
 Stochastic Driven Relational R-Tree

HANS-PETER KRIEGEL, PETER KUNATH, MARTIN PFEIFLE, MARCO PÖTKE, MATTHIAS RENZ, PETRA-MARIA STRAUß

University of Munich, Germany, {kriegel, kunath, pfeifle, renz, strauss}@dbs.informatik.uni-muenchen.de

sd&m AG software design & management, marco.poetke@sdm.de

Abstract. Modern spatial database applications including computer-aided design (CAD), medical imaging,
molecular biology, or geographical information systems (GIS) impose new requirements on spatial query pro-
cessing. Particular problems arise from the design goal to use general purpose database management systems
in order to guarantee industrial-strength. Recently, there has been an increasing awareness that it is indispens-
able to integrate stand-alone spatial index structures, e.g. R-trees or Quadtrees, into fully-fledged database sys-
tems resulting in relational index structures, e.g. Relational R-trees or Relational Quadtrees. In this paper, we
introduce stochastic heuristics for the Relational R-tree which are based on the fact that the Relational R-tree
allows an individual fanout for each node. This freedom from minimal and maximal fill factors of nodes, of-
fers a wide range of potential improvements. We develop algorithms that consider the quality of the entries of
a node rather than just the quantity. Our experiments clearly demonstrate the advantages of this new stochastic
driven Relational R-tree compared to the Relational R*-tree.

1 Introduction

Modern geographical information systems have to man-
age huge amounts of data effectively and efficiently. Ac-
cording to a directive of the European Union, for example,
almost all environmental data that is stored at public agen-
cies have to be made available to any citizen on demand
[4]. This requirement can only be met by providing sys-
tems which allow efficient and concurrent retrieval of
spatial data. Therefore, we need suitable index structures
which have to be integrated into fully-fledged database
systems. In [3] it was shown that the R*-tree is especially
useful for highly selective queries. Furthermore, there ex-
ist commercial systems which have already integrated R-
trees into their kernels [12, 13].

For commercial use, a seamless and capable integra-
tion of temporal and spatial indexing into industrial-
strength databases is essential. Fortunately, a lot of tradi-
tional database servers have evolved into Object-Rela-
tional Database Management Systems (ORDBMS). This
means that in addition to the efficient and secure manage-
ment of data ordered under the relational model, these
systems now also provide support for data organized un-
der the object model. Object types and other features, such
as large objects (LOBs), external procedures, extensible
indexing, user-defined aggregate functions and query op-
timization, can be used to build powerful, reusable server-
based components.

Relational index structures are designed to operate
on relations rather than on dedicated disk blocks. The per-
sistent storage and block-oriented management of the re-
lations is delegated to the underlying database server.
Therefore, the robust functionality of the database kernel

including concurrent transactions and recovery can poten-
tially be reused.

In an ORDBMS, the user has no access to the exact
information where the blocks are located on the disk. This
information is hidden from the user, who can only access
the data via SQL. In this environment, we are dealing with
virtual pages which introduces a whole new abstraction
level. This new abstraction level frees us from physical
constraints, such as block sizes. In this paper, we show
how this new concept helps to accelerate the Relational R-
tree [12] which we call RR-tree throughout the rest of this
paper.

The remainder of this paper is organized as follows.
To establish the necessary fundamentals, we first provide
a short introduction into the area of relational access
methods [10]. In Section 3, we introduce the basic RR-
tree. In Section 4, we discuss the theoretical foundation
for a stochastic driven RR-tree. Based on the thereby de-
rived formulas, we introduce algorithms for the insert, de-
lete and update operations of the RR-tree in Section 5. In
Section 6, we compare our new stochastic driven RR-tree
to the Relational R*-tree which is outperformed consider-
ably. We summarize our work in Section 7 and close by
shortly sketching a few further potential improvements
for the RR-tree.

2 Relational Access Methods

In this section, we discuss the basic properties of relation-
al access methods with respect to the storage of index data
and query processing. For more detail, we refer the inter-
ested reader to [10]. We start with a definition common to
all relational access methods:

Definition 1 (Relational Access Method)
An access method is called a relational access method iff
any index-related data are exclusively stored in and re-
trieved from relational tables. An instance of a relational
access method is called a relational index. The following
tables comprise the persistent data of a relational index:

(i) User table: a single table, storing the original user
data being indexed.

(ii) Index tables: n tables, , storing index data de-
rived from the user table.

(iii) Meta table: a single table for each database and each
relational access method, storing O(1) rows for each
instance of an index.

The stored data are called user data, index data, and meta
data.

To illustrate the concept of relational access methods,
Figure 1 presents a simple example for indexing two-di-
mensional polygons by using minimum bounding rectan-
gles (MBRs). The user table is given by the object-rela-
tional table polygons (cf. Figure 1a), comprising
attributes for the polygon data type (geom) and the object
identifier (id). Any spatial query can already be evaluated
by sequentially scanning this user table. In order to speed
up spatial selections, we decide to define an MBR-List
polygons_idx on the user table. Thereby, an index table
polygons_mbr is created and populated (cf. Figure 1b),
assigning the minimum bounding rectangles (mbr) of
each polygon to the foreign key id. Thus, the index table
stores information purely derived from the user table. All
schema objects belonging to the relational index, in par-
ticular the name of the index table, and other index param-
eters are stored in a global meta table
mbr_index_metadata (cf. Figure 1c).

In order to support queries on the index tables, a rela-
tional access method can employ any built-in secondary
indexes, including hash indexes, B+-trees, and bitmap in-
dexes. Alternatively, index tables may be clustered by ap-
propriate primary indexes. Consequently, the relational
access method and the database system cooperate to
maintain and retrieve the index data [5]. This basic ap-
proach of relational indexing has already been applied in
many existing solutions, such as Linear Quadtrees and the
Relational R-trees for GIS databases or more generally for
all kinds of spatial databases [6, 12, 13]. Furthermore, the
concept was applied to the Relational X-tree [1] for high-
dimensional nearest-neighbor search, or inverted indexes
for information retrieval on text documents [5].

3 The Relational R-tree

The Relational R-tree was first introduced by the Oracle
developers Ravi Kanth et al [12]. Figure 2 depicts a hier-
archical R-tree along with a possible relational mapping
(page_id, page_lev, son_id, son_mbr). The column
page_id contains the logical page identifier, while
page_lev denotes its level in the tree. Thereby, 0 marks the
level of the data objects and 1 marks the leaf level of the
directory. The attribute son_id contains the page_id of the
connected entry, while son_mbr stores its minimum
bounding rectangle. Thus, page_id and son_id together
comprise the primary key. In our example, the logical
page 2 represents a partition of the data space which con-

n 0≥

mbr_index_metadata

index_name user_table index_table

‘polygons_idx’ ‘polygons’ ‘polygons_mbr’

… … …

polygons_mbr

id mbr

A
BOX((5,10),

(30,15))

B
BOX((30,5),

(40,50))

… …

polygons

id geom

A
POLYGON((10,10),
(25,15), …, (10,10))

B
POLYGON((30,15),
(30,45), …, (30,15))

… …

c) Meta table

a) User table b) Index table

Figure 1: The MBR-List, a simple example for a
relational access method

Figure 2: Relational mapping of a R-tree directory
a) index table b) Hierarchical directory

1 2

3

4

5
6 7 8 9

…A B

polygons_rtree

page id page_lev son_id son_mbr
ROOT 3 1 BOX((0,0),(200,120))

1 2 2 BOX((0,0),(80,60))
1 2 3 BOX((60,20),(100,120))
1 2 4 BOX((140,20),(200,120))
2 1 5 …
2 1 6 …
5 0 A …
6 0 B …
… … … …

a)

b)

tains the polygons A and B. The corresponding index row
(1,2,2,..) is therefore logically associated with rows (A,...)
and (B,..) in the polygons user table (cf. Figure 1).

To support efficient navigation through the relational
R-tree table polygons_rtree at query time, a built-in index
can be created on the page_id column. Alternatively, the
schema can be transformed to NF² (non-first normal
form), where page_id alone represents the primary key,
and a collection of (son_id, son_mbr) pairs is stored with
each row. In this case, the static storage location of each
tuple can be used as page_id, avoiding the necessity of a
built-in index. A primary filter for a window query using
SQL is shown in Figure 3.

The relational mapping of the R-tree offers a new
freedom, as it does not have to take into account physical
block sizes. All data are stored in relations and accessed
via standard SQL. At this abstraction level, pages are no
longer physical entities but virtual objects. Thus, it is no
longer necessary to look out for minimal or maximal fill
factors of the pages. Even if there are sparsely filled pag-
es, we are not wasting disk space. Furthermore, it is no
longer mandatory to split a page only because the number
of its entries exceeds a certain number. In fact, we are ba-
sically free to allow an individual fanout for each tree
node.

Similar to the concept of supernodes for high-dimen-
sional indexing [2], larger nodes could be easily allocated,
e.g. if the contained geometries show a very high overlap
or are almost equal. Splitting such pages would not im-
prove the spatial clustering, it would rather result in high
overlapping nodes. Thus, we suggest page splits triggered
by measuring the clustering quality with a similarity mea-
sure similar to the one presented in [9].

To motivate our idea, we assume the most extreme
case of overlap by inserting only one object repeatedly
into the tree. We use stochastic criteria for the insert, up-
date and delete operations which avoid splitting highly
clustered data into different nodes by allowing nodes with
a variable fan-out. Our basic idea consists of the following
probability assumption. First, we assume that any given
query q hits a page p with a probability Pfather. Further-
more, we assume that this query q hits also all entries in

the page p with a probability Pall_child. Then, we carry out
a split iff Pall_child /Pfather falls below a certain threshold
tsimiliarity.

In the case all entries are identical, Pall_child /Pfather is
always equal to 1 and never falls below a certain threshold
tsimiliarity. Therefore, a split is never performed. In this ex-
treme case, we would obtain a tree with only one single
big node comprising all the data of the tree. Any query
would result in a range scan on this node.

On the other hand, filling the tree in a normal R*-tree
[3] manner, i.e. splitting nodes due to the quantity of the
entries, we would have to perform a lot of page splits dur-
ing the index creation process. Furthermore, during the
query process, a given query would have to go through the
whole tree which is easily understood to be far more ex-
pensive in terms of the navigational cost.

In our experimental evaluation, we show that our
new stochastic driven Relational R-tree outperforms the
relational version of the R*-tree with respect to insert and
select operations by far.

4 Stochastic Criteria for Organisation of the R-tree

In this section, we formally compute the probability
 that any given hyper rectangle which in-

tersects a directory node RR, intersects also all children R1
.. RL within this directory node. Based on this probability,
we can trigger the splitting algorithm of the stochastic
driven RR-tree.

We start with normalizing the coordinates of our hy-
per rectangles of dimension to assure that all data lies
within the unit hyper rectangle . For clarity, we
first examine the one-dimensional case looking at inter-
vals and their point transformation into the upper triangle

 of the unit hyper rectangle
with dimension (i.e. in this case). An inter-
val therefore corresponds to the point with

 (cf. Figure 4a).
Let be an interval. All intervals that inter-

sect are visualized by the shaded area in Figure 4a. The
area displays all intervals whose lower bounds are smaller

SELECT son_id AS id FROM polygons_rtree
WHERE page_lev = 0
START WITH page_id = ROOT
CONNECT BY

PRIOR son_mbr INTERSECTS BOX((0,0),(100,100))
AND PRIOR son_id = page_id;

Figure 3: Recursive window query on a Relational R-
tree using Oracle SQL

P R1 .. ,RL RR,()

d
 0 1,[]∏d

i=1

D := x y,() 0 1,[] 2
x y≤∈{ }

2 d⋅ 2 d⋅ 2=
x y,[] x y,()

x y≤

Figure 4: Point transformation of the interval I = [a,b]
with a) a < b and b) a > b

1

1

0 a b

a

b

D

1

1

0 b a

b

a

a) b)D

I

I a b,[]=
I

than or equal to and whose upper bounds are bigger
than or equal to . These intervals are exactly the ones
that have a non-empty intersection with .

The upper triangle has the area , the shaded
area spans if . A more general
formula is defined in the following using the Iverson No-
tation [7]. A statement which can either be true or false is
placed in square brackets, like this . If the state-
ment is true, the whole expression is 1, otherwise it is 0.
Let be arbitrary numbers. For the interval

 we use from now on the abbreviation
 representing all intervals intersecting I.

Formally, we define A(I) as follows:

. (01)

Presuming equal distribution of the data, the proba-
bility that interval is struck by any query inter-
val is:

. (02)

The probability of a query hitting two inter-
vals and with and

 for all , and is thus:

. (03)

The case where and intersect each other, i.e.
, is illustrated in Figure 5a.

In Figure 5b the case is depicted that the two inter-
vals do not intersect, i.e. (w.l.o.g. we assume

). Based on formula (01) we can compute
the shaded area as follows:

In general, the probability of a query intersecting the
intervals with and is
obtained by the following formula:

. (04)

The conditional probability of interval being in-
tersected by a query that already intersects is thus:

(05)

and analogously, let :

(06)

Assuming independence of the and sizes of the
data, the formulas derived so far can be expanded to arbi-
trary dimension:

Let therefore and be

two d-dimensional hyper rectangles. The probability that
a query intersects is thus

. (07)

Analogously:

. (08)

For hyper rectangles with more than 2 entries, the
conditional probabilities are derived in the same manner:

(09)

with , , and .

5 Stochastic Driven Relational R-Tree

We now adopt the stochastic criteria, i.e. probabilities de-
scribed in the foregoing section, to the Relational R-tree.
In this section, we describe how and where the heuristics
can be applied. We state the different update operations in
detail and show their enhancement by presenting our ex-
periments in the next section.

Note that the algorithms of our stochastic driven RR-
tree are based upon the ones of the R*-tree [3] which we
use without modification, apart from the changes de-
scribed below. In the following, we do not quote the full
algorithms and therefore refer the reader to the corre-
sponding literature [3].

5.1 Insert

The stochastic criteria, i.e. probabilities, described above
can be adopted by the RR-tree insert-algorithm in the fol-
lowing decision points:

 • selection of insert position

 • election of the point of time for a split

 • partitioning of entries when splitting is performed

b
a

I
D ∆ 1

2
---=

b 1 a–() 1
2
--- b a–()2⋅–⋅ a b≤

a b≤[]

a b 0 1,[]∈,
I a b,[]=
A I() A a b,()=

A a b,() := b 1 a–() a b≤[] 1
2
--- b a–()2⋅ ⋅–⋅

I a b,[]=

P I() A a b,()
∆

-----------------=

P I1 I2,()
I1 a1 b1,[]= I2 a2 b2,[]= ai bi≤

ai bi 0 1,[]∈, i 1 2,{ }∈ I0 I1 I2∩=

P I1 I2,() P I0()
A max a1 a2,{ } min b1 b2,{ },()

∆
--= =

I1 I2
I0 I1 I2 ∅≠∩=

I1 I2∩ ∅=
a1 b1 a2 b2≤<≤

Figure 5: Point transformation of two intervals
I1 = [a1,b1] and I2 = [a2,b2]

a) with non-empty intersection b) with empty intersection

D

1

1

0 a2 b1

a1

b2

a2

b1

a1 b2

I2

I1 I0

D

1

1

0 b1 a2

a1

b2

b1

a2

a1 b2

I2

I1

b)a)

A max a1 a2,{ } min b1 b2,{ },() A a2 b1,()=

b1 1 a2–() a2 b1≤[] 1
2
--- b1 a2–()2⋅ ⋅–⋅=

b1 1 a2–()⋅=

I1 … In, , Ii ai bi,[]= i 1 .. ,n,{ }∈

P I1 .. ,In,()
A maxi 1..n= ai{ } mini 1..n= bi{ },()

∆
---=

I1
I2

P I1 I2()
P I1 I2,()

P I2()

A max a1 a2,{ } min b1 b2,{ },()
A I2()

--= =

L R IN∈,

P I1 .. ,IL, IR()
P I1 … IL IR, , ,()

P IR()
--------------------------------------=

x y

R1 := Ii
i 1..d=
∏ R2 := Ji

i 1..d=
∏

R1

P R1() := P Ii()
i 1=

d

∏

P R1 R2,() := P Ii Ji,()
i 1=

d

∏

P R1 .. ,RL RR,() := P I1i
.. ,ILi

IRi
,()

i 1=

d

∏

Rj := Ii
i 1..d=
∏ j 1 .. ,L R,,{ }∈ L R IN∈,

Insert Position. In order to insert a rectangle into a
page we choose the most similar entry : Select so that

 is maximal, i.e. take the subtree for which the
probability of a query hitting and simultaneously be-
comes maximal (cf. Formula (08)). (In case this criterion
is not unique, other criteria may be tested additionally).
The algorithm is listed in Figure 6.

Due to the fact that all entries of a virtual page have
to be tested, the selection of the “best” subtree results in a
complexity linear to the number of entries of that virtual
page. The cost of inserting a rectangle is therefore

, with being the average number of en-
tries per page, the dimension, and the total number of
rectangles.

Split. As described above, our aim is to allow a variable
fanout for each node to improve the structure of the tree in
terms of clustering and similarity of the data. Therefore,
we let the decision when a split should be performed also
depend on probabilities. We split a node only if its entries
are relatively dissimilar. However, in order to prevent
having a high number of nodes that may be only sparsely
filled, we consider a split only after the count of entries
exceeds a specified common filling factor.

Let be the minimal bounding rectangle of all en-
tries of a page. Assuming the page is already
commonly filled, a split is performed iff the probability

 falls below a certain threshold (cf. Formu-
la (09)). Figure 7 depicts the corresponding pseudocode.

The calculation of results in a complexity
of with and as defined above.

Partitioning. To explain the use of the heuristics on the
partitioning of the entries when a node is split, we first
describe the split algorithm: Assimilating the R*-tree split
operation, we first reinsert the outermost rectangles. This
improves the distribution of the rectangles and can in
some cases prevent a split. Thus, the structure of the tree
is widely independent from the insertion order. If a split
cannot be avoided, the stochastic measure is used to as-
sign the partitioning. Thereby, several possible partitions
are examined and the best one is chosen.

The algorithm works as follows (cf. Figure 8):

 • If Reinsert has not been started yet: Delete the m rect-
angles which are furthermost from the center of the
page and insert them again (with m being the reinser-
tion rate).

 • If Reinsert has already been carried out: Find a split
axis (perpendicular to which the split is to be per-
formed). For each dimension find the interval pair ,

 with maximal normalized distance dmax. Choose the
dimension with maximal dmax as the split axis and ,

 as the initial pair. This part of the splitting process
is similar to the R*-tree (cf. Figure 8a).

 • In the next step, we group the hyper rectangles similar
to the grouping performed by the R*-tree. Neverthe-
less, there is a decisive difference: We do not use a geo-
metric distance measure but our stochastic heuristics
for splitting the node into two partitionings A and B. In
a first step, we determine for each rectangle of the node
its projection I to the split axis. Then, we calculate

 and , according to
Formula (05). For a certain bandwidth and in-

R
E E

P R E,()
R E

O L d Nlog⋅ ⋅() L
d N

PROCEDURE Insert(R,Page)
ActualSimilarity REAL;
MaxSimilarity REAL;
BestEntry PageEntry;

BEGIN
IF Page IS DirectoryPage THEN

MaxSimilarity := 0;
FOR EACH E IN Page

ActualSimilarity := P(R, E);
IF ActualSimilarity > MaxSimilarity THEN

BestEntry := E;
MaxSimilarity := ActualSimilarity;

END IF;
END FOR;
Insert(R, BestEntry);

ELSE
. . .

END IF;
END;

Figure 6: Choosing entry for insert

B
E1 .. ,EL,

P E1 .. ,EL B,()

P E1 .. ,EL B,()
O d L⋅() L d

PROCEDURE Split(Page)
L INTEGER;
Threshold REAL;

BEGIN
L := NumberOfEntries (Page);
// Determine bounding boxes of page B and of all elements E_i

Similarity := P(E_1,...,E_L | B);
IF L <= CommonEntriesPerPage OR

 Similarity > Threshold THEN // Don’t split

RETURN;
ELSE

// Split

. . .
END IF;

END;

Figure 7: Decision of point of time for a split

Ii
Ij

i Ii
Ij

a P I Ii()= b P I Ij()=
ε ε,–[]

crement , we examine potential partitionings.
For all with we create two
partitions A and B as follows: We insert a rectangle into
partitioning A iff , otherwise into B. Then we
determine the overlap in the split dimension that is
generated during this partitioning and, finally, use the
partitioning that produces the least overlap out of the
k computed ones.

This procedure does not guarantee minimal node fill-
ing factors. Nor is this necessary due to the fact that we are
dealing with virtual pages. However, a future split on this
page is only performed after reaching a common filling
factor, as explained above.

We determine the initial pair and the split axis as sup-
plied by the traditional R*-tree algorithm. We use the pro-
jections of the entries to the split axis to elect the partition-
ing. Using the complete rectangles, we may obtain high
overlap. Figure 9 shows an example: The initial situation
is depicted in Figure 9a. The page to be split holds six
rectangles. and were selected as the initial pair.
The calculation of the partitioning without projection is
shown in Figure 9b. The probability of the complete rect-
angles assigns the split as follows: and

. A high overlap is obtained. In Figure 9c the
partitioning is depicted which first projects each rectangle
onto the split axis and then uses the discussed stochastic
heuristics. This results in the non-overlapping partitioning

 and .
Let be the total number of rectangles in the tree,

the average number of entries per virtual page, and let
be the dimension. Furthermore, let k denote the number of
computed partitionings per node. Then, our stochastic

driven split algorithm has an overall complexity of
.

5.2 Delete
The stochastic criteria does not interfere with the delete
procedure. Let be the minimal bounding rectangle of all
entries of a page, the probability
of any query hitting all entries of the page when hitting its
minimal bounding rectangle. A split is invoked iff the
probability falls below a certain threshold. Without loss of
generality, let us assume the entry to be deleted is .
Thus, the probability we have to consider is

 where B’ is the updated MBR. Of
course, this probability is higher than . If an
element is deleted within a specific node, the probability
that all elements of that node are hit by a given query in-
creases. Therefore, a delete operation can not instantiate a
split.

However, deleting entries motivates the idea of
merging spatially neighbored nodes to achieve an optimal
structure of the tree. Within the scope of this work we did
not deal with this possibility and leave it for future work.

5.3 Update

An update of an entry, is dealt with by deleting the entry
and inserting it again as described in the foregoing sec-
tions.

6 Experimental Evaluation

We evaluated the stochastic driven relational R-tree by
means of various experiments which we describe below.
For comparison we used a relational implementation of
the R*-tree [3]. Our trees were mainly filled with 2-di-
mensional data, the parameters were optimized for the 2-
dimensional case, e.g. the probability threshold tsimilarity
which is responsible for the decision whether or not a split
is carried out.

6.1 Update Performance

In our first experiment, we measured the time required for
building up a tree, i.e. inserting rectangles. The data con-

δ k IN∈
τ := ε– k δ⋅+ τ ε ε,–[]∈

a b τ>–

Figure 8: Illustration of the partitioning procedure

For each dimension find
the pair , with maxi-
mal distance . Choose the
dimension with maximal

 as the split axis and ,
 as the initial pair.

i
Ri Si

di
i

di Ri
Si

Contemplate projections
onto the split axis: Assign
according conditional prob-
abilities, try out several par-
titionings for entries that lie
in between.

I1 I2

I

Use the partitioning with
the least overlap.

a)

b)

c)

R1 R6

R1 R2 R4, ,{ }
R3 R5 R6, ,{ }

R1 R2 R3, ,{ } R4 R5 R6, ,{ }
N L

d

O d L k L⋅+⋅() Nlog⋅()

B
E1 .. ,EL, P E1 .. ,EL B,()

EL

P E1 .. ,EL 1– B',()
P E1 .. ,EL B,()

R4

R5

R6R3

R1

R2

a) b) c)

Figure 9: Use of projection for split
a) node to split b) stochastic partitioning without

projection c) stochastic partitioning with projection

sisted of rectangles with a side length between 0 and 100
and center between 0 and 100,000. Side length as well as
center are equally distributed.

In Figure 10, the x-axis shows the number of inserted
rectangles and the y-axis corresponds to the time axis. Our
stochastic insert and split routines were optimized to have
the minimal possible number of SQL-statements to per-
form. The positive effect is noticeable especially with an
increasing number of inserted rectangles.

The inserts are subject to big fluctuations. Tests have
shown that the times depend on the fact if the database
system has to expand during insertions or not. The pre-
sented numbers state the average values.

6.2 Query performance

High Selectivity. In the next experiment we measured the
performance on highly selective window queries. As que-
ry objects we used rectangles out of the data set.

Figure 11 displays real-times for an amount of data
of 10,000 up to 200,000 rectangles. It is clearly seen that
the stochastic algorithms outperform the common R*-tree
algorithms.

Varying Selectivity. In the following experiment we set
the number of rectangles to a fix 50,000 and varied only
the selectivity. In Figure 12, it can be detected that with a
selectivity of up to 4% the stochastic algorithms outper-
form the R*-split. With decreasing selectivity, the differ-
ences vanish.

Varying Dimensions. Figure 13 shows real-times of
window queries in R-trees of different dimensions. The
values were normalized such that the values of the sto-
chastic algorithms add up to 1 in each case. In this experi-
ment, we performed queries with a selectivity of 0.0001%
in R-trees of 50,000 objects.

Figure 13 shows that at dimension smaller or equal to
3, the stochastic R-tree is faster in comparison with the
R*-tree. It has to be mentioned, however, that we used
parameters optimized for the two-dimensional case. With-
in the scope of this work, we confined ourselves to two
and three dimensional data as they form the foundation of
modern GIS applications. If efficient query processing for

10 20 30 40 50

2

6

10

14

18

thousand

time

R*-Split

Stochastic Split

rectangles

in1000 seconds

Figure 10: Insertion times

thousand

real-time

R*-Split

Stochastic Split

rectangles

seconds

10

20

30

40

10 100 200

in

Figure 11: Window queries with very high
selectivity

selectivity

R*-Split

Stochastic Split

in seconds
150

120

90

60

30

0.01 0.25 1 4
in %

real-time

Figure 12: Window queries with decreasing
selectivity

dimension

comparison of real-times

2

1.5

1

1 2 3

R*-Split

Stochastic Split

Figure 13: Selective window queries with
different dimensions (values normalized to 1)

high dimensional data is required, we suggest to adopt the
presented stochastic heuristics to the X-tree [1, 2].

7 Conclusion and Future Work

In this paper, we introduced stochastic heuristics and
adopted them to the Relational R-tree. We thereby took
advantage of the relational mapping that frees us from
physical factors which prevail using the non-relational
version of the R-tree and thus offer a wide range of poten-
tial improvements. Here, we elaborated a concept to im-
prove the index-structure especially in terms of highly
clustered data. We described algorithms that consider the
quality of the entries of a node rather than just the quanti-
ty. Using stochastic heuristics for evaluation, we allow an
individual fanout for each node. Thus, we are able to post-
pone a split while it is not beneficial for the performance
of the tree. For the split we also optimized the partitioning
algorithm. Our experiments clearly demonstrate the ad-
vantages of the technique.

Aside from the introduced concept, we developed
and evaluated further possible extensions to the Relation-
al R-tree:
Page Clustering. In order to achieve a good clustering
among the entries of each tree node, a built-in primary
index can be defined on the page_id column. For bulk-
loads of Relational R-trees, the clustering can be further
improved by carefully choosing the page identifiers: by
assigning linearly ordered page_ids corresponding to a
breadth-first traversal of the tree, a sibling clustering of
nodes [8] can be very easily achieved.
Positive Pruning. By ordering the page_ids according to
a depth-first tree traversal, a hierarchical clustering of the
R-tree nodes is materialized in the primary index. In con-
sequence, the page identifiers of any subtree form a con-
secutive range. Similarly, if the leaf pages are hierarchi-
cally clustered in a separate B+-tree, a single range query
on the page_id column yields a blocked output of all data
objects stored in any arbitrary subtree of the R-directory.
Thus, the recursive tree traversal below a node completely
covered by the query region can be replaced by an effi-
cient range scan on the leaf table. Consequently, the tree
traversal is not only pruned for all-negative nodes (if no
intersection of the node region with the query region is
detected), but also for all-positives (the node region is
completely covered by the query region). Moreover, sta-
tistic based heuristics to prune already largely covered
nodes can also be very beneficial.

References

[1] S. Berchtold, C. Böhm, H.-P Kriegel., U. Michel:
Implementation of Multidimensional Index Structures for
Knowledge Discovery in Relational Databases, Proc. Int.
Conf. on Data Warehousing and Knowledge Discovery
(DaWaK'99), Florence, Italy 1999, in: Lecture Notes in
Computer Science, Vol. 1676, Springer, 1999, pp. 261-
270.

[2] S. Berchtold, D. A. Keim, H.-P. Kriegel, The X-tree:
An Index Structure for High-Dimensional Data, Proc.
22nd Int. Conf. on Very Large Databases (VLDB): 28-39,
1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, B. See-
ger, The R*-tree: an efficient and robust access method for
points and rectangles, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1990.

[4] Council of the European Communities. Council
Directive (90/313/EEC) of 7 June 1990 on the freedom of
access to information on the environment. Official Journal
of the European Communities, L158:56-58, 1990.

[5] S. DeFazio, A. Daoud, L. A. Smith, J. Srinivasan,
Integrating IR and RDBMS Using Cooperative Indexing,
Proc. 18th ACM SIGIR Conference on Research and
Development in Information Retrieval: 84-92, 1995.

[6] J.-C. Freytag, M. Flasza, M. Stillger, Implementing
Geospatial Operations in an Object-Relational Database
System, Proc. 12th Int. Conf. on Scientific and Statistical
Database Management (SSDBM): 209-219, 2000.

[7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete
Mathematics, second edition, Addison-Wesley, 1994.

[8] K. Kim, S. K. Cha, Sibling Clustering of Tree-based
Spatial Indexes for Efficient Spatial Query Processing,
Proc. ACM CIKM Int. Conf. on Information and Knowl-
edge Management: 398-405, 1998.

[9] I. Kamel, C. Faloutsos, Parallel R-trees, Proc. ACM
SIGMOD Int. Conf. on Management of Data: 195-204,
1992.

[10] H.-P. Kriegel, M. Pfeifle, M. Pötke, T. Seidl: The
Paradigm of Relational Indexing: a Survey. BTW 2003:
285-304.

[11] H. Tropf, H. Herzog, Multidimensional Range
Search in Dynamically Balanced Trees, Angewandte
Informatik, 81(2), 71-77, 1981.

[12] K. V. Ravi Kanth, S. Ravada, J. Sharma, J. Banerjee,
Indexing Medium-dimensionality Data in Oracle, Proc.
ACM SIGMOD Int. Conf. on Management of Data: 521-
522, 1999.

[13] S. Ravada, J. Sharma: Oracle8i Spatial: Experiences
with Extensible Databases, Proc. 6th Int. Symp. on Large
Spatial Databases (SSD), LNCS 1651, 355-359, 1999.

