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Abstract 
 

This paper presents an approach to model 
collisional and non-collisional plasmas using 
particles. The behavior of the plasma is governed by 
the Boltzmann equation. The particle evolution in the 
phase space is approximated by an expansion for the 
phase space distribution function, in which the 
collisional and non-collistional terms derived from 
Boltzmann equation can be treated separatedely. An 
electrostatic Particle-In-Cell model solves the non-
collisional motion using the Lorentz and the Newton 
equations. The Finite Element Method is employed to 
compute the electric field using the Poisson equation. 
In this approach, only elastic and Coulomb collisions 
are considered, modeled by a Monte Carlo method. 
 
Keywords: PIC, PIC/MC, plasma simulation, 
Coulomb collision, elastic collision 
 
1. Introduction 
 

Recent developments of plasma-based technologies 
can take advantage of the simulation of different 
plasma types in several operating conditions. Some 
interesting topics of plasmas simulation research can 
be found in [4]-[8],[12],[14],[16],[17],[20],[21]. It is 
important to make a proper choice of the model for 
simulating a specific experiment setup, which depends 
not only on the aim of the investigation, but mainly on 
the plasma characteristics and source interactions - 
e.g. the plasma density, plasma-surface interactions, 
laser or discharge plasma interactions, as well as the 
electronic affinity of the chemical species of the 
plasma. For instance, discrepancies of more than 70% 
(in eV-1) were obtained when comparing the electron 
energy distribution function (EEDF) in three different 
simulation models of an inductively coupled argon 
plasma experiment [18]. In the first case, no Coulomb 
collision was treated, while in the second case only 
electron-electron Coulomb collision was considered. 

Finally, in the more accurate model, electron-electron 
and electron-ion Coulomb collisions were taken into 
account. In addition, charge-neutralizing collisions of 
positive and negative ions may take place, for 
instance, in the simulation of electronegative plasmas. 
This is the case of coupled RF discharge in 
electronegative gases, where processes of loss of 
negative ions are very important and charge-
neutralizing collisions are the dominant process. The 
complexity of the computational model depends on 
the physical and/or chemical processes that are 
included in order to describe properly the behavior of 
the specific plasma.  

Besides the interdisciplinary of these topics on 
plasmas, one must consider the high diversity of 
particle simulation methodologies, which have been 
developed separately for some decades. Two main 
streams can be distinguished: the plasma physicists, 
following Birdsall [2] (PIC); and the aerodynamicists, 
following Bird’s approach [3] (DSMC). This scenario 
results in a large, but fragmented amount of 
publications. As already discussed by many authors 
[9]-[11],[18], the knowledge exchange between these 
areas provides an important effort to the development 
of Computational Fluid Dynamics (CFD) capabilities 
mainly for those working in the limits of fluid-kinetic 
descriptions. In this sense, this article contributes to 
those who want to extend the capability of an 
electrostatic PIC model towards a PIC/MC one, in 
order to model additional collisional processes. 
 
2. Boltzmann equation in particle 

simulation 
 
 As an example, consider a weakly ionized plasma 
consisting of electrons (e), ions (A) and molecules (B) 
for which the Coulomb collisions between ions and 
electrons can be disregarded, thus we must take into 
account only e-B, A-B and B-B collisions. The particle 
system evolution is governed by the Boltzmann 
equations associated with each particle species, which, 



under these assumptions, are linear for the electrons 
and ions and nonlinear for the molecules because of 
the term related to collisions between like particles. 
Thus, the Boltzmann equation for ions A can be 
written as:  
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where, summation over suffix j is implied, Fj is the 
force acting on particle A with a mass mA, fA(v) and 
fB(w) represent the velocity distribution functions, 
fS(x,v,t), of species A and B, v’ and w’ are the post-
collision velocities, g = |v - w| is the relative speed, 

)  sin( ψχχ ddd =Ω  is the solid angle, ABσ  is the 
differential cross section that is function of the relative 
speed g and of the deflection angle χ .  
 The force F is given by the Lorentz force equation: 
 )( BvEF ×+= Aq ,          (2) 
where qA is the charge of ion A, and E and B are the 
electric and magnetic fields, respectively.  
 Expanding fA(v,x,t) for a small t∆  we can write: 
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after substitution of (1) into (3) and having defined the 
non-collisional and collisional operators D and J, 
respectively, by: 
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Equation (3) represents a decoupling of the non-
collisional and collisional parts of the particle motion, 
its validity is well discussed in the work of Nanbu 
[18], but essentially the time increment must be much 
smaller than the mean free time � . Moreover, equation 
(3) suggests a two step scheme for solving the 
Boltzmann equation.  
 In the first step, using the initial velocity 
distribution function fA(v), we obtain the collisionless 
part of the solution ),,()1* tfDt(f AA xv⋅∆+≡ . In 
fact, we need to solve the non-collisional Boltzmann 
equation, also called Vlasov equation, 
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The procedure used to solve this equation in PIC 
models is to advance particles in time accordingly to 
Newton’s motion law, in which the force is given by 
the Lorentz relation (2) and the electric (and magnetic) 
field is given by the set of Maxwell equations on an 
adequately spaced mesh covering the entire domain.  

 In the second step we must calculate the collisional 
part of the motion, *)1( AfJt ⋅∆+ , we must solve 
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by using the intermediate initial distribution function 
fA

*. This equation represents the collisional relaxation 
of the velocity distribution in a spatially uniform state 
of species A, and it can be applied only to small cells 
with linear dimensions of the order of  },min{ DmA λλ , 
where Dλ  is the Debye length and mAλ  is the mean 
free path of species A, since the applicability of (6) 
depends on the assumptions of uniform gradient 
density, temperature, and flow velocity of species A 
inside the cell. It can be mentioned that for properly 
resolving plasma sheaths, the linear dimensions of the 
cells must be only a fraction of the Debye length, 
since strong gradients of electron and ion densities 
occur around these regions whose thickness are of the 
order of the Debye length.  
 The ratio of the number of real particle to that of 
simulated particles is called weight. The definition of 
weights is very convenient for many reasons. Firstly, 
it enables the simulation of larger particle systems 
since it strongly reduces the number of simulated 
particles, and secondly, it provides a way to control, or 
keep approximately equal, the statistical fluctuations 
expected in each cell since the number of simulated 
particles per cell can be approximately equalized by 
properly adjusting the particle weighting factors [9]. 
Note that since weighting is a multiplicative factor for 
both mass and charge, the PIC formulation remains 
unchanged for any weighting scheme because the 
charge-mass ratio does not change. However, 
collisional modeling require a more careful analysis 
concerning to the definition of super-particles 
[15],[18]. We adopt the terminology “simulated 
particle” instead of “super-particle”.  
 In order to solve equation (6), we have found the 
phase space distribution of the particles, fA
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where, ( )•3 δ  is the Dirac delta function, nA is the 
number density of species A for the cell, and vAi  is the 
collisionless advanced velocity before calculated. An 
analogous expression can be found for species B by 
changing the suffixes A by B and possibly i by j. By 
using these probability density expressions, in which 
the probabilities are introduced by the delta functions, 
and after algebraic manipulation of 
 *)1(),,( AA fJtttf ⋅∆+=∆+xv ,      (8) 
where the operator J is defined in (4), the complete 
solution, that is, the gathering of the collisionless and 
collisional motion can be expressed as 
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where )(vAif  is the probability density function for 
the velocity of particle Ai at tt ∆+ , and it is given by: 

 ).()()1()( 3 vvvv AiAiAiAiAi QPPf +−−= δ   (10) 
In the equation above, PAi is the collision probability 
of particle Ai, given by 
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where PAi,Bj is the probability of the collision between 
particle Ai and Bj in time t∆ , written as 
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and QAi(v) is the probability density function for the 
post collision velocity of particle Ai, and is given by 
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where the two terms of the product in the summation 
can be interpreted as the conditional probability of Ai–
Bj pair collision given that Ai collides, AiBjAi PP  , , and 

the other as the density function for the postcollision 
velocity of particle Ai when its collision partner is 
particle Bj, QAi,Bj, which can be written as 
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having defined MA=mA /(mA+mB), MB=mB /(mA+mB), 
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the deflection angle χ  as the angle between g’ and 

vAi-vBj, and the differential cross section ) ,(  ,
 χσ BjAi
AB g . 

Note that if PAi=0 in equation (10), no collisional 
event takes place and, in this case, the velocity of 
particle Ai remain unchanged at the end of the 
collisional stage of the simulation procedure. More 
detailed presentation of the collisionless and 
collisional operators derived from the Boltzmann 
equation, also called Nambu’s method, can be found 
in [18], and a formal convergence proof in [1]. 
 
3. The use of FEM in PIC simulations  
 

The development of our research on plasma 
simulations has begun on the basis of the PIC 
methodology. An electrostatic PIC model solves the 
Vlasov equation by indirectly solving the Newton’s 
motion equations for which the dominant force acting 
on the charged particles is given by the Lorentz force 
equation (2), therein using the Poisson’s equation to 
determine the electric field. Once the force acting on 

the particles, as well as its acceleration, is known, 
Newton’s equation can be solved.  

In PIC models the simulation domain is 
decomposed by a set of regular and non-intersecting 
geometrical elements whose linear dimensions are of 
the order of the Debye length; these geometrical 
elements compose a mesh over the entire domain and 
are called cells in the PIC methodology, while from a 
FEM point-of-view they are the so called finite 
elements. Although the linear dimensions of the cells 
are subjected to the Debye length, hereafter we make 
no distinction in the use of the terminologies cells and 
finite elements, since in a PIC-FEM approach, the 
FEM mesh must be sufficiently refined for fairly 
describe the plasma, such that is natural that the cells 
and the finite elements coincide [19]. 

We start from a set of initial conditions for the 
particle species of the plasma: the positions xi

0, the 
velocities vi

0, the charges qi , and the mass mi , i=1..N. 
The PIC simulation cycle consists of four stages: 
1) charge distribution; 2) field resolution; 3) field 
interpolation, and the 4) particle advance stage. At the 
end of stage 4), the electrostatic collisionless plasma 
simulation model has been advanced by t∆  in time. 

A special feature of the PIC-FEM approach is that, 
since the finite element shape functions satisfy the 
partition of unit condition [13], these functions can be 
used in the charge assignment in stage 1) where the 
particles inside each cell must be partitioned among 
the cell vertexes. Since this partitioning scheme must 
preserve the total particle’s charge, the partition of 
unit criteria must hold for the set of functions used to 
perform this task in the cells. A well detailed 
discussion can be found in [19]. After this, one has 
obtained an approximated charge distribution for the 
charge density function values at the cell vertexes. In 
stage 2) we use the scalar potential formulation for the 
electric field, Φ−∇=E , reducing the set of Maxwell 
equations to the Poisson equation, which in turn is 
solved by the FEM for the state variable Φ . The 
electric field interpolation is straight-forward in FEM 
formulations, and it is written as  

� ∇−≅Φ−∇=
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piip N )()( xxE φ       (16) 

where iφ ’s are the state variable values (electric 
potential) at the nodes i of the cell (e.g., i=1..3 in the 
case of triangular elements), and iN∇ ’s are the 
gradient of the finite element shape functions at the 
particle position xp. Thereafter, we can compute the 
acceleration of each particle p as 

)( pppp mq xEa = ,           (17) 

and finally, by using an integrative method for 
computing the new position and velocity, as for 
example, the following leap frog scheme,  
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stage 4) is completed and the particle system has been 
advanced in time by t∆ . The latter can be taken 
sufficiently small in function of the electron-plasma 
frequency, for instance, 12.0 −=∆ pet ϖ . 

 
4. Modeling elastic and Coulomb 

collisions in PIC/MC simulations 
 
 While in the DSMC simulation the way of thinking 
is “when will the next collisional event probably 
occur?”, in the PIC/MC frame we ask for “what are 
the relevant collisions that probably have occurred in 

t∆ ?”. Thus, after performing the collisionless part of 
particle motion, a collisional procedure is performed 
in order to introduce the collisional scatterings due to 
collisional events that may have taken place in t∆ . In 
next subsections we shortly outline two algorithms, 
which resolve specific instances of the Boltzmann 
equation: one for simulating Coulomb collisions (ion-
ion, electron-ion, electron-electron) and the other for 
modeling elastic collision between heavy particles. 
 
4.1 Collisional algorithm for a gas mixture 
 
 For simplicity, let us consider a binary mixture of 
species A and B; the extending to more component 
mixtures is straight. Let us define A as being a 
molecule and B as an ion or molecule. One must keep 
in mind that when B is chosen to be an ion, the B-B 
collisions are Coulomb collisions and must be treated 
separately. In time, this algorithm is based on the 
variable hard sphere (VHS) model, thus adequate for 
modeling heavy particle interactions. Let us consider 
A-B collisions, since collisions between like particles 
are a particular case in this modeling. Let NA and NB 
be the number of simulated particles inside a cell, and 
WA and WB be the weight of species A and B, 
respectively. This weighting scheme is referred as 
species dependent weighting; the simpler scheme is 
the equally weighting scheme (WA =WB =W) and the 
more general one is the particle dependent weighting, 
in which particles of the same species may have 
different weighting. Since to each simulated particle 
can be assigned a different weight, it is natural to 
think of a dynamic weighting scheme since it may be 
powerful for controlling the statistical fluctuation in 
the cells due to the random character of the collisional 
models. One can expect the degree of complexity 
involved in such a modeling. Indeed, recent efforts 
have been published in the Literature exploring these 
advanced topics in particle simulation [9],[11]. The 
probability that molecule Ai collide with some particle 
Bj can be expressed as 
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where nB=WBNBVc
-1 is the number density of species B 

and Vc
-1 is the cell volume. Also, PAi,Bj represents the 

probability that molecule Ai collides with particle Bj. 
 Using the idea of maximum collision number, one 
can estimate [17],[18] a maximum relative speed ABg max  
in the cell for all the possible collision partners Bj, 
which is used to obtain a maximum probability that 
works as an upper bound for all the collision 
probabilities of the pairs {(Ai,Bj):j=1..NB} for a given 
molecule i. From these considerations it can be shown 
[18] that the maximum number of collisions between 
pairs {(Ai –Bj):i=1..NA, j=1..NB}, can be written as 
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in the case of WA=WB, and as 
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when using a species dependent weighting scheme. 
Similarly, the maximum collision number for 
collisions between like particles is: 
 ( ) 2/)()1( maxmaxmax tggNnN SSSS
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SS

SS
SS ∆−= σ .  (23) 

Once we have defined  
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the algorithm is given as follows, for each cell:  
1. For kAA=1.. AANmax do 

a. Obtain a random pair (Ai,Aj) and compute AA
ijq , ; 

b. Using a random number U~U[0,1], compare: if 
U> AA

ijq ,  the pair does not collide, otherwise, the 

collision occur and the post-collision velocities 

are: )(
2
1 Rvvv ijjii g++=′  and )(

2
1 Rvvv ijjij g−+=′ , 

where R is a unit random vector. 
2. For kBB=1.. BBNmax do 

a. Obtain a random pair (Bi,Bj) and compute BB
ijq ; 

b. Using a random number U~U[0,1], compare: if 
U> AA

ijq ,  the pair does not collide, otherwise, the 
collision occurs and the post-collision velocities 

are: )(
2
1 Rvvv ijjii g++=′  and )(

2
1 Rvvv ijjij g−+=′ , 

where R is a unit random vector.  
3. For kAB=1.. ABNmax   

a. Choose a random pair (Ai,Bj) and compute AB
ijq ; 

b. Using a random number U~U[0,1], compare: if 
U> AB

ijq  then the pair does not collide, else the 
collisional event occurs, however it is performed 
in the following way: the velocity of particle Ai is 
updated with probability WB /max{WA,WB} and 
the velocity of particle Bj is updated with 
probability WA /max{WA,WB}. The post-collision 
velocities are given by:  

( ), )( )( ,
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BjAiBBBAABAA gmmmmm  



( ), )( )( ,
1 Rvvv ⋅−++=′ −

BjAiABBAABAB gmmmmm  

and, as before, R stands for a random unit vector, 
and gAi,Bj is the relative speed. 

The collisional procedure presented above can be 
interpreted as follows. In the first stage of the 
collisional process, a first tentative collision is 
regarded as true with a probability of Pmax (this drives 
the selection of the collision partners). Let us call the 
latter as the first tentative collision. In the second 
stage, the first tentative collision is regarded as true 
with probability rs

ijq , , which we call as the second 
tentative collision that is evaluated by using a random 
number; and, in the third collisional stage, simulated 
particle Ai undergoes the collision with simulated 
particle B with probability WB /max{WA,WB} and 
particle B undergoes the collision with probability 
WA /max{WA,WB}. The latter stage introduces the role 
that different weighting schemes play in the collision.  
 
4.2 Coulomb collision algorithm 
 
 Although based on physical considerations, the 
Nanbu’s Coulomb collision algorithm [15] is one for 
solving the Landau-Fokker-Planck equation, and it is 
based on the idea that many small-angle Coulomb 
collisions can be grouped into one large one, which 
allows for using larger time steps that results in larger 
scattering angles, e.g., it may be convenient to match 
the time increment used to evolve the collisionless 
motion and the collisional one. Alternative approaches 
and developments can be found in [10],[11]. 
 Essentially, Coulomb collisions are a many-body 
interaction, provided they are long range. Due to the 
Debye shielding in plasmas, a charged particle 
interacts only with other charged particles closer than 
the Debye length; thus, the collisions can be treated 
separately for each cell. Assuming a binary mixture of 
charged particles e and i, and the species dependent 
particle-weighting scheme, the maximum number of 
e-i collisions can be written as  
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where,
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⋅
=′ are the mean number 

of collisions between unlike simulated particles inside 
the cell, Ne and Ni are the number of simulated 
particles of species e and i, respectively,  ei nnn += is 
the total number density that is the summation over 
the number densities, 1−⋅⋅= ceee VWNn , of each species 
in the cell, We and Wi are the species dependent weight 
and Vc is the cell volume. Thereby, the algorithm is: 
1. Make two random vectors of simulated particles e 

and i in a cell: (e1 , e2 , …, eNe), (i1 , i2 , …, iN i); 
2. Make ieN ,

max  pairs of the form (ej , ij). In the case of 
ieN ,

max >Ni’ , make the pairs {(ej , ij) : j=1,…,Ni’; 

(ek , il’ ) : k=Ni’+1,…, ieN ,
max , l=1,…, i

ie NN ′−,
max }, 

where the il’ represents the particle il after its first 
Coulomb collision; the same can be done for the 
case ieN ,

max >Ne’. 
3. For each random pair (ej ,ij), the particle ej collides 

with particle ij with probability Wi /(max{Wi , We }, 
and particle ij undergoes the collision with 
probability We /(max{We , Wi }as well (see reference 
[15]). Using a random number we can decide which 
collisions occur or not. Note that at least one 
simulated particle is scattered. The velocity(s) of the 
particle(s) that collides is scattered as follows: 

a. Calculate the parameter 
3

  jijeie t vv −∆Α=τ  that 

indirectly regulates the advance in time, compute 

,ln
4 , 
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charge of the simulated particles, 0ε  is the 
dielectric constant of vacuum, n is the total number 

density, 
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Dieie
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g λµπε 2
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4
=Λ , ie µ  is the 

reduced mass, and the mean square relative 

velocity 2
, ieg can be approximated by using the 

Maxwellian distributions for species e and i, 

( ) .33
22

, ieiieeie mkTmkTg vv −++= , where 

Te is the temperature of species e and ev  is the 
flow velocity. 

b. Compute ( ))(sinh2))(exp(ln)]([cos 1 τττχ AUAA +−⋅= −  
where χ is the deflection angle, U~U[0,1] and A 

must satisfy )exp(coth 1 τ=− −AA ,(see [18]); 
c. If simulated charged particle ei collides, then its 

post-collision velocity is given by: 
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similarly, if particle ij truly collides, the resulting 
scatterings in its velocity components are given 

by: ( )χχ  sin)cos-(1 
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where  ,  , ieie vvg −= and ),,,( zyx hhh=h with: 
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2
122 )( zy ggg +=⊥ , and ψ  represents an azimuthal 

angle of the collisional plane, πψ 2= U, U~U[0,1]; 
4. For species e and i, form the pairs of like particles 

that have not been scattered yet: 



},,1:),(;,,1:),{( 11 iikkeejj NNkiiNNjee �� +′=+′= ++ . 

In the case of )1( +′− ee NN  is an odd number, the 

last particle of the particle list of species e, Nee , will 
not have a “non-collided partner” available, thus, 
the last pair is defined as ),( 1+′′ eNNe ee  where 1+′′ eNe  
denotes the second collision of the simulated 
particle 1+′eNe . The same is done when )1( +′− ii NN is 
an odd number. Note however that, in this model, 
when a particle collides it has been advanced by t∆ , 
then if a particle collides twice in “one time step”, 
the parameterτ must be shorten, or adjusted, in step 
3.a., Actually, the referred particle would have been 
advanced by 2 t∆  while the physical system only 

t∆ ; thusτ should be adjusted as ( ) ττ ⋅+′′′′= −1)1( SS
SS NN  

where SSS NNN ′−=′′  and S={e/i}. The particles 
scatterings in the velocities are as in step 3. 

 
5. Final comments  
 
 Non-collisional plasma simulation was formerly 
implemented by a electrostatic PIC model coupled to a 
FEM field solver [19], as described above. In this 
work, we have presented an approach to include the 
modeling of elastic and Coulomb collisions. The 
corresponding algorithms are based on a Monte Carlo 
method and are currently being integrated to the PIC 
implementation. The next step will be the inclusion of 
other collisional effects, according to the type of 
plasma being studied.  
 
6. References 
 
[1] Babovsky, H. & Illner, R., 1989. A convergence proof 
for Nanbu’s simulation method for the full Boltzmann 
equation. SIAM Journal of Num. Anal., vol. 26, pp.45-65. 

[2] Birdsall, C. K. & Langdon, A. B., 1985. Plasma Physics 
Via Computer Simulation, McGraw-Hill. 

[3] Bird, G. A. 1976. Molecular Gas Dynamics, Oxford, 
U.K.: Clarendon Press. 

[4] Cheng, S., Santi, M., Celik, M., Martinez-Sanches, M. & 
Peraire, J., 2004. Hybrid PIC-DSMC simulation of a Hall 
thruster plume on unstructured grids. Computer Physics 
Communications, vol. 164, pp.73-79. 

[5] Dubinov, A. E., 2000. A particle-in-cell simulation of a 
process of avalanche developing at a non-completed sliding 
discharge. Plasma Sources Sci. Technol., vol. 9, pp.597-599. 

[6] Ercolano, B., Barlow, M. J., Storey, P. J. & Liu, W.-W., 
2003. MOCASSIN: a fully three dimensional Monte-Carlo 
photoionization code. Mon. Not. R. Astron. Soc., vol. 340, 
pp.1136-1152. 

[7] Garrigues, L., Heron, A., Adam, J. C. & Boeuf, J. P., 
2000. Hybrid and particle in cell model of a stationary 
plasma thruster. Plasma Sour. Sc. Tech., vol. 9, pp. 219-226. 

[8] Greschik, F. & Kull, H.–J., 2004. Two dimensional PIC 
simulation of atomic clusters in intense laser fields. Laser 
and Particle Beams, vol. 22, pp.137-145. 

[9] Hewett, D. W., 2003. Fragmentation, Merging, and 
internal dynamics for PIC simulation with finite size 
particles. J. Comput. Physics, vol. 189, pp. 390-426.  

[10] Lewandowski, J. L. V., 2005. Low noise collision 
operators for particle-in-cell simulations. Physics of Plasma, 
vol. 12, paper number 052322, pp.1-10. 

[11] Larson, D., 2003. A Coulomb collision model for PIC 
plasma simulation. J. Comp. Physics, vol. 188, pp.123-138. 

[12] Matyash, K. Schneider, R., Bonnin, X., Coster, D., 
Rohde, V. & Kersten, H., 2005. Modeling of parasitic 
plasma under the divetor roof baffle. J. Nuclear Materials, 
vol. 337-339, pp. 237-240 

[13] Melenk, J. M. & Babuska, I., 1996. The partition of 
unit finite element method: Basic theory and applications. 
Comput. Meth. Appl. Engn., vol. 139, pp.289-314.  

[14] Nam, S.K., Donnelly, V.M. & Economou, D.J., 2005. 
Particle-in-Cell simulation of ion flow through a hole in 
contact with plasma. IEEE Trans. Plasma Sc., vol. 33(2), pp. 
232-233. 

[15] Nanbu, K. & Yonemura, S., 1998. Weighted Particles in 
Coulomb Collision Simulations Based on the Theory of 
Cumulative Scattering Angle, J. Comput. Physics, vol. 145, 
pp. 639-654. 

[16] Nanbu, K. & Denpoh, K., 1998. Monte Carlo collision 
simulation of positive-negative ion recombination for a given 
rate constant. J. Phys. Soc. Jpn., vol.67, pp.1288-1290. 

[17] Nanbu, K., Mitsui, K. & Kondo, S., 2000. Self-consistent 
particle modelling of dc magnetron discharges of na O2/Ar 
mixture. J. Physics D.: Appl. Phys., vol. 33, pp. 2274-2283. 

[18] Nanbu, K., 2000. Probability Theory of Electron-
Molecule, Íon-Molecule, and Coulomb Collisions for 
Particle Modeling of Materials Processing Plasmas and 
Gases. IEEE Trans. Plasma Sc., vol. 28, pp.971-990. 

[19] Passaro, A., Abe, N. M., Paes, A. C. J., Marques, G. N., 
Preto, A. J. Stephany, S. 2004. A Parallel and Object-
Oriented Plasma Simulation Code Base don Electrostatic 
PIC Model and the Finite Element Method. In 2004, XXV 
Iberian Latin American Congress on Comput. Meth. Engng. 
(CILAMCE 2004), Refice – PE, Brazil.  

[20] Rantamäki, K. M, Pättikangas, T. J. H., Karttunen, S. J. 
et al., 1999. Particle-in-cell simulations of parasitic absorption 
of lower hybrid power in edge plasmas of tokamaks. Plasma 
Phys. Control. Fusion, vol. 41, pp. 1125-1133. 

[21] Shang, J. S., 2001. Recent research in magneto-
aerodynamics, Progress in Aerospace Sc., vol. 37, pp. 1-20. 

 

 


