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Abstract. Space-time events with coordinates(xi, yi, ti) are monitored continu-
ally. The events' density varies largely in both, space and time. At a certain un-
known instant τ , a relatively small cluster of increased intensity starts to emerge.
Its location is also unknown. The aim is to let make an alarm go off as soon as
possible after τ but avoiding it to go off unnecessarily. In this paper we propose
an alarm system that does not require the speci�cation of the spatial pattern or
the temporal pattern. It is based on a martingale approach. We detail its theo-
retical foundation and the corresponding algorithm. We provide an illustration
of its use in practice.

Resumo. Eventos espaço-temporais com coordenadas(xi, yi, ti) s�ao monitora-
dos continuamente. A densidade dos eventos é bastante variável, tanto no
espaço quanto no tempo. Em certo momento desconhecidoτ , um cluster rel-
ativamente pequeno começa a emergir. Sua localizaç�ao é desconhecida. O
objetivo é fazer um alarme soar logo após τ mas evitando que ele soe desnec-
essariamente. Neste artigo, nós propomos um sistema alarme que n�ao requer
a especi�caç�ao do padr�ao espacial ou temporal. Ele é baseado num método
de martingalas. Nós damos os detalhes teóricos e o algoritmo correspondente.
Nós também fornecemos uma ilustraç�a o uso prático do sistema.

1. Introduction
We are interested in monitoring incoming space-time events to detect, as early as possible,
an emergent space-time cluster. Assume that point process events(xi, yi, ti) are continu-
ously recorded where (xi, yi) are the spatial coordinates and ti is occurrence time of the
i-th event. At a certain unknown instantτ , a relatively small cluster of increased intensity
starts to emerge. Its location is also unknown. The aim is to let make an alarm go off as
soon as possible after τ . The alarm system should also provide an estimate of the cluster
location. The alarm system should take into account purely spatial and purely temporal
heterogeneity.

In this work we propose a space-time surveillance system with these speci�ca-
tions. It does not require the speci�cation of the spatial pattern or the temporal pattern.
It is based on a martingale approach. We detail its theoretical foundation and the corre-
sponding algorithm. Due to lack of space, we study its ef�ciency in another paper.

Epidemiological surveillance systems include early statistical warning methods
that aim to provide information which can be acted upon to help in the prevention and
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control of diseases. There is a renewed interest on the development of statistical sys-
tems that include spatially referenced information sources due, among other reasons, to
heightened concerns about bioterrorism.

The requirements of a surveillance system accounting for spatial structure are gen-
erally structured around a basic trade-off: the need for quickly detecting possible out-
breaks and epidemics must be balanced against the need for not triggering alarm signals
too often unnecessarily.

In this paper, we describe a method to analyze space and time surveillance data
in the form of point processes. We propose a probability model to describe eventually
emerging spatial clusters with a minimum requirement of user-de�ned parameters. Based
on this model for the emerging spatial clusters, we use the Shiryaev-Roberts statistic and
adopt a martingale approach to derive the test properties. Hence, we are able to control
the average length run of our surveillance method under the absence of emerging spatial
clusters. We de�ne appropriately the average run length for the situation when there
are clusters present in the data and illustrate the method in practice. The algorithm is
implemented in a freely available stand-alone software and it is expected soon to be in
TERRAVIEW.

2. Literature Review
The traditional methods for space-time cluster detection are retrospective in nature. That
is, they search in a a database of past events for evidence of clusters' presence. In contrast,
our interest is on prospective methods: an events' database is updated regularly and then
an algorithm should run to help deciding on the emergence of localized space-time clus-
ters. Hence, the clusters must be alive in the sense that at least some of the most recent
events belong to the eventually detected clusters. This brings several dif�cult problems
well known in the arti�cial intelligence literature: repeated signi�cance tests (at least one
every time the database is updated); trade-off between setting up the system to go off as
soon as possible after a localized space-time cluster starts to emerge and, at the same time,
requiring that the false alarms frequency be kept at a minimum.

A thorough literature review can be found in the book edited by
[A B Lawson 2005] or in [Sonesson et al. 2003]. We give here a very brief overview of
the main proposals. There are non-spatial methods derived from quality control ideas con-
cerned with monitoring a stochastic process on time. The Shewart Chart Control is a very
simple and popular method but it is not sensitive to small changes in the process. The
Cummulative Sum (CUSUM) method accumulates the recent evidence to the previous
data to trigger a threshold limit. It has been shown that it has optimal properties in very
simple scenarios. Exponentially weighted moving average also accumulates evidence, as
the CUSUM method, but it discounts observations as they get old. All these methods as-
sume data are independent in time, not a realistic assumption. [Kennett and Pollak 1996]
uses a Shiryaev-Roberts statistics to allow for dependent data.

There are few space-time oriented proposals. Two recent and promising ones are
[Kulldorff 2001] who proposed a space-time scan statistic for areal data. [Rogerson 2001]
suggested a statistic based on local Knox statistic.

We introduced a new method focusing on point process data. That is, there is no
risk population info. The null hypothesis of interest is that we have a separable events
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density with unspeci�ed and arbitrary spatial and temporal heterogeneity. As alternative,
we assume that somewhere, at some moment, few localized space-time high intensity
clusters start to emerge. We develop a likelihood model for this pair of hypotheses and
monitor the incoming data with a spatial version of the Shyriaev-Roberts statistic.

3. Basic Concepts and notation
The Shiryayev-Roberts Method was developed for temporal processes only. Suppose
that a sequence of possibly dependent random variables X1, X2, . . . is observed. Let
f(k)(x1, x2, . . . xn) be the joint density distribution of the �rst n random variables when
a cluster starts to emerge at moment τ = k. When no cluster ever emerges, we write
f∞(x1, x2, . . . xn). Any surveillance method implies a stopping timeN , the �rst moment
when the alarm goes off. Ek (·) is the expectation with respect to f(k) and E∞ (N) is
called the Average Run Length and it is denoted byARL0. Clearly, it is desirable to keep
ARL0 small and, for that, the user establishes an acceptable minimum threshold B for
this parameter. That is, we want ARL0 = E∞ (N) > B. The Shiryayev-Roberts test
statistic is given by

Rn =
n∑

k=1

f(k)(X1, X2, . . . , Xn)

f(∞)(X1, X2, . . . , Xn)

The alarm goes off if Rn is too large, that is, if Rn ≥ A. The stopping time is NA: the
alarm goes off by the �rst time at NA where

NA = min [n |Rn ≥ A]

It remains to �nd A such that ARL0 = E∞ (N) > B.
Under P∞, the sequence

Λk,n =
f(k)(X1, X2, . . . , Xn)

f(∞)(X1, X2, . . . , Xn)

is a martingale with expected value equal to 1 (even with dependent observations). There-
fore, Rn − n =

n∑
k=1

(Λk,n − 1) is a zero mean martingale. By the Optional Sampling
Theorem, we have

E∞(RNA
−NA) = 0 ⇒ E∞ (NA) = E∞ (RNA

) .

By de�nition, RNA
≥ A and hence E∞ (NA) ≥ A. Therefore, taking A = B satis�es the

condition E∞ (NB) ≥ B.
There are several advantages associated with the Shiryayev-Roberts (SR) method.

First, it can be shown that it exhibits some optimal properties in some simple scenarios.
Furthermore, in terms of the delay time for the alarm going off after the purely temporal
clusters strats to emerge, the SR and CUSUM are similar. The SR method does not
require independence between observations. And it can also be shown that SR is at least
as ef�cient as some optimal classical procedures.

The major disadvantage of the SR method is that it depends on the complete spec-
i�cation of the joint distribution of X1, . . . , Xn after a change occurs at τ = k. If this
is dif�cult to be done in the purely temporal context, in the space-time situation it seems
hopeless. However, we found a way out as we explain next.
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4. Our proposal for space-time clusters
Let N be a Poisson process inR3 partially observed in the three-dimensional regionA×
[0, T ]. Let N(Ci) be the number of events in the cylinder Ci. N(Ci) ∼ Poisson (µ(Ci))
and µ(Ci) is unknown. Let λ(x, y, t) be the intensity function of the events inA× [0, T ].
Consider a cylinder Ci in R3 (see Figure 1) and let µ(Ci) be the integral over Ci of
λ(x, y, t), while µ is the expected number of events in all the regionA × [0, T ]. De�ne
the marginal spatial an d temporal densities by λS(x, y) = µ−1

∫
[0,T ]

λ(x, y, t) dt and
λT (t) = µ−1

∫
A λ(x, y, t) dx dy, respectively.

Figure 1. A typical �gure

We de�ne now the pair of hypotheses. The null hypothesis (no cluster scenario)
is established as a separable intensity λ(x, y, t) = µλS(x, y) λT (t) where λS(x, y) and
λT (t) are arbitrary and unspeci�ed. That is, they are nuisance parameters. The alternative
hypothesis assumes that there exists a time τ , a constant ε > 0, and a cylinder Cτ (yet to
be de�ned) such that

λ(x, y, t) = µλS(x, y) λT (t) (1 + ε IC(x, y, t))

. The parameter ε is the relative change on the events intensity within the cluster and it
must be speci�ed by the user.

TO de�ne a useful class of cylinders Cτ , we start considering that,if a higher
incidence cluster emerges, we must be able to detect it through the observed events. That
is, non-events (or void spaces) do not bring information about an emerging cluster. Hence,
we decided to constrain τ to be equal to one of the observed ti's; the cylinders should be
in the form of a circle S times a temporal interval. The time interval is [ti, tn] where tn
is the last event, since interest is only in alive clusters. The cylinder S has a radius ρ
speci�ed by the user.

We can now proceed to determine the mean µ(Ci). From the non-homogeneous
Poisson process properties, under the null hypothesis, we have:

µ(Ci) =

∫

Ci

λ(x, y, t) dx dy dt = µ

∫

Si

λS(x, y) dx dy

∫

[ti,tn]

λT (t) dt

An estimate of µ(Ci) under H0 is given by

µ̂(Ci) =
N(Si × [0, T ]) N(A× [ti, tn])

n
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where N(Si × [0, T ]) is the number of events within circle Si irrespective of time;
N(A × [ti, tn]) is the number of events with times between ti and tn, irrespective of
spatial location; and n is the total number of events (see Figure 2).

Figure 2. The estimate µ̂(Ci)

To de�ne the test statistic, we consider the likelihood of space-time Poisson pro-
cesses. Under H0, we have

L∞ =

(
n∏

i=1

λ(xi, yi, ti)

)
exp

(
−

∫

R3

λ(x, y, t) dx dy dt

)

Under the alternative, we have

Lτ =

(
n∏

i=1

λ(xi, yi, ti) (1 + ε ICτ (xi, yi, ti)

)

exp

(
−

∫

R3

λ(x, y, t) dx dy dt

)
exp

(
−ε

∫

Cτ

λ(x, y, t) dx dy dt

)

where λ(x, y, t) = µλS(x, y) λT (t) and Cτ is the putative cluster cylinder.
Therefore, a space-time version of the SR test statisticRn becomes

Rn =
n∑

τ=1

Lτ

L∞

=
n∑

τ=1

{[
n∏

i=1

(1 + ε ICτ (xi, yi, ti)

]
exp

(
−ε

∫

Cτ

λ(x, y, t) dx dy dt

)}

=
n∑

τ=1

(1 + ε)N(Cτ ) exp(−ε µ(Cτ ))

with µ(Cτ ) estimated as explained before.
The parameter ε > 0 is known (user-speci�ed) and measures the anticipated rela-

tive change in the events' density. Our surveillance method calculatesRn+1 as the (n+1)-
th event arrives with with µ̂(Cτ ) rather than µ(Cτ ). The alarm goes off when Rn ≥ A for
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the �rst time. In summary, the algorithm associated with our proposal needs as input: n
cases events given by the coordinates x, y and time t; the value of three tuning parame-
ters: ε, the anticipated relative change in density within the cluster; the anticipated radius
ρ for the cluster; the threshold A, which should be approximately equal to the desired
ARL0. Iteratively in n, calculate Rn. The output is a sequence of values Rn where n is
the number of events. If Rn > A for any n, the alarm goes off.

5. Illustration

Figure 3. Burkitt lymphoma cases in Uganda

As an illustration, we used a classical example of retrospective detection of space-
time clustering: the data with place of residence and onset time for all 188 cases of Burkitt
lymphoma between 1961 and 1975 in the West Nile district in Uganda (see Figure 3).
[Rogerson 2001] found evidence of space-time clusters using local Knox tests and adopt-
ing a probability of false alarm of 0.1. However, we have not been able to reproduce
his results using his methods. Apparently, his formulas or graphs with his results are not
correct.
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The tuning parameters in our surveillance method were:
• We �x ε = 0.5, a large anticipated change.
• ρ = 210 km (weighted average of values used by Rogerson (2001)).
• Limit A of the alarm = 161. In average, we expect 161 events before the alarm

goes off without need.
Figure 4 shows the Rn versus n. We can observe that the alarm goes off at event number
148 (February, 1973). Typically, there was little variation of the detected space-time
cluster over many different tuning parameter choices. One pattern we found is that, for
ρ = 2.5, 5, 10, 20 km, the smaller ε, the longer it takes for the alarm to go off.

0 50 100 150

0
50

10
0

15
0

Número da Observação

R

Figure 4. Rn for ε = 0.5 e ρ = 20 km

6. Conclusions
Our method has many desirable features. First, it does not require data on the population
at risk data, only cases are necessary. Second, it adjusts for purely spatial and purely
temporal clustering, and it provides statistical inference for the emerging cluster detected.
Third, it does not require many input parameters. We think it will be of great use in many
practical applications.
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