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Abstract

This  work  presents  the  optimization  of  some  design
parameters  of  a  lithium  niobate  modulator  using  a
genetic algorithm to iteratively  refine candidate  set  of
parameters.  Each  of  these  candidate  solutions  is
evaluated  by  applying  the  Finite  Element  Method.
Numerical  results  show  that  the  genetic  algorithm  is
able  to  optimize  design  parameters  of  the  lithium
niobate  modulator.  Test  cases  include  optimization  of
single and multiple parameters of the modulator. The set
of  characteristics  include  the  half  wave  voltage,  the
electrode  characteristic  impedance,  and  the  resulting
bandwidth of the device.

Keywords - Electrooptical  modulators,  optimization,
genetic algorithms, finite element methods.

1. Introduction

The  demand  for  telecommunications  services  and
bandwidth  has  increased  since  the  past  decade.
Integrated  optic  devices  are  currently  employed  to
increase  transmission  bandwidth  and  electrooptical
modulators are among the most important devices, since
they can provide external modulation,  one of the main
requests  in  fiber  optics  communication  systems.
Particularly, the lithium niobate (LiNbO3) modulators are
compatible  with  the  bandwidth  requirements  of  these
systems  and  minimize  fiber  dispersion.  Additionally
lithium niobate presents advantages in comparison with
other  electrooptical  materials.  The  investigation  of
materials,  components  and  physical  configuration  of
integrated optic devices presents aspects that not always
allow an analytical evaluation of the device performance,
requiring  the  manufacturing  of  several  prototypes  for
experimental  evaluation.  This  lengthens  the  design,
evaluation  and  optimization  cycle.  The  use  of  a
computational  model  for  simulate  the  electrooptic
behavior  of  these  devices  significantly  reduces  their
development  cost  and  time.  For  a  given  choice  of
materials and configuration, the software would allow to
analyze the performance of the device.

This is a typical optimization problem and stochastic
methods are often employed in this kind of problems due
to  the  easy  of  implementation  and  good  trade-off
between the quality of the solution and processing time.
In  the  case  of  the  more  complex  multiobjective
problems,  specific  optimization  techniques  were
developed.

In this work, the computational analysis is performed
by using a numerical optimization technique, in order to
explore the effect of some geometric parameters of the
coplanar  waveguide  on  the  performance  of  the
modulator.  A  genetic  algorithm (GA)  is  used  for  the
design optimization of the electrooptical modulator and
the  finite-element  method  (FEM)  is  applied  on  each
candidate  solution generated  by GA to  study both  the
optical  properties  of  the  diffused  channel  (Ti:LiNbO3)
waveguide  and  the  quasi-static  propagation  transverse
electromagnetic  (TEM)  modes  of  the  coplanar
waveguides (CPW). 

To  minimize  the  computational  execution  time,  the
optimization software was implemented in  order  to be
executed in a distributed memory parallel environment.
This  environment  is  composed  by  a  cluster  of  PC's
microcomputers interconnected by a switch Fast-Ethernet
network.  The  parallelization  of  the  software  employed
the  the  MPICH  implementation  [1]  of  the  Message
Passing Interface communication library (MPI).

It will be presented in the section 2, the parameters
often  used  as  figure  of  merit  of  an  electrooptical
modulator. The FEM simulation technique used to solve
the  optical  and  electric  fields  is  shown in  section  3.
Section 4  describes, briefly, the genetic algorithms and
presents  the  optimization  approach  used  in  this  work.
The results of the optimization are discussed in section 5,
and  section  6  presents  the  main  conclusions  and  the
future work associated to the analysis and optimization
of this sort of devices.

2.  Mach-Zehnder  modulators  on  lithium-
niobate

The cross section of a Mach-Zehnder modulator with
CPW is presented in Figure 1. In this figure, Tb is the
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thickness  of  the  buffer  layer,  Te  is  the  electrode
thickness, G is the gap between the hot electrode and the
ground  electrode  and  WH is  the  width  of  the  hot
electrode.

Figure 1. Cross section of the Mach-Zehnder
modulator.

An electrooptical modulator can be characterized by
analysis of the some electrical  parameters such as: the
characteristic impedance (Zc), the half-wave voltage (Vπ),
the  effective  index  of  the  transverse  electromagnetic
wave (Neff) and the bandwidth (  ∆f).  The definitions of
these parameters are:

(1)

(2)

(3)

(4)

In the equations (1)-(4), C and C1  are the capacitance
per unit length of the CPW calculated with the dielectric
materials  and  with the  materials  replaced  by  vacuum,
respectively,  c is the free-space light velocity,  neff is the
effective  index  of  the  optical  wave,  V is  the  applied
voltage, L is the length of CPW electrodes, λ0 is the free-
space  optical  wavelength,  nbe is  the  extraordinary
refractive  index  of  the  substrate,  r33 is  the  pertinent
electrooptic  coefficient  and  Γ is  the  overlap  factor
between the electric field of the (optical wave) lightwave
and the electric field induced by the electrodes. For x-cut
Mach-Zehnder modulators, the optical waveguides are in
the middle of the gap G and the overlap factor is equal in
both  waveguides ∣∣=∣1∣=∣2∣ .  The overlap factor for
each waveguide is defined as:

(5)

where Eop is the optical modal electric field and Eel is the

electric field of the electrode structure (TEM wave and
Ex component for x-cut configuration).

The optical  waveguides used in this sort  of devices
are built by diffusing ions (usually Ti, or protons) in a
dielectric  substrate.  One of  the most  used  substrate  in
integrated  optical  circuits  is  the  LiNbO3,  because  it
presents appropriate  optical  and mechanical properties.
In the fabrication process, a diffused channel, in which
the refractive index varies continuously, is produced.

3. Simulation of microwave properties using
finite element method

The  finite  element  method  (FEM)  is  based  on  the
minimization of a functional whose solution is equivalent
to  the  original  differential  equation.  An  approximated
solution  for  a  set  of  differential  equations  can  be
obtained  by  applying  the  Weighted  Residual  Method
(WRM) or by applying variational principles. The finite
element  formulations  adopted  in  the  computations
performed in this work were used in previous works [2]
and are briefly presented to follow. 

The  microwave  properties  of  the  CPW  have  been
simulated  using  a  two-dimensional  finite-element
method.  The  Eel is computed by the FEM in the quasi-
static approximation (TEM modes). The TEM modes are
related to the solutions of the Laplace equation for the
electric potential :

(6)

where the diagonal relative permittivity tensor  is  given
by: 

(7)

The FEM applied to (6) yields the matrix equation:

(8)

where :

(9)

={N }{}T  and E=−∇

{  } represents a row matrix, {  }T stands for a transposed
matrix  and  {N}  represents  a  complete  set  of  base
functions for the used finite elements.

4. Design optimization approach

The  design  optimization  process  is  composed,
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basically,  by two mechanisms: the analysis engine and
the  optimization/search  algorithm.  The  optimization
design is an iterative process and candidate solutions are
successively generated by the optimization algorithm and
evaluated by the analysis engine.

The genetic algorithms [3], which mimics survival of
the fittest among competing organisms, have seen wide
application in  recent  years.  The algorithm used in this
study is standard in most respects. An initial population
of  Np chromosomes  (individuals)  is  constructed
randomly,  with  each  group  of  bits  in  a  chromosome
corresponding to a geometric parameter. The geometric
model of a  modulador  is then configured according to
each chromosome and the fitness of each configuration is
evaluated  by  computing  the  characteristic  electric
parameter. A selection process follows, during which a
new population of size  Np is created.  During selection,
individuals  are  chosen from the old  population with a
probability equal to the ratio of the individual fitness to
the total fitness of the old population. Regardless of the
result, the individuals with the highest fitness values are
selected  to  guarantee  their  genetic  information will  be
passed  along  to  the  next  generation.  This  scheme  is
known as elitism. After selection, individuals are paired
off as parents and crossed over, each with a crossover
probability.  Each  time  crossover  occurs,  the
chromosomes are split at a random bit location and their
partial  bit  strings  (all  bits  before  the  random bit)  are
swapped  between  the  parents.  Following  crossover,  a
mutation  is  performed  by  negating  each  bit  on  each
chromosome with a mutation probability. The fitness of
each resulting individuals is evaluated, and the process is
repeated for a specific number of generations or until that
a convergence criterion is reached.

Figure 2. Flowchart of the design optimization
process.

In  this  work,  the  GA is  responsable  for  the  search
operation and the FEM carries out the analysis. Figure 2
presents a diagram of the optimization process used in
this work. 

The  size  of  the  GA  initial  population  is  22
individuals. The individuals of the initial population are
generated  randomly.  Two  design  parameters  (gap  and
thickness of the electrodes) are coded into a 8 bit string
segments  using  binary  coding.  These  segments  are
appended one after the other to form a chromosome. The
roulette  wheel  technique  is  used  for  the  reproduction
operator,  with  one-point  crossover.  The  occurrence
probability  for  the  crossover  is  set  to  0.8  and  for
mutation  is  set  for  0.05.  Elitism  of  4  individuals  is
applied.

The  GA works  with  the  values  of  electrode  cross-
sectional  parameters  (gap  G,  buffer  thickness  Tb,
electrode  thickness  Te and  width  W).  The  boundaries
parameters  used  in the optimization process  are in the
range that can be manufactured by the current processing
technology (thickness up to 30 µm and 1 µm to electrode
and buffer, respectively) [4].

These parameters are summarized as:

6 µm ≤ WH ≤ 36 µm

5 µm ≤ G ≤ 35 µm

15 µm ≤ Te ≤ 30 µm

Tb = 0.2 µm

In all optimization cases, it was assumed a value of
neff = 2.1423 for the effective index of the optical wave.

5. Optimization results

In  order  to  test  the  proposed  design  optimization
method,  only  two  parameters  of  the  modulator  were
optimized, to obtain the better characteristic impedance
(Zc). The primary objective of the optimization is to find
a modulator configuration that offers a Zc as close as the
impedance  of  commercial  microwave  sources,  namely
50 Ω .The result is shown in Figure 3.

The result shows that was a good choice in the set of
parameters  for  the  several  configurations  of  the
geometric model that had been tested by the optimization
process, almost reaching the desired value (0.55%). And
the convergence of the process was fast (15th generation).

This set of values allowed to reach better values for
the objective function of that a tested set previously [5]. 

Another  test  of  convergence was realized  involving
the  effective  index  of  the  transverse  electromagnetic
wave  (Neff)  and  the  result  is  shown in  Figure  4.  The
convergence  of  the  process  was  fast,  too  (15th

generation).  The  reached  result  was  0.26%  of  the
intended value neff .
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Figure 3. Change of fitness over generations for
characteristic impedance (Zc) of the modulator.

Figure 4. Change of fitness over generations for
effective index of the electromagnetic wave (Neff).

This optimization process was used to explore other
electrical parameters, such as the half-wave voltage (Vπ ),
and the effective index of the transverse electromagnetic
wave (Neff).  The best  results  that  were obtained by the
optimization process are present  in Tables  1,  2  and 3.
Also,  the  numbers  presented  of  the  right  side  of  the
tables are of the previous work [5], for comparison with
this. 

Table 1. Optimization result for Zc.

This work Previous work

Zc = 49.7240 Ω Zc = 32.1091 Ω

Electrode gap (G) 35 µm 25 µm

Electrode thickness
(Te) 26 µm 20 µm

Electrode width
(WH) 6 µm 10 µm

Buffer layer
thickness (Tb) 0.2 µm 0.5 µm

Vπ 19.3898 V.cm 12.4182 V.cm

Neff 2.4096 2.5202

Table 2. Optimization result for Vπ.

This work Previous work

Vπ = 3.2636 V.cm Vπ = 3.9946 V.cm

Electrode gap (G) 5 µm 5 µm

Electrode thickness
(Te) 30 µm 30 µm

Electrode width
(WH) 36 µm 30 µm

Buffer layer
thickness (Tb) 0.2 µm 0.5 µm

Zc 12.1288 Ω 12.0506 Ω

Neff 1.8720 1.8236

Table 3. Optimization result for Neff.

This work Previous work

Neff = 2.1367 Neff = 2.1462

Electrode gap (G) 7 µm 11 µm

Electrode thickness
(Te) 23 µm 29 µm

Electrode width
(WH) 18 µm 24 µm

Buffer layer
thickness (Tb) 0.2 µm 0.5 µm

Zc 16.4559 Ω 18.7686 Ω

Vπ 3.9043 V.cm 6.1782 V.cm

From these results, one can see that for this type of
device,  the  optimum  configuration  obtained  for  one
parameter is not the best for the others. 

In  reason  of  these  conflicting  parameters,  an
multiobjective  approach  for  the  optimization  process
must be considered for these kinds of problems.
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In  order  to  analyze  the  behavior  of  the  modulator,
subject  to  multiobjective  optimization,  had  been
implemented  two  functions,  that  used  the  electrical
parameters - the characteristic impedance and the half-
wave voltage - in the optimization process.

The first function is  a  composite  objective function
formed by the weighted sum of the objectives, where a
weight for an objective is proportional to the preference
assigned  to  that  particular  objective.  This  method  of
scalarizing the several objectives into a single composite
objective  function  converts  the  multiobjective
optimization problem into a singleobjective optimization
problem. When this function is optimized, in most cases
it is possible to obtain one particular trade-off solution.
This procedure is called preference-based multiobjective
optimization [6]. The  best  trade-off  found  for  the
function for this two parameters, that is the convergence,
is shown in Figure 5.

Figure 5. Change of fitness over generations for
multiobjective function for Zc  and Vπ .

The multiobjective function that  has been used into
optimization  is  presented  below,  where  the  two
parameters  of  interest  are  calculated  by  means  of  the
quadratic  difference,  being  Z* and  V*

 the  desirables
values.  Both  functions  have  the  same  weight  into  the
multiobjective function.

(10)

where k is  a  number  that  normalizes  a  function,  with
respect to another one ( k = 1.0e5).

The best value that the multiobjective function could
reach for the electrical parameters is shown in the Table
4.

The second function (equation 11) is formed by the
driving  power  of  operation  of  the  microwaves  source
(equation 12), that express the relationship between the

characteristic impedance and the half-wave voltage, and
the  characteristic  impedance.  Again,  the  quadratic
difference is applied and both functions have the same
weight.

Table 4. Optimization result for multiobjective
approach

Zc 32.5254 Ω 

Vπ 8.788 V.cm

Electrode gap (G) 15 µm

Electrode thickness (Te) 19 µm

Electrode width (WH) 26 µm

Buffer layer thickness (Tb) 0.2 µm

(11)

(12)

where Z* and P*
in are  the desirables  values  and  k is  a

number  that  normalizes  a  function,  with  respect  to
another one (k = 5.0e7).

The best  trade-off found for  the function,  using the
equation (11) as fitness function, is shown in Figure 6.

Figure 6. Change of fitness over generations for
multiobjective function for Zc  and Vπ , using equation

(12) as function.

With  this  function,  the  best  value  that  the
multiobjective  function  could  reach  for  the  electrical
parameters is presented in the Table 5.
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the  set  of  parameters  in  study,  but  for  engineering
problems  the  use  of  Pareto-optimal  solutions  is  more
convenient, where the optimization process supplies to a
set  of  acceptable  solutions  trading-off  differently
between the two objectives.  Then, the decision marker
can choice the feasibles configurations for manufacturing
the prototypes.

Table 5. Optimization result for multiobjective
approach

Zc 23.95654 Ω 

Vπ 5.3889 V.cm

Electrode gap (G) 13 µm

Electrode thickness (Te) 15 µm

Electrode width (WH) 28 µm

Buffer layer thickness (Tb) 0.2 µm

6. Conclusion

In  this  work,  a  design  optimization  method  was
proposed  for  Mach-Zehnder  modulators.  The  Finite
Element Method was employed to model the device and
to  analyze  the  performance  of  the  electrooptical
modulator  for  each  candidate  solution.  A  Genetic
Algorithm  performed  the  optimization.  In  a  first
approach,  the  optimization  process  was  applied  by
changing  two  parameters  of  the  modulator  since  it  is
difficult  to  model  all  the  parameters  of  a  real  device.
Results  show the feasibility of  the  proposed approach.
The use of parallel computing was required in order to
reduce the computational time.

The  next  step  on  this  work  includes  the
implementation  the  Pareto-optimal  concept  in  the
optimization process in order to give a more versatility in
to obtain a set of solutions for the problem.
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