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As we know, the problem underlying the parabolic diffusion equation is that this equation is an approximation
only valid on time scale which are large compared to the time scale at which the diffusion-causing collisions
take place. One of the nonphysical properties of the diffusion equation is that an infinite velocity of information
propagation is inherent to it since it is a parabolic equation. Other nonphysical property underlying this equation
is that this behavior is caused by the model assumption that the collision frequency is infinite.

Such as investigated by Einstein (3), the parabolic diffusion equation

∂η

∂t
= D

∂2η

∂x2
(1)

with the initial condition η(x, 0) = δ(x) have solution given by

η(x, t) =
1√

4πDt
e
−x2
4Dt , (2)

where D is the so-called diffusion coefficient. As one may check, the second moment obtained of this distribution
function is the mean square displacement < x2 >=

∫
x2η(x, t)dt = 2Dt, or equivalently, the Einstein’s relation

(ER). In order to understand some difficulties present in the Einstein approach let us to begin by calculating the
velocity which the particles are diffusing. It is straightfoward to show that, by using the (ER) we gives v ∝ t−1/2.
Note that, when the times scale goes to zero, we have v →∞ and, of course, this is a nonphysical result being the
limit for the propagation velocity in a fluid of the order of the sound speed. As one can see, another way to observe
this difficulty is given in terms of the distribution function. In this way, the particles behaves as diffusive gaussian
process: initially the function η(x, t) represents a delta centered around the origin x = 0, but in the course of time
it evolves as a gaussian of variable width.

In order to obtain the hyperbolic diffusion equation describing the brownian motion of the free particle it will
be supposed that each particle executes motions independent of the other. Let us suppose that there are N particles
supended in a liquid. Considering that in the intervals of time τ , the coordinates of each particle undergone a
displacement ∆x = l, since l assume negative and positive values for each particle. Then, the fraction of particles
that suffers a displacement between x and x+ l in the time τ is given by a probabilistic law (3) following the form:

dN

N
= φ(l)dl, (3)

with φ(l) obeying the normalization condition
∫ +∞
−∞ φ(l)dl = 1 and φ(l) is an odd function, that is, φ(l) = φ(−l).

In this way, following the Einstein approach (3), the particle’s number, which in the τ is in the position x and x+ l,
is given by

η(x, t + τ)dx = dx

∫ l=+∞

l=−∞
η(x + l, t)φ(l)dl. (4)

As τ and length l are very small in comparison with t and x variables it is possible to expand the function η(x, t)
until the second order term:

η(x, t + τ) ∼= η(x, t) + τ
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On the right side of this expression the second term is identically null since that φ(l) = φ(−l). Then, consid-
ering the normalization condition we have:
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where D = 1
2τ

∫ +∞
−∞ l2φ(l)dl is the diffusion coefficient, which is defined by the second moment of the distribution

function.
The solution of this equation have been given by Straton (18). Thus, if one consider the boundary conditions

η(x, 0) = 0 to be consistent with the Einstein approach, we obtain the solution

η(x, t) = e−t/τ

{
1
2
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1
2
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}
+
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,

that is valid for | x |≤ vt and

η(x, t) = e−t/τ

{
1
2
δ(x + vt) +

1
2
δ(x− vt)

}
(8)

for | x |> vt. If one consider the asymptotic expansion for de Bessel functions the expression (8) can be rewright
as

η(x, t) = e−t/τ

{
1
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δ(x + ct) +

1
2
δ(x− ct)

}
+

e−(t/τ)y2

4cτ

{
πt

2τ
(1− y2)1/2

}
[1 + (1− y2)−1/2],

where y = x/vt < 1. The physical meaning from this equation is very clear. The first therm describe the
D’Alambert solution for the case of plane wave which rapidly becomes negligible while the second therm repre-
sents the diffusive regime. By considering the regime y << 1, or equivalently, x << vt, we recovered the solution
for the case of the parabolic diffusion equation η(x, t) = (4πDt)−1/2exp(−x2/4Dt).

At this point, in order to compare the PDE and HDE approaches, let us to plot the solutions for parabolic and
hyperbolic diffusion equation. The result from our numerical experiment, as shown in Figure 1, shows that the
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Figure 1: Comparation between exact solutions of PDE and HDE for τ = 10−6: a) Exact Solutions, b) Mean
difference between exact solutions, c) Absolut difference between exact solutions.

intrinsic inconsistency that appears in parabolic approach, due to very short time intervals, can be removed by
adding the second derivative term in the hyperbolic equation. The inconsistency pointed out here was removed
using the diffusion coefficient D = 0.035 for both PDE and HDE. In this limit it is important to emphasize the
transition found for the diffusion coefficient values. It happens from the time scale of order 10−5 to 10−6 when
the influence of the value of the time interval should be taken into account to understand the diffusion process.

Despite many investigations on the hyperbolic approach of the diffusive process, all of them are restricted to
address the heat diffusion as the fundamental scenario. In this paper, we focus on the Brownian motion showing



for the first time a numerical result where the values for the diffusion coefficient and its consistency in time are
reported (D = 0.035). It means that using the hyperbolic approach the Brownian motion can be considered even
for very short time intervals as 10−6 s. As a consequence of this result, at least two more fundamental investigations
can be performed. The first is to provide solutions into the context of the Ito diffusion addressing the k-problem
discussed in the introduction of this paper. The second one is related to the sub-diffusive interpretation when time
goes to zero. In that case, a possible breaking of the extensive property of the system’s entropy can be addressed
including a scenario where non-gaussian fluctuation can be the key to construct a Brownian scenario for very short
time intervals. Work along these lines is in progress and will be communicated later.
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