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Satellite systems play a major role in network communications with large geographical coverage, and high-

capacity channels for radio, television, mobile telephony and Internet signals transmissions. Markov processes 

have been widely used to model satellite constellations (Wood (2001), (Usaha and Barria, 2002), Zaim et al. 

(2003)). 

 

The basic property of a Markov process (Çinlar, 1975) is that its future behavior is conditionally independent of 

its past provided that their present state is known. 

 

In the present paper, we consider a continuous time Markov chain (CTMC) to model a single orbit satellite 

constellation with four satellites, in which the position of the satellites is fixed in the sky, as in the case of 

geostationary orbit. In a CTMC, the amount of time the process spends in each state before making a transition to 

a different state is exponentially distributed. The developed model is based in Zaim et al. (2003), and can easily 

be extended to more than four satellites in a single orbit. 

 

In this satellite constellation system, we assume that call requests arrive at each satellite according to a Poisson 

process, and the call holding times are exponentially distributed. Satellites communicate with each other by line 

of sight using inter-satellite links (ISL). The connection between the earth and the satellite is called UDL, “up-

and-down link”. Each satellite’s UDL (ISL) has CUDL (CISL) bidirectional channels. A call originated at satellite 1 

and terminated at satellite 3 is routed through satellite 2, and a call originated at satellite 2 and terminated at 

satellite 4 is routed through satellite 3. The system is presented in Figure 1. 

 

 
  Figure 1: Four satellites in a single orbit. 

 

Let nij be a random variable representing the number of active bidirectional calls between satellite i and satellite j, 

1 ≤ i ≤ j ≤ 4, regardless whether the calls were originated at satellite i or j. Notice that, nii represents the number 

of calls between two customers under satellite i, and two bidirectional UDL channels are used. The four-satellite 

system in Fig. 1 can be described by a ten-dimensional CMTC. The set of all possible states of this CMTC is 

given by: 

 

E= {  (n11, n12, n13, n14, n22, n23, n24, n33, n34, n44) / nij ∈ 1 ;א ≤ i ≤ j ≤ 4;  i,j є א; CUDL ∈ א; CISL ∈ א; 

       2n11  +   n12    +   n13   +   n14   ≤ CUDL;   (2.1) 

         n12  + 2n22    +   n23   +   n24    ≤ CUDL;   (2.2) 

         n13  +   n23    + 2n33   +   n34    ≤ CUDL;   (2.3) 

         n14  +   n24    +   n34   + 2n44    ≤ CUDL;   (2.4) 

         n12  +   n13   ≤ CISL;   (2.5) 

         n14    ≤ CISL;   (2.6) 

         n13  +   n23    +   n24  ≤ CISL;   (2.7) 

         n24  +   n34   ≤ CISL    }  (2.8) 



   

Constraints (2.1) to (2.8) are due to the fact that some calls share common UDL and ISL. Constraint (2.1) ensures 

that the number of calls originated (equivalently, terminated) at satellite 1 be, at most, equal to that satellite’s 

UDL capacity. Note that a call that originates and terminates within the footprint of satellite 1, captures two 

channels, thus the term 2n11 in constraint (2.1). Constraints (2.2), (2.3) and (2.4) are similar to (2.1), but 

correspond to satellites 2, 3 and 4, respectively. Finally, constraints (2.5) to (2.8) ensure that the number of calls 

using the link ISL between two satellites be, at most, equal to that link  capacity. 

 

Let λij denotes the arrival rate of calls, and  1/ µij  the mean holding time of calls between satellites i and j. Then, 

the state transition rates r(e, ê) from the current state e∈E to the next state ê∈E for this CTMC are given by: 

 

- r(e, ê) = λij, ∀ i, j, if the transition is due to the arrival of a call between satellites i and j. In this case, ê 

is equal to e, except in the position that corresponds to the element nij, that is increased by one; 

 

- r(e, ê) = nijµij, ∀ i, j, nij > 0,  if the transition is due to the termination of a call between satellites i and j. 

In this case, ê is equal to e, except in the position that corresponds to the element nij, that is decreased by 

one. 

 

In Table 1, we present the size of the CMTC used, considering λij = 1, µij = 2, 1 ≤ i ≤ j ≤ 4, and different values of 

CUDL.  To make it simple, we consider CISL = CUDL. 

 

Table 1 - Number of states and transitions 

 

Number of 

satellites 

 

Number of bidirectional calls 

for each satellites (CUDL= CISL) 

 

Number of 

states 

 

Number of 

transitions 

 3 722 4,928 

4 5 14,138 134,970 

 10 1,960,575 25,712,940 

 

This table shows that the state space increases exponentially when the number of satellites and/or the capacity of 

connections in the satellite constellation increase. Therefore the use of this Markov model in constellations with 

higher capacity of connections, such as, Iridium
1
, which consists of 66 Low Earth Orbit (LEO) satellites, and 

GLOBALSTAR
2
, which consists of 48 LEO satellites (both aiming at hand held telephony, primarily to remote 

areas) is not computationally feasible. To deal with theses cases the use of decomposition techniques will be 

studied. 
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