Development of a Sour ce Code Analysis Environment Focusing on Security

L.O. Duartd and A. Monte3

1| aboratory for Computing and Applied Mathemati¢sAC
Brazilian National Institute for Space ResearcNPIE
C. Postal 515 — 12245-970 — S&o José dos Camgds - S
BRAZIL

2|nformation Systems Security Division - DSSI
Renato Archer Research Center — CENPRA
13069-901 — Campinas - SP
BRAZIL

E-mail: duarte@lac.inpe.bantonio.montes@cenpra.gov.br

Keywords: secure programming, syntactic analygisyie coding, weak functions, security.

In the past years, the expressive increase inakieldpment of computer technologies has been feltbby an
increasing number of systems being probed, infecteshpromised and used to launch attacks on otfseerss.
Successful attacks against computer systems ardodtiee exploitation of some kind of vulnerabiliti?.oor
programming techniques are the main cause of vathiléres. The more common vulnerabilities are:

e Buffer Overflow: It is the most common vulnerability present intaafre. It often occurs when more
data is inserted in a buffer than it can handlendi#s, 2004), (Aleph One, 1996)

e Race Condition: This vulnerability occurs when two or more proesssy to access the same resource
simultaneously. One process can intentionally chamgesource in such a way that a second process
behaves unexpectedly. (Coweral, 2001a)

e Injections: It is a vulnerability associated with poor softeamput validation causing situations such as
unexpected instruction or SQL command execution.

e Format String Vulnerability: It is a vulnerability in the format string of futhens like printf() and
syslog() that can allow information leak, unauthed accesses to memory locations or access to the
system by an attacker. (Cowetral, 2001b)

Statistics of NVD/NIST (National Vulnerability Ddtase / National Institute of Standards and Teclgie&)
show that the number of discovered vulnerabilities software is increasing. The number of indexed
vulnerabilities from January to September of 20@G& wigger than all 2005 year vulnerabilities (Fegt). Input
validation errors are the main cause of those vabibities. The buffer overflow vulnerability is leted to
validation input error and are the focus of thigkvo

7,500

6,750

01

0
£5,000

55250

ffied Limitat

84,500

eting Spi

gam0
]

"
£ 3,000

erabilites Meeting Specified Limitations:

bilities M

£
53080
s

#of Ut

1,500

% of Total Vulry

750

0 (i
2006 2005 2004 2003 2002 2001 2000 1999 1993 1997 1996 1995 1994 1993 1992 1951 1990 1959 1988 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1895 1994 1962 1990 1939

The left graphic represent;rthe number of indexdderabilities. The percentag(;rof indexed vulnditéds due
to input validation errors is shown in the righaghic.



The efforts to mitigate the vulnerabilities foumdsioftware are divided into three approaches:

e Compiler dependent approach; (Etoh, 2001) (Vendi¢c2000)
e System dependent approach;
e Software dependent approach.

This work is based on a software dependent apprdacthis approach the software must be securetdayf,i
without the need of a specific operating systeroamnpiler. To assure that a software is secure num observe
the entire software development process to avadramming errors.

The software audit processes look for problemsrieden the coding stage. This audit can be dore static or
dynamic way. The software dynamic analysis aimsliscover problems during the software executioterof
without analyzing the source-code. This technigeenahds that all the execution paths of the softvesee
covered and exhaustively tested with all typespafésible inputs. Although effective, analyzing pdissible
paths is not always feasible. Therefore, otherrtiegles like fuzzying(Milleret al., 1990) are used.

The static analysis aims to determine the softypaoperties by inspecting its source-code. The sofivis not
executed in this method. The supposed advantatigsaiethod is that it detects errors that coulddoedifficult
to find using others methods. The tools that hbfp dtatic analysis process vary among functiontesgo that
are not more sophisticated than the grep tool, mmtompilers. New approaches consist of vulnetgbili
detection using constraint optimization.

This work presents a proposal of a source code/sisanvironment focused on security. Its main ¢g@&b help
developers to find vulnerabilities in their own wadre. The proposed environment analyzes a softa@uece
code to find buffer overflow vulnerabilities thrdug preventive and software-dependent approachsimtactic
level. To achieve it, the environment tries to dypbe limitations found in other tools. Some oésk limitations
were spotted by (Wilander & Kamkar, 2003).

REFERENCES

Cowan, C., Barringer, M., Beattie, S., Kroah-Hamm&.,Frantzen, M. and Lokier, J.(200EprmatGuard:
Atomatic Protection From printf Format Sring Vulnerabilities. Paper presented to Conference: Usenix Security
Symposium, 10th., Washington, United States of Acaer

Cowan, C.; Beattie, S., Wright, C. and Kroah-Harmm&.(2001) RaceGuard: Kernel Protection From
Temporary File Race Vulnerabilities. Paper presented to Conference: USENIX Security g®gmm, 10th.,
Washington DC, United States of America.

Etoh, H.(2001) GCC extension for protecting applications from stack-smashing attacks. Online at:
<http://www.trl.ibm.com/projects/security/ssp>

One, A.(1996) Smashing The Sack For Fun And Profit. Phrack Magazine, v. 49, n. 14. Online at:
<http://www.phrack.org/phrack/49/P49-14>

Pincus, J.; B., B.(2008eyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns. IEEE Security
& Privacy, v. 2, n. 4.

Vendicator(2000)Sack Shield: A stack smashing technique protection tool for Linux, 2000. Online at:
<http://www.angelfire.com/sk/stackshield/>.

Wilander, J., Kamkar, M.(2003) Comparison of Publicly Avilable Tools for Satic Intrusion Prevent. Paper
presented to Symposium: Network and Distributedte3ysSecurity Symposium, 10th., San Diego, Califrni
United States of America.

Miller, P. B., Fredriksen, L., So, B., (1990hn empirical study of the reliability of UNIX utilities.
Comuninications of the Association for Computingdiieery.



