
A Robust Strategy for Handling Linear Features in
Topologically Consistent Polyline Simplification

Adler C. G. da Silva and Shin-Ting Wu

Department of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)

State University of Campinas (UNICAMP)
P.O. Box 6101, 13083-970 – Campinas, SP, Brazil

{acardoso,ting}@dca.fee.unicamp.br

Abstract. Polyline simplification is a technique that reduces the number of ver-
tices of a polygonal chain for the purpose of map generalization and for speed-
ing up processing and visualization in GIS. Unfortunately,the majority of sim-
plification algorithms does not preserve the topological consistency of the map,
namely the spatial placement of a polyline with respect to itself and to its neigh-
bouring features. To overcome this problem, some approaches based on the con-
sistency of a point feature have been proposed. For the sake of simplicity, they
unify the handling of linear and point features by considering a linear feature
as a sequence of point features. This solution, however, fails in a few particular
cases. In this paper, we firstly examine the reason for it to fail and then present
a robust strategy for remedying the remaining problems without abandoning the
basic principle of reducing a linear feature to a sequence ofpoint features.

1. Introduction

Polyline simplification is one of most thoroughly studied subjects in map generalization.
It consists in reducing the number of vertices of a polygonalchain in order to repre-
sent them at a smaller scale without unnecessary details. Besides its main application
in generalization, it is also considerably employed in Geographic Information Systems
(GIS) to reduce digital map data for speeding up processing and visualization and to
homogenize different data sets in the process of data integration. A variety of tech-
niques has been presented by researchers in different contexts [Tobler 1964, Lang 1969,
Reumann and Witkam 1974, Jenks 1981].

In automated cartography, the most used algorithms are the classical Ramer-
Douglas-Peucker (RDP) algorithm [Ramer 1972, Douglas and Peucker 1973], Visva-
lingam’s algorithm [Visvalingam and Whyatt 1993] and Wang and Müller’s algo-
rithm [Wang and Müller 1998]. Unfortunately, like the majority of algorithms, none of
them maintains the spatial relationship among features and, hence, cannot preserve the
original topology of most maps (Figure 1). This is because they take the polyline in
isolation, without considering the features in its vicinity. Many ideas [Müller 1990,
Edwardes et al. 1998, McKeown et al. 1999] have been published in attempt to remove
the topological conflicts in a post-processing stage, but, in the cases where the original
data is not present, some inconsistencies cannot be avoided.

There exists a second class of algorithms which takes into consideration the
whole map throughout the course of the simplification [van der Poorten and Jones 1999,



SP

MG

MT

ES

BA

RJ

PR

MS

GO

Atlantic Ocean

(a)

SP

MG

MT

ES

BA

RJ

PR

MS

GO

Atlantic Ocean

(b)

Figure 1. (a) Original map and (b) its inconsistent simplific ation outcome.

Ai et al. 2000, van der Poorten and Jones 2002]. In these techniques, a constrained De-
launay triangulation is performed on the whole collection of map features in a pre-
processing stage. The triangulation-based approach permits these algorithms to implicitly
preserve the topology of the map while removing vertices from the polylines. Due to its
great capability to store spatial relationships and to detect topological conflicts, the De-
launay triangulation is also used to implement other generalization operators, such as
exaggeration, collapse and amalgamation [Jones et al. 1995]. However, when the con-
cern is only on the simplification, this approach may be expensive, since the vicinity of
any feature or subfeature must be retriangulated whenever it is removed from the map.

A third class of algorithms modifies a polyline in context, taking into consideration
only the relationship between the polyline with nearby features, instead of the complete
map features. In these techniques, there is no need for a pre-processing or post-processing
stage. The topology of the polyline is conserved along the simplification procedure by
preserving the sidedness of the features that are inside itsconvex hull. Many of these
techniques are based on an isolated simplification procedure and simply include the sid-
edness topological constraint when selecting a vertex to beinserted in or removed from
the polyline. This simplification approach may be an alternative to the triangulation-based
ones for efficiently solving topological conflicts.

Well-known algorithms on simplification in context are presented in the papers
of de Berget al. [de Berg et al. 1998] and Saalfeld [Saalfeld 1999]. The former works
on subdivision simplification, where the polylines are always part of two polygons in the
map. It succeeds in generating a topologically consistent polyline that is at a maximum
error ǫ from the original one and has as few vertices as possible. Thelatter works on a
more general polyline simplification, involving linear features that may not be part of a
polygon, as, for example, rivers and roads. It improves the classical RDP algorithm for
recovering the topology of the original polyline. Saalfeld’s algorithm is more popular
than de Berget al.’s, because of the popularity of the RDP algorithm, and because of its
simpler implementation and faster processing.

For the sake of simplicity, the algorithms on simplificationin context unify the
handling of linear and point features by considering the vertices of a linear feature as



point features. However, in some particular cases, even if the vertices of a line segment
(handled as point features) lie on the correct side, the linesegment can still intersect the
the simplified polyline. The example of Figure 2 illustratesthis situation. Before the
simplification (Figure 2(a)), the pointsp1 andp2 lie outside the shaded region. After the
simplification (Figure 2(b)), although the sidedness of thepoints is preserved, the line
segmentp1p2 intersects the simplified polylineP ′.

P

p1

p2

(a)

P ′

p1 p2

(b)

Figure 2. A case where point feature consistency fails in han dling linear fea-
tures: (a) the original polyline P and the line segment p1p2, and (b) the simplified
polyline P ′ that preserves the sidedness of p1 and p2, but still intersects p1p2.

Our motivation for this work is twofold. Firstly, we would like to remedy the in-
consistent outcomes when handling linear features as pointfeatures. Secondly, we would
like to devise an incremental sidedness test that is appropriate for handling linear features
and can be easily integrated to Saalfeld’s algorithm. The remainder of this paper is or-
ganized as follows. We present, in Section 2., a brief analysis of how consistency has
been studied in the previous works. Then, in Section 3., we explain how to overcome the
sidedness problem with linear features. Afterwards, in Section 4., we give an algorithmic
solution to Saalfeld’s algorithm. After then, in Section 5., we give some basic results of
our strategy and compare them to Saalfeld’s solution. Finally, in Section 6., we present
some concluding remarks and our future research directions.

2. Related Work

As previously stated, de Berget al.’s work is on subdivision simplification. They assume
that every polyline of a map is part of two polygons of the subdivision. For the purpose
of validating their procedure, they formalized the definition of consistency of polylines
with respect to point features as follows. LetP andP ′ be two simple polylines oriented
from vertexv1 to vertexvn, and letF be a set of point features. The polylinesP and
P ′ are said to be consistent with respect toF , if there exists a simple polylineC oriented
from vertexvn to vertexv1 that closes bothP andP ′ to simple polygons which have the
same subset of points ofF in their interior as depicted in Figure 3. One can show that if
there exists such a polylineC, then any other simple polyline that closes bothP andP ′

in simple polygons will give the same result for the consistency of P andP ′. In other
words, the polylinesP andP ′ are consistent with respect toF no matter what polygons
of the subdivision they are part of.

The reasoning of this definition is quite simple. Let us consider that, after the
simplification of the configuration depicted in Figure 3, thepolygonP, formed byP and
C (Figure 4(a)), was replaced by the polygonP′, formed byP ′ andC (Figure 4(b)). A
point feature is consistently placed with respect toP andP′, if it lies inside or outside both
polygons. In Figure 4(b), the point features lying insideP and outsideP′ are indicated



P

P ′

C

v1 vn

Figure 3. Consistency of polylines P and P ′ with respect to a set of point features.

with downward arrows and those lying outsideP and insideP′ are indicated with upward
arrows. From Figure 4(c), we may see that the point features lying betweenP andP ′ are
the only points that have different sidedness classification with respect toP andP′.

P

(a)

P′

(b)

P

P ′

C

(c)

Figure 4. (a, b) Consistency of the polygons P and P′ with respect to a set of
point features. (c) The only features that are on the wrong si de lie between the
polylines P and P ′.

The definition of consistency given by de Berget al. is valid only for point fea-
tures. Without additional constraints, the point feature consistency cannot be used for
handling linear features. Applying this definition on the cases illustrated in Figure 2, we
may close the polylineP andP ′ and build the polygonsP andP′, respectively, as shown
in Figure 5. Even with all points on the correct side with respect toP andP′, intersec-
tions still occur. This is because although the extremes of the segment are on the correct
side, its intermediate points lie on the wrong side.

P

P

p1

p2

(a)

P ′

P′

p1 p2

(b)

Figure 5. Case of inconsistency with areal features: (a) ori ginal polygon of a
subdivision and (b) inconsistent simplified polygon.



In his work, Saalfeld concentrates not only on features thatare in the wrong poly-
gon, but also on features that lie on the wrong side of a linearfeature. According to him,
point features always change their sidedness, if they are trapped betweenP andP ′. Fig-
ure 6 gives an example of this situation. Among the point features of the figure, only the
white ones lie betweenP andP ′. Three of them are belowP and aboveP ′ and two of
them are aboveP and belowP ′. Actually, this is a generalization of the point feature
consistency, defined by de Berget al., for polylines that are not part of polygons.

P

P ′

Figure 6. The sidedness of polylines for detecting inconsis tent point features.

Another important contribution of Saalfeld’s work is the triangle inversion prop-
erty, stated as follows. When two segments replace one segment in P ′ (or vice-versa),
the only point features that invert their sidedness are those inside the triangle formed by
the replaced segment and the two replacing segments. Figure7 indicates the three points
inside the triangle that inverted their sidedness in comparison to Figure 6. Saalfeld uses
this property in his algorithm to efficiently update the sidedness classification of features
after the insertion of a vertex in the simplified polyline.

P P ′

Figure 7. Triangle inversion property.

So far, as we know, works on simplification in context, that are based on reducing
linear to point features, are not able to correctly handle linear features.

3. Handling Linear Features

First of all, we have to identify the cases where the consistency for point features fails
with linear features. Let us consider the configuration given in Figure 8(a). The line
segmentsvivk andvkvj replace respectively the subpolylinesPik andPkj . Notice that
p1 is considered to be on the correct side, even if some intermediate points of the line
segmentp1p2 are not. That is because the subpolylinePkj crosses the simplifying line
segmentvivk of the subpolylinePik and forms the region depicted in Figure 8(b) where
p1 lies. One can show that inconsistencies may occur whenever asubpolylinePab crosses
the simplifying segmentvcvd of another subpolylinePcd.

The solution we adopted is very simple. We apply separately the sidedness cri-
terion to each subpolyline and its correspondent simplifying segment. Figures 9(a) and



Pik
Pkj

p1

p2

vi

vk

vj

(a)

p1

(b)

Figure 8. (a) Case of inconsistency with (b) the incorrect si dedness classification
in the bounded region.

9(b) show the application of this criterion for the case of Figure 8. Notice thatp1 is on
the wrong side with respect to both subpolylines, eliminating the problematic region. We
formalize the consistency for linear features as follows. LetP be a polyline,P ′ be a sim-
plified version ofP, andF be a set of vertices of linear features. The polylinesP andP ′

are said to be consistent with respect toF , if the polygons formed by each subpolylinePij

and its correspondent line segmentvivj contain no element ofF . Figure 9(c) illustrates
an example of a consistent simplification.

Pik

p1

vi

vk

(a)

Pkj

p1

vk

vj

(b)

P P ′

p1

p2

(c)

Figure 9. Our strategy to handle linear features.

We consider that the interior of the polygons (represented by the shaded regions
in Figure 9) are determined with the parity (or odd-even) rule. We compute the number
crossings between a ray from the feature and the polygon formed by a subpolyline and
its correspondent simplifying line segment. If the number of crossings is odd, the feature
is on the wrong side; otherwise, it is on the correct side (Figure 10(a) and 10(b)). For
elucidating how the linear feature consistency works, we introduce the parity property as
follows. Two points are considered to be on the same side of a polygon, if a line connect-
ing them crosses the polygon an even number of times. Otherwise, they are considered
to be on opposite sides. Figures 10(c) and 10(d) illustrate two examples of the parity
property. Notice that the crossings on self-intersecting points of a polyline are counted as
many as the number of segments intersect on it.

We proceed to formalize a sufficient point feature-based condition for ensuring
consistent linear simplification.

Proposition 1. LetPij be a subpolyline of the polylineP and letvivj be its correspondent
simplifying segment inP ′. If a line segmentp1p2 does not intersect the original polylineP,
and the pointsp1 andp2 are both outside the polygonPij formed byPij andvivj, then
p1p2 does not intersectvivj .



1,2

3

1 2

4

3

(a)

1

1

2

(b)

1

2

1

(c)

2
1

4

3

1

2

(d)

Figure 10. (a, b) Computing sidedness with the parity rule an d (c, d) the applica-
tion of the parity property.

Proof. From the fact thatp1p2 does not intersectP (and consequentlyPij) andp1 andp2

are both outsidePij , we have thatp1 andp2 do not coincide with the line segmentvivj ,
and, consequently,p1p2 andvivj do not overlap. Therefore, they can intersect at most in
one single point. From the parity property and from the fact thatp1 andp2 are on the same
side of the polygonPij , we have that the line segmentp1p2 crossesPij an even number of
times. Sincep1p2 does not intersectPij , if there is any crossings, it must be between the
line segmentsvivj andp1p2. However, since they can intersect in no more than a single
point, the number of crossings betweenp1p2 andPij to be even must be zero. Hence,
p1p2 does not intersectvivj .

When applying the conditions of Proposition 1 to each subpolyline of P and its
correspondent line segment inP ′, we ensure thatp1p2 will not intersectP ′. Hence, our
approach guarantees that any linear feature that does not intersect the original polylineP
will not intersect the segments of the simplified polylinesP ′. Since it is more restrictive
than the point feature consistency, we can use it to uniformly handle both point and linear
feature, without making any distinction between them. In the next section we present
an algorithmic solution that can correctly replace the triangle inversion test devised in
Saalfeld’s algorithm.

4. The Algorithm

In this section we present an algorithmic solution for correctly handling linear features.
We replace the triangle inversion one by our proposed strategy in Saalfeld’s algorithm. To
be self-contained, Saalfeld’s algorithm is briefly presented in Section 4.1.. After then, in
Section 4.2., our solution is described.

4.1. Saalfeld’s Algorithm

Saalfeld [Saalfeld 1999] proposes some modifications to theRDP algorithm that give
it the capability of recovering the topology of the originalpolyline. His strategy is to
successively add vertices to the “inconsistent” segments of the polyline until all errors are
removed. His algorithm is convergent, because, in the worstcase, it adds all vertices of the
original polyline, recovers the original geometry and, consequently, the original topology
of the map. Naturally, in real data sets, the worst case almost never occur. His algorithm
is divided in two steps, as illustrates the flowchart of Figure 11. The first step consists
only in the application of the RDP in the input polylineP while a given toleranceǫ is not
achieved and the second step is comprised of the topologicalcorrection procedures.



P

P ′

P ′′

ǫ

RDP

Saalfeld’s
Algorithm

Correction

Figure 11. Flowchart of Saalfeld’s algorithm.

The correction step is depicted in Figure 12 and works as follows. For each sub-
polylinePij replaced by the polyline segmentvivj in the simplified polylineP ′, the al-
gorithm determines its convex hull. Each subpolyline is then associated to the list of
features that are inside its convex hull. These features represent potential topological con-
flicts. This list may include point features, vertices of neighbouring polylines, and the
remaining vertices of the polyline itself (namely the verticesvk such thatk < i or k > j).
The sidedness of these features are computed with the parityrule.

1

1

0 2 1

0

1

1

Pij

Pij Pik

Pik

Pkj

Pkj

vi

vivi

vi vj

vjvj

vj

vk

vkvk

Figure 12. Correction step of Saalfeld’s algorithm: select ing features inside the
convex hull, and computing and updating their sidedness cla ssification.

After the initialization, for each subpolylinePij that has features on the wrong
side, the algorithm breaks its correspondent line segmentvivj by adding the farthest ver-
tex vk. It updates the sidedness classification of the external points in the current convex
hull, using the triangle inversion property. Then, it splits the convex hull in two and se-



lects the external points of the resulting convex hulls. After that, it calls the correcting
procedure for the subpolylinesPik andPkj. Since the whole process is restarted indepen-
dently for the two subpolylines, the vertices ofPik must be checked with respect to the
convex hull ofPkj, and vice-versa. If some vertices of one subpolyline interfere in the
other subpolyline convex hull, their sidedness is computedwith the parity rule.

To understand how intersections may occur, let us consider the application of
Saalfeld’s algorithm under tolerance∞ to the polylineP of Figure 13(a). Because of
the∞-tolerance, the first step (RDP algorithm) adds no vertices to P ′. In the second
step the algorithm first calculates the number of crossings of the pointsp1, p2, andp3

and classifies their sidedness (Figure 13(b)). Sincep3 is on the wrong side, it adds the
farthest vertexv4 and updates the sidedness classification ofp3, that is inside the trian-
gle△v1v4v8 (Figure 13(c)). Then, it handles independently the subpolylinesP1,4 and
P4,8, after evaluating the dependency of their vertices. As all the features are on the cor-
rect side with respect toP4,8, no further splitting should be applied on it. Regarding to
P1,4, the verticesv5 andv6 are inserted in its list of features (Figure 13(d)). Both vertices
are considered to be on the wrong side. The algorithm adds thevertexv3 and updates the
sidedness classification ofp1, v6 andv7 (Figure 13(e)). Observe thatp1 is on the wrong
side, but the algorithms stops. That is because there is no more changes forP1,3 andP3,4.

P
p1 p2

p3

v1

v2

v3
v4

v5
v6

v7

v8

(a)

0

12

p1

p2

p3

v1 v8

(b)

p1 p2

p3

v1

v4

v8

(c)

11

p1 p2

p3

v1

v4

v6

v7

v8

(d)

p1 p2

p3

v1

v3
v4

v6

v7

v8

(e)

P ′

p1 p2

p3

v1

v3
v4

v8

(f)

Figure 13. Saalfeld’s algorithm.

Observe, from Figure 13(c), that the triangle inversion property is equivalent to the
point consistency strategy of de Berget al.. However, Saalfeld’s algorithm adds more ver-
tices to the simplified polyline, due to its independent treatment of distinct subpolylines.
Nevertheless, his algorithms is not yet able to remove all intersections.

4.2. Update of Sidedness Classification

Our strategy is based on the fact that the relationship between a feature and the original
polyline never changes throughout the course of the simplification. This permits us to
associate the feature to precomputed data that store this relationship. We divide our strat-
egy in two stages. In the first stage, we compute the crossingsbetween the upward ray



from a featuref and a subpolylinePij , as depicted in Figure 14(a), and fill them in a data
structure associated tof . In the second stage, after breaking the line segmentvivj in two
new line segmentsvivk andvkvj, we update the sidedness classification off with respect
to the subpolylinesPik andPkj, as shown in Figures 14(b) and Figure 14(c), respectively.
We present a pseudocode of our algorithm that can be easily integrated to Saalfeld’s.

5P5,18

v5

v6

v7

v8

v9

v10

v11

v12

v13v14

v15 v16

v17

v18

(a)

4
P5,12

v5

v6

v7

v8

v9

v10

v11

v12

(b)

2

P12,18

v12

v13v14

v15 v16

v17

v18

(c)

Figure 14. Stages to overcome the triangle inversion proper ty: (a) computation
of crossings between the upward ray from feature f and (b, c) update of its sid-
edness classification with respect to the resulting subpoly lines.

Besides its point coordinatesx and y, we associate to the featuref the ar-
ray crossings and the indicesbegin andend, as depicted in the structure of Fig-
ure 15(a). The arraycrossings is used to store the indices of the line segments ofPij

that cross the upward ray fromf . Since in real maps the number of crossings is usually
very small in comparison to the number of line segments beingprocessed, one expects
the arraycrossings to be very small too. The variablesbegin andend store initially
the first and last indices ofcrossings. Figure 15(b) illustrates the initial state of the
arraycrossings and the indicesbegin andend. (The element5 of the array is illus-
trated just for the purpose of explanation.) Observe that the number of crossings can be
directly obtained by the subtraction(end− begin).

Type Feature
Begin

x, y: Float;
crossings: Integer[];
begin, end: Integer;

End

(a)

1 2 3 4

7 9 12 14 16

0 5

begin end

(b)

Figure 15. (a) The data structure used in our strategy and (b) its visual represen-
tation for the polyline of Figure 14(a).

The procedurecomputeCrossings outlined in Algorithm 1 performs the compu-
tation of the crossings between the ray and the original subpolyline, stores them in the
array and initializes the indices. From line08, a crossing is found when (1) the subpoly-
line changes its side with respect to the ray (currSide andprevSide are different)
and (2)f is below the current line segment. Observe, in line09, that the algorithm firstly
stores the indices in a linked list. This is because, before processing, it does not know



the number of crossings. After the computation, the contentof the list is finally copied
to the array, for which enough memory has been allocated (line13). Since the search for
crossings is done fromi+1 to j (line 06), the indices of the crossed line segments are
stored in ascending order. The ordered array has a specific purpose in the update stage.

ProcedurecomputeCrossings(P: Polyline; i, j: Integer; var p: Feature)
01 Var
02 k: Integer;
02 list: IntegerList ;
03 prevSide, currSide: Side;
04 Begin
05 prevSide← (P[i].x≤ p.x) ? left : right ;
06 For k← i+1 to j do
07 currSide← (P[k].x≤ p.x) ? left : right ;
08 If currSide 6= prevSide .and. p is below line segmentP[k]P[k-1] then
09 Pushk in list;
10 End if
11 prevSide← currSide;
12 End for
13 Allocate memory forp.crossings and copy the content oflist to it;
14 p.begin← 0

15 p.end← list.size
16 End

Algorithm 1. Compute the crossings between the upward ray fr om feature f and
the line segments of subpolyline Pij, and store the indices of the intersecting
segments in the array crossings associated to f.

In the update stage, to determine the number of crossings of the upward ray from
f with the subpolylinesPik andPkj, the algorithm adopts the following strategy. Since
the algorithm has already computed the crossings withPij and stored them, it just looks
for the first element after the indexk (of the breaking vertexvk) in the arraycrossings.
Let us reconsider the example of Figure 14, wherek = 12. The algorithm allocates two
distinct copies off for Pik andPkj . Then, it looks for the first element incrossings
greater thank, and finds the element14 of index 3. After then, it updates the index
begin andend of the copies off as depicted in Figure 16. The ascending order of
the arraycrossings permits the algorithm to perform a binary search. To avoid the
overhead of copyingcrossings, the copies off just keep a reference to it. After
the update process, we can obtain the number of crossings foreach subpolyline just by
subtracting the new indices.

1 2 3 4

7 9 12 14 16

0

begin end

(a)

1 2 3 4

7 9 12 14 16

0 5

begin end

(b)

Figure 16. Results of the update stage of the first strategy fo r the subpolylines of
(a) Figure 14(b) and (b) Figure 14(c).



For computing the sidedness of a given featuref , the algorithm has time complex-
ity O(n), due to the search for crossings, and memory complexityO(n), due to the array
crossings. For updating the sidedness classification off , the binary search gives time
complexityO(log n). The new copies off keep just a reference tocrossings, so there
is no overhead for copying the array. The processing time of this algorithm is compara-
ble to the time complexity of the triangle inversion test, because the array of crossings is
usually very small. In Section 5., we present some results that validate this statement.

5. Results

To validate our theoretical study of consistency for linearfeatures, we present some re-
sults of our approach and compare them to those of the point feature consistency used
with Saalfeld’s algorithm. We examine the basic cases whereSaalfeld’s strategy fails in
preserving the original polyline topology. For each image,the first square presents the
original polyline, the second square shows the outline of Saalfeld’s algorithm, and the
third square exhibits the outline of our approach. The results represent typical cases of
intersections (Figures 17(a) and 17(b)), self-intersections (Figures 17(c) and 17(d)), and
misplaced point features (Figures 17(e) and 17(f)) that occurs in Saalfeld’s algorithm with
point feature consistency, but are correctly handled with the linear feature consistency.

(a) (b)

(c) (d)

(e) (f)

Figure 17. Comparison between the point feature consistenc y and linear feature
consistency in Saalfeld’s algorithm.

To validate our algorithmic solution for ensuring the topological correctness of
both point and linear features, we compare it with the triangle inversion test in terms of
time performance. Table 1 gives the processing time of both strategies for maps with
different number of points. Notice that the processing timeof the array of crossings is



very close to the one of the triangle inversion test, even forthe map with more vertices.
This is because the number of crossings and, consequently, the size of the array are very
small when compared to the number of vertices of the polylines. Thus, the search for
crossings in the array can be considered of constant time complexity and the performance
of the algorithms can be considered equivalent. Another important result that we achieved
with our proposal is that the additional number of vertices that is required to preserve the
topological consistency is insignificant. In all cases thatwe tested, it is less than one
vertex in 4,000 inserted by Saalfeld’s algorithm (approximately 0.025%).

Original Simplified map
map Triangle inversion Array of crossings

#-Points Time #-Points Time #-Points

26,536 0.930s 7,288 0.935s 7,288
52,639 1.310s 12,165 1.320s 12,167
68,506 2.312s 15,683 2.330s 15,685

103,450 3.010s 29,713 3.110s 29,713
126,404 3.080s 25,769 3.140s 25,775
166,157 5.650s 24,954 5.750s 24,987

Table 1. Comparison of time performance between the triangl e inversion test and
the strategy with array of crossings.

6. Concluding Remarks

In this paper, we firstly studied the common problem of using the point feature consistency
for handling linear features in topologically consistent polyline simplification algorithms.
We observed that, if no pre-processing is carried out in order to satisfy some conditions, a
few arrangements of linear features can still lead to intersections. To overcome this prob-
lem, we presented a more restrictive consistency constraint for avoiding both changes
of sidedness of point and linear features and intersectionsbetween linear features. We
consider that the sidedness of a point or a vertex of a line segment must be individually
checked against each subpolylinePij of the original polyline and its correspondent sim-
plifying line segmentvivj in the output polyline. This simple theoretical solution permits
us to uniformly handle both point and linear features.

In the practical context, the main contribution of this paper lies on an algorithmic
strategy that can replace the triangle inversion test employed in Saalfeld’s algorithm. Our
strategy is based on the fact that, once the crossings are computed, they can be stored in
a data structure and recovered whenever one needs. We discussed the ins and outs of the
presented strategy and showed that its time complexity is comparable to the triangle in-
version test. We also gave a pseudocode of the procedure thatmay be directly integrated
to Saalfeld’s algorithm. Finally, we presented some results of our procedure and com-
pared it to the ones of triangle inversion test, showing thatthe procedures have equivalent
performances, but our technique always preserves the topology of the original map.

Our future researches point mainly to the development of a topologically con-
sistent simplification procedure that would treat all the polylines together in a global
approach. This strategy has the advantage of testing only the current vertices on the



simplified polylines, instead of checking all the vertices of the nearby polylines, resulting
in better generalizations and faster processing. We intendto separate the simplification
procedure from the topological control, so that it may be possible to ensure topologi-
cal consistency in distinct isolated simplification algorithms. We also plan to place this
new algorithm as a faster alternative to the triangulation-based approach for preserving
topological consistency in simplification.

Acknowledgments

We would like to acknowledge the Coordination for the Improvement of Higher Edu-
cation Personnel Foundation (CAPES) and the State of São Paulo Research Foundation
(FAPESP, Grant No 2003/13090-6) for financial support.

References

Ai, T., Guo, R., and Liu, Y. (2000). Safe sets for line simplification. InThe 9th Interna-
tional Symposium on Spatial Data Handling, pages 30–43.

de Berg, M., van Kreveld, M., and Schirra, S. (1998). Topologically correct subdivision
simplification using the bandwidth criterion.Cartography and Geographic Informa-
tion Systems, 25(4):243–257.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number of
points required for represent a digitized line or its caricature.Canadian Cartographer,
10(2):112–122.

Edwardes, A., Mackaness, W., and Urvin, T. (1998). Self evaluating generalization al-
gorithms to automatically derive multi scale boundary sets. In The 8th International
Symposium on Spatial Data Handling, pages 361–372, Vancouver, Canada.

Jenks, G. F. (1981). Lines, computers and human frailties. In Annals of the Association
of American Geographers, volume 71, pages 1–10.

Jones, C.-B., Bundy, G.-L., and Ware, J.-M. (1995). Map generalization with a triangu-
lated data structure.Cartography and Geographic Information Systems, 22(4):317–
331.

Lang, T. (1969). Rules for the robot draughtsmen.The Geographical Magazine, 42(1):50–
51.

McKeown, D., McMahill, J., and Caldwell, D. (1999). The use of spatial context in linear
feature simplification. InGeoComputation 99, Mary Washington College, Fredericks-
burg, Virginia.

Müller, J. C. (1990). The removal of spatial conflicts in linegeneralisation.Cartography
and Geographic Information Systems, 17(2):141–149.

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane
curves.Computer Graphics and Image Processing, 1:224–256.

Reumann, K. and Witkam, A. P. M. (1974). Optimizing curve segmentation in computer
graphics. In Gunther, A., Levrat, B., and Lipps, H., editors, Proceedings of the Inter-
national Computing Symposium, pages 467–472. American Elsevier.



Saalfeld, A. (1999). Topologically consistent line simplification with the Douglas-
Peucker algorithm.Cartography and Geographic Information Science, 26(1):7–18.

Tobler, W. R. (1964). An experiment in the computer generalization of map. Technical
report, Office of Naval Research, Geography Branch.

van der Poorten, P. and Jones, C. (1999). Customisable line generalisation using Delaunay
triangulation. InThe 19th International Cartographic Association Conference.

van der Poorten, P. and Jones, C. (2002). Characterisation and generalisation of car-
tographic lines using Delaunay triangulation.International Journal of Geographical
Information Science, 16(8):773–795.

Visvalingam, M. and Whyatt, J. D. (1993). Line generalisation by repeated elimination
of points.Cartographic Journal, 30(1):46–51.

Wang, Z. and Müller, J. C. (1998). Line generalization basedon analysis of shape char-
acteristics.Cartography and Geographic Information Systems, 22(4):264–275.


	19: 19
	cb: VIII Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 19-22, 2006, INPE, p. 3-17.
	20: 20
	21: 21
	22: 22
	23: 23
	24: 24
	25: 25
	26: 26
	27: 27
	28: 28
	29: 29
	30: 30
	31: 31
	32: 32
	33: 33
	sumário: 


