorithmic considerations are discussed in Section 3.

As in Kulldorff (1997), our Monte Carlo test identi-
fies also secondary clusters besides the cylinderC1 which
maximizes the score statisticU defined in (3). That is, it
identifies clustersC2, C3, ... non-overlappingwith C1 and
with score statisticsUC1 ≥ UC2 ≥ UC2 ≥ ... signifi-
cantly larger than the(1−α) quantile threshold based on the
Monte Carlo reference distribution ofU = maxC UC under
the null hypothesis. We need to consider non-overlapping
cylinders because other cylinders, almost coinciding with
C1, will have a likelihood and score statistic close to that
of C1. Hence, the second most significant cylinder should
not be defined based only on the second ranked cylinder
but rather in the second ranked cylinder among those that
do not intersectC1. It should be noted that the test results
for the secondary clustersC2, C3, ... are conservative (Kull-
dorff, 1997).

3 Computer Implementation Issues

In the scan procedure, we need to consider only the min-
imum enveloping cylinder of a given subsetE of events.
Because(N(C) − µ)/

√
µ is a decreasing function ofµ, it

is maximized at the minimum value ofµ for fixed N(C).
SinceC1 = CS1 × CT1 ⊂ C2 = CS2 × CT2 implies that
N(CS1 × [0, T])N(A × CT1) ≤ N(CS2 × [0, T])N(A ×
CT2), we haveUC1 ≤ UC2 . Therefore, it suffices to scan all
distinct subsetsE of events and their associated enveloping
cylinders.

We additionally restrict the spatial cylindersCS to be
circles centered in an observed evente. Hence, the space-
time cylinderC(E , e) = (xe, ye, r, tm, tM), centered ate ∈
E , with space cylinderCS(E , e) = (xe, ye, r) and time
cylinderCT (E , e) = (tm, tM), is defined by:

tm = min
f∈E

tf

tM = max
f∈E

tf

r = max
f∈E

(d(e, f) =
√

(xe − xf)2 + (ye − yf)2)

As relevant cylinders have at leastsm events, a naive ap-
proach to the scan algorithm is to generate all subsets with
size greater than or equal tosm. This naive approach has
O(n5) order which can be reduced toO(n4) if we pre-
process time and space cylinders, as we explain next.

Space-time cylinders generation is performed by pre-
computing space and time cylinders. This induces two e-
vents orderings that allows cylinders’ size evaluation to be
performed in constant time (O(1)). We iterate through e-
vents, get time and space cylindersin the pre-computed or-
deringsand define space-time cylinders by their intersec-
tion. We denote byC∗ the space-time cylinder whose test
statistic valueUC∗ is maximum. We assignUC∗ = −∞ in
the beginning of the algorithm. If we let the keywordloop-

pobe the iteration over a set in a previously specified order,
the high-level description of our algorithm is:

Scan Procedure
Input: event set with associated temporal and spatial ranks
Output: C∗ andUC∗

SL1. for each evente do
SL2. loop-pooverCT that containse do

SL3. loop-pooverCS centered ine do
SS1. C ← CS × CT

SS2. computeN(C), N(CS), N(CT)
SS3. if N(C) > sm andUC > UC∗ , thenC∗ ← C

returnC∗ andUC∗

This algorithm has complexityO(n4), as we show in the
Appendix.

3.1 Monte Carlo Procedure

The null distribution ofU is obtained conditioning on the
observed times and positions of the events. We permute the
events’ time indexes and apply the scan procedure to ob-
tain the space-time clusterC with largestUC value. This
is repeated independently a large numberp of times. Previ-
ously computed temporal and spatial ranks are reused. The
algorithm for this Monte Carlo procedure is:

Monte Carlo Procedure
Input: event set, temporal and spatial ranks, numberp
Output: p-dim arrayl with largestUC value in each
permutation.
ML1 . for i = 1 to p do

MS1. generate a permutation of events time index
MS2. update temporal ranks
MS3. call ScanProcedure
MS4. l[p] ← value ofU statistic

return l

Considering that generating a random permutation ta-
kesO(n) operations, the computational complexity of the
procedure isO(pn4) since loopML1 complexity is domi-
nated by stepMS3.

3.2 Non-overlapping scan algorithm

A first approach to generate non-overlapping best space-
time cylinders is to visit each cylinder just one time and
to store a list of candidates. As this list may contain up
to O(n4) cylinders, efficient data structures are essential to
maintain low computational complexity. Here, we took a
different approach since we expect that the numberb of de-
sired non-overlapping cylinders is relatively low with re-
spect of the number of relevant cylinders. Instead of stor-
ing candidate cylinders, we perform the scan procedureb

times, maintaining a list of already identified best space-
time cylinders. This approach reevaluatesUC statistics for
many cylindersC but does not require complex data struc-
tures. LetG be the list of non-overlapping cylinders. Ini-
tially, it is empty and, at each instance of loopNL1, a new
space-time cylinder is included inG or the procedure ter-
minates if there is no such cylinder.

Non-overlapping Scan Procedure
Input: event set, temporal and spatial ranks andb
Output: C∗1 , C∗2 , ..., C∗b and their test statisticUC values
G ← ∅
NL1. do b times

found← FALSE
for each evente do

for each validCT that containse do
for each validCS centered ine do

C ← CS × CT

NS2. if C do not overlap any cylinder inG then
found← TRUE
computeN(C), N(CS), N(CT)
if N(C) > sm andUC > UC∗ , thenC∗ ← C

if (found)
thenincludeC∗ in G
elsereturnG

returnG

The complexity of this procedure depends on the num-
ber b of desired cylinders, both because of loopNL1 and
stepNS2. We perform the basic scanb times and, in each
one of those, all previously generated cylinders should be
inspected in stepNS2. The final complexity isO(b2n4).

4 Space-time clusters in crime data

For illustration, we use the crime incidence data from a
large Brazilian city, Belo Horizonte, during 1995-2001 col-
lected by the Polı́cia Militar de Minas Gerais based on their
police records of crime events. Each crime event was geo-
referenced by the coordinates of its occurrence place (in
meters) and occurrence day.

We deal with robberies of three types of stores: drug-
stores, bakeries, and lottery houses. Most of these robberies
were gun armed robberies. We also consider homicides, a
different kind of crime to contrast to the store robberies. We
have data from 1995 to 2000 for store robberies and from
1995 to 2001 for homicides. The total number of events
were 582, 765, and 2216 for the lottery houses, drugstores,
and bakeries robberies, respectively, and 1356 for homi-
cides.

We ran the usual Knox test with two spatial and tem-
poral thresholds: 2 and 3 kilometers and 20 and 30 days.
We used 999 Monte Carlo simulations in the tests. Table 1
presents the results. While homicide shows no evidence of

* * *
* *

*

* **
*

*

**

*

*

*

*
*

**

*
**

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

**
*

*

*
*

*

*

*
** *

*

*

*

**

*

*
*

*

*
**

*

* *

*

*

**
*

*

* *

*

*
*

*
*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

**

**

*

*

*

**

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

*

*

*

*

*

*
*

*

*
*

*

*

*

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **

*

*

**
**

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

* *
*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

**
*
*

* *

**

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*

*
*

*

*

**

*

*

* *
*

*

**

*

*

*

*

*

*

*

* *
*

*

*

* *

*
*

*

*

*

*

*

*

*
*

*
*

*
* *

*

*

*

**
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

**

*

*

*

*
*

*

*

*

*
*

*

*

*
*

**

*

*

*

*
*

*
*

*

* *

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*
*

* *

*

*

*
*

*

*

*

**

*
**

*

*

*

*

*

*

*

* *
*

*

*
*

*

*

*

*

*

*

*
*

* *

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

**
*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

* *

*
*

*

*

*

*
*

*

*

*

**

*

*

* *
*

*
*

*

*
*
*

*

**

*

*

*

*

*

*
**

*

*

*

* *

*

*

*

*

**
*

*

*

*

* *

*

*

*

**
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

**

*
*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*
*

*

*

*

* *

*

**

**

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*
*

**
*

**

*

*

* *

*

*

*

*

*

*

*

* * ***

*

*
**

*

*

*

*

**

*

* **

*

*

*
*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*

*
*

**

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

* *

*

**

**
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

**

*

*
*

*

* *

*

**

*

*
*
*

* * *
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

* *

*
*

*

*

*

**

* * *

*

*

*

*

*

*

*

* *
*
*

*

*

*

*

*

*
**

*
*

*

*

*
*

*

*

*

*

* *

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

**

*

** *
*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

* *

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*
*

**

*

*

*

*

*

*
*

*

*

*

*

**

** *

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*
* *

*

*

*

*

*

*

* *

* *
*

*
*

**

*

*

*
*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*
**

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*
*

**

*

*

**

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*
*

*

*

*

* *

*

*

** *

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*
*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*
*

*
**

*
*

*

*

*

*

* *

*

**

*

*

*

*

*
*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

** *

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

* *

*

*

*

*

*

*

*

*

*

**

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

* *

*

*
*

*

*

*

*

*

*

**

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
**

*
*

*
*

*

* *

*
*

*
*

*

*

**

*

*
*

*

*

*

*
*

*

*

*

**
*

*

*

*
*

*

*

*
*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

**

*

*

**

*

*
*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

* *

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

**

*

*
*

*

*

*

* **

*

*

*

*

**

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
* **

*

*
*

*

* *
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

**

*

*

*

* *

*

*

*

*

*
*

*

*
*

*

*

**

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*
*

*
*

**

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

**

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

* **

*

*

*

**

*
*

*

*

*

*
*

* *

*

*

*

*

*

** *

* **

*

*

*

*

*

*

*
**

**

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**
*

**

*

*

* *

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*
** *

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* **

*
*

*

* *

*
*

*

*

*

*

*

*

*

*
*

*

*

*
*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*

*
*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

**

*
*

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

**

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* **

*

*

*

*

*

*

*

**

* *

*

*

*

*

*

*

*
** ** *

* *

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

**

*

*

*

*

* **

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

**

*
* *

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

**

*

*

*

**
**

* *

*

*

*
*

*

*

*

*

*

*

**

*

**

*

*

**
**

*

**

*

**

*

*

**
*
**
*

*
*

*

*

*
*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

**

*

*
*

*

*

*

*
**

*

*

*

*

*

*
*

* *

*

*

*

*

**

*

*

*
*

*

* *
*

*

*

*

*

*
*

*

*

*

*
**

*

**
**

* *

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

**
*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
* *

*

*

*

*
*

*
*

*

*

*

*

* *
*

*

*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

* *

*

*

**

*

**

*

*

*

*

*
*
*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*
*

*
*

** * *

*

*

*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*
*

*

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*

*

**
*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
**

*
** *

*

*

*

**

*

*

*
*

* *
*

**

*
*

*

* *

*

*

*

*

*

*
*

**

* *

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*
*

*

*

* * *

*

*

*

*

*
*

*

**

*

*
*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*
*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

**

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*
*

* *

*

*

**

*

*

*

*

*

* *
*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

* *

*

*
*

*

*

*

*

** *

*
*

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*
* **

*

*

**

*

*

*

*

**

*

*

*

*
* *

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
* **

*

*

*

*

*

*

*

*

**

**

*

**

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*
**

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

* * *

*

*

*
*

*

**

*

*

*

*

*

*
*

*
*

*
*

*

* *
**

*

*

*

*

*

*

* * *
*

*

**

*

*

*

*

**

*

* *

*

**

*

*
*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

**

*
*

*

*
*

*

*

*
*

*

*

**
* *

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*
*

**

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* **

*

*

*
*

*

*

*

**

*

*

*

*

**

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

** *

*

*

*

*

**

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

**

*

*

*

**

*

*

*
*

*

*

*

*

*

*
*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

**

*

*

*

**

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

**

*

*
*

**

*

*

*

* *
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

Figure 1: Maps of Belo Horizonte with four types of crime.
The upper row shows the 765 drugstore robberies (left) and
the 2216 bakery robberies (right). The bottom row shows
the 582 lottery house robberies (left) and the homicides
(right). The first three range from 1998 to 2000 while homi-
cides data range from 1998 to 2001.

space-time clustering, bakery and drugstore robbery have
small p-values while the evidence for lottery robbery de-
pends on the threshold used and even then it is only border-
line significant.

To run our scan procedure in the same dataset, we used
a minimum of 5 events in each cylinder and we limit the
cylinders to contain at most 15% of the observed events and
to not cover more than 15% of either the areaA or the total
time interval[0, τ]. We used 999 Monte Carlo simulations
to generate the null hypothesis distribution.

We foundC∗1 as a significant (at 0.05 level) space-time
cluster in all four crimes, with bakery robberies presenting
alsoC∗2 as a significant cluster (see Table 1). The number
of events in the most significant cluster was 5, 7, 6, and 5
events for bakery, drugstore, lottery robberies, and homi-
cide, respectively. The second significant cluster of bakery
robberies had 5 events. Although the homicide space-time
cluster presented borderline significance, we can see that
the scan test identified clusters in homicide and lottery rob-
beries, whereas Knox test did not. This suggests that our
method could be more sensitive to the presence of localized
clusters than Knox test.

Figure 2 presents the maps from Figure 1 zoomed to
show the significant space-time clusters we detected with
our scan procedure. The cluster covering the largest area
was drugstore robbery with 1.52 kilometers of radius while
the other clusters ranged from 370 to 760 meters. Hence,
the events within the clusters are tightly clustered in space.

*

* ***

*
* *

*

*

**

**

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

**

*

*

**

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*
*

**

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

**

* *
*

* *

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

**

*
*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

**

*
*

*
*

*
*

*

*
*

*

* *
*

*

*

*

*

* *

** *
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

**

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

* **

*

*
*

*

*

*

*

*

*

*

*
*

*

**
*

*

*

* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

**

*

*

*
*

*
*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*
*

*
* *

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*
*

* *

*
*

*

*

*

*

*

**

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

* *

*

*

**

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*
**

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

* *

**

*

*
*

*

*

*

*

*
*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*
*

* *

* *

* *
*

*

*

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*
**

*

Figure 2: Zoomed maps of Belo Horizonte with the signif-
icant space-time clustersC∗j by type of crime, in the same
order as Figure 1. Bakery robbery is the only crime with
two significant space-time clusters, the others having only
one significant cluster (at 0.05 value).

One store was robbed twice in each of the lottery and drug-
store clusters. A more extreme pattern was found in the
second bakery cluster with one store robbed three times.
There were no obvious spatial pattern connecting clusters
from different crimes.

Concerning time, the shortest bursts of spatially local-
ized violence was that associated with the two clusters of
bakery robberies. They first and second clustersC∗1 and
C∗2 lasted 8 and 17 days starting on February, 28 2000 and
March 29, 2000 respectively. Drugstore and lottery rob-
beries had longer clusters lasting 68 and 81 days starting on
April 03, 1997 and May 23, 1995, respectively. The homi-
cide cluster was detected on February 03, 2000, lasting 58
days.

The significant clusters of bakery robberies showed
extreme patterns. ClusterC∗1 lasted only 8 days and, al-
though occurring in different parts of the city, the second
cluster started only 3 weeks after the first one had disap-
peared. This lasted only 17 days and contained five events
related with 3 different stores, one of them being robbed
three times during this period and five times during the to-
tal study period. The time lags between the five successive
events in this second space-time cluster were 5, 2, 6, and
4 days. To improve visualization in Figure 2, the repeated
robbed store events coordinates were jigged by random nor-
mal random variables with men zero and standard deviation
60.

Crime 2 km 3 km C∗1 C∗2
20 days 30 days

Bakery robb. 0.01 0.01 0.030 0.032
Drugstore robb. 0.01 0.01 0.012 0.154
Lottery robb. 0.05 0.22 0.028 0.220

Homicide 0.10 0.11 0.048 0.344

Table 1: Table with the p-values of Knox and scan tests.
The results are separated according to either the thresholds
used in the test (Knox) or the first (C∗1) and second (C∗2)
most significant cylinders (scan test). The null hypothesis
distribution was determined by 999 Monte Carlo permuta-
tions of the observed timesti.

5 Conclusion

Recently, there has been interest on space-time surveillance
systems for the early detection of disease outbreaks, but
very few studies have provided solutions to this problem.
Rogerson (2001) proposed to use a cumulative sum approach
for space-time point processes data, each event being scored
according to a local Knox statistic. Theophilides (2003)
uses multiple Knox test (1964) in multiple local area, so see
whether one or more exhibit space-time clustering within
that local area. Their method is very different from the one
proposed here. Kulldorff et al. (2002,2003) have devel-
oped a space-time permutation scan statistic for the early
detection of disease outbreaks, which is currently in use
by the New York City Department of Health for syndromic
surveillance. They use a Poisson based likelihood ratio test
statistic rather than the score test proposed in this paper. All
of these methods are prospective in nature, in that they are
looking for recent outbreaks, as opposed to our retrospec-
tive method, which aims at detecting space-time clusters at
any location and time.

In conclusion, our method has many desirable featu-
res: it does not require population data; it identifies the
space-time clusters; it does not require time and distance
critical thresholds as Knox test does, it adjusts for purely
spatial and purely temporal clustering, and it provides sta-
tistical inference for each individual cluster detected. We
think it will be of great use in many practical applications.

Acknowledgements

This work was partially supported by project SAUDAVEL,
joint call MCT/SEPIN - FINEP - CNPq 01/2002. The data-
set used in the example was kindly provided by the Polı́cia
Militar de Minas Gerais.

Appendix: Algorithm Complexity

The algorithm has two steps. The first one finds the rel-
evant time and space cylinders and this takesO(n log n)
andO(n2 log n) complexity, respectively. The second step
finds the space-time cylinders as intersections of space and
time cylinders and this takesO(n4) running time. There-
fore, a single execution of the scan procedure takes

O(n log n) + O(n2 log n) + O(n4) = O(n4)

running time. It takesO(pn4) to obtain the null hy-
pothesis distribution withp independent permutations of
time indexes. In order to obtain theb non-intersecting most
significant cylinders, we needO(b2n4) running times. We
describe these calculations with more detail.

Temporal and spatial ranks input

Let t(1) < t(2) < . . . < t(n) be the ranked values of the
observed times andmt be the maximum length of a time
cylinder. The set of time cylindersCT induced by the ob-
served events is

CT = {(t(i), t(j)) | i < j andt(j) − t(i) ≤ mt}.

We derive the time cylinders from the time ranked val-
ues and these are obtained inO(n log n) running time if we
use optimal sorting algorithm, such asquicksort.

The set of relevant space cylindersCS is the union of
the space cylinders centered at eventse. Let (xe, ye) be the
center of a space cylinder andde

(2) < de
(3) < . . . < de

(n) be
the ranked distances of the other observed events to event
e. Note thatde

(1) = 0 since it is the distance betweene and
e. If md is the maximum radius of a space cylinder, the set
of space cylindersCS is

CS ={(
xe, ye, d

e
(s)

)
|e, s ∈ {1, . . . , n}, s ≥ 2, andde

(s) ≤ md

}
.

The distance ranked values are sufficient to define spa-
ce cylinders. They can be evaluated byn sorting algo-
rithms. Therefore, we needO(n2 log n) running time to
generate the spatial cylinders.

Scan procedure complexity

Given an evente, loopsSL2 andSL3 should guarantee the
generation of all time cylinders containinge and all space
cylinders centered ate. A time cylinder is generated by
defining first an allowable initial timetm = t(i) (tm ≤ te
and te − tm ≤ mt), and then, a valid final timetM =
t(f) (te ≤ tM andtM − tm ≤ mt). For this, we iterate

through events in their temporal ordering determiningi and
f in O(log n) time. LoopSL2 is implemented by letting
m vary from i till rt(e) wherert(e) is evente temporal
rank. For a fixedm, valid time cylindersCT = (t(m), t(M))
are those that containse (M varies fromrt(e) to f) and
respects time thresholdmt. There are at most

∑n
i=1(n −

i) < n2 such cylinders (depending on themt value), thus
SL2 is performedO(n2) times. The size of a time cylinder
CT = (t(m), t(M)) in SS2is M −m + 1 events and can be
evaluated in constant time.

For a fixed time cylinderCT , space cylinders gener-
ated in loopSL3 should contain at least them-th andM -th
time events in order to minimize the re-generation of space-
time cylinders. Letem andeM be those events. The space
cylinder minimum radius isr = min{d(e, em), d(e, eM)}.
Let l be the distance rank of this radius, which can be deter-
mined inO(log n). Spatial cylinders in loopSL3 are of the
form CS = {(xe, ye, d

e
(s)) | l ≤ s < g}, wherede

(g) > md

or g = n + 1. Loop SL3 is performedO(n) times. The
evaluation ofN(CS) in SS2is exactlys, and takes constant
time.

The space-time cylinders are the intersection of events
in a spatial and a time cylinder. For a fixedCT in loop
SL2, spatial cylinders are considered in increasing radius
in loopSL3. Hence, a new spatial cylinder must include all
previous events and at least one additional event. Initially,
a sequential scan is used to determine the intersection of
CT andCS = (xe, ye, d

e
(l)), by comparing the timeste of

eventse ∈ CS to the time interval ofCT . For each new
CS , a new event is included and the comparison is repeated.
It results that the computation of allC in stepSS3 for a
loop SL3 is O(n) (which is also the complexity ofN(C)).
OperationsN(CT), N(CS) and the test statisticsTC are all
O(1).

The resulting computational complexity of the algo-
rithm is the pre-processing time,O(n log n) for time rank
andO(n2 log n) for space rank, plus the space-time cylin-
ders generation which has complexity

|SL1|(O(log n) + |SL2|(O(log n)+

|SL3|[O(SS1) + O(SS2) + O(SS3)]
))

.

where —S— denotes the number of times loopS is
executed. From the previous discussion,|L1| = O(n),
|L2| = O(n2) and|L3|[O(S1)+O(S2)+O(S3)] = O(n).
Therefore, the final complexity of our scan algorithm is
O(n4).

Bibliography

Cliff AD, Ord JK (1981) Spatial processes: models and ap-
plications. Pion Limited: London.

Cox DR, Hinkley DV (1974)Theoretical Statistics.
Chapman and Hall: London.

Diggle PJ, Chetwynd AG, Ḧaggkvist R, Morris SE
(1995). Second-order analysis of space-time clustering.Sta-
tistical Methods in Medical Research, 4, 124-136.

Duczmal LH, Assunç̃ao RM (2003) A simulated an-
nealing strategy for the detection of arbitrary shaped spatial
clusters. Computational Statistics and Data Analysis, in
press.

Jacquez GM (1996) Ak nearest neighbor test for spa-
ce-time interaction.Statistics in Medicine, 15, 1935-1949.

Knox EG (1964) The detection of space-time interac-
tions.Applied Statistics, 13, 25-29.

Kulldorff M (1997) A spatial scan statistic,Communi-
cations in Statistics - Theory and Methods, 26 (6): 1481-
1496.

Kulldorff, M (2001) Prospective time periodic geo-
graphical disease surveillance using a scan statistic.Jour-
nal of the Royal Statistical Society, Series A, 164, 61-72.

Kulldorff M, Heffernan R, Hartmann J, Assunção RM,
Mostashari F. A space-time permutation scan statistic for
the early detection of disease outbreaks. Manuscript, 2003.

Kulldorff M, Hjalmars U (1999) The Knox method
and other tests for space-time interactionBiometrics, 55 (2):
544-552.

Kulldorff M and IMS Inc. SaTSacan v3.0: Software
for the spatial and space-time scan statistics. Available at
[http://www.satscan.org], 2002.

Mantel N (1967) The detection of disease clustering
and the generalized regression approach.Cancer Research,
27, 209-220.

Rogerson PA (1997) Surveillance systems for mon-
itoring the development of spatial patterns.Statistics in
Medicine, 16, 2081-2093.

Rogerson PA (2001) Monitoring point patterns for the
development of space-time clusters.Journal of the Royal
Statistical Society, Series A, 164, 87-96.

