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Abstract In the present paper, morphological approaches for segmenting ori-
entation fields are proposed. First, it is investigated the use of
directional granulometries and a quadtree structure to extract the
main directional structures of the image. Then, it is proposed a
method based on the concept of the line-segment and orientation
functions. The line-segment function is computed from the supre-
mum of directional erosions. This function contains the sizes of the
longest lines that can be included in the structure. On the other
hand, the orientation function contains their angles. Combining
both functions permits the construction of a weighted partition
using the watershed transformation. Finally, the elements of the
partition are merged using a region adjacency graph (RAG) struc-
ture.
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1. Introduction

Even if anisotropic structures are frequently found in many classes of images
(materials, biometry images, biology, ...), few works dealing with directional
analysis in morphological image processing have been carried out. From an
algorithmic point of view one has [14,15] among others, while in application
some references are [5, 16]. It is in the domain of fingerprint recognition,
which is today the most widely used biometric features for personal identi-
fication, where the study of directional structures based on orientation-field
detection is an active subject of research [2, 7, 9]. In fact, fingerprints can
be considered as a structure composed by a set of line segments (see Fig-
ure 1(a)). However, the orientation-field detection also plays a fundamental
role in other domains [1, 6]. For example, in materials, the pearlite phase
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displays a morphology in the form of parallel lines (see Figure 1(b)) and
when forming another grain, these can change of direction. In this case,
field extraction from an image is a useful technique for the characterization
of the pearlitic phase.

Given the interest in orientation pattern models for characterizing struc-
tures, this paper investigates the use of the mathematical morphology for
modelling orientation fields. As for the human vision, computer image pro-
cessing of oriented image structures often requires a bank of directional
filters or template masks, each of them sensitive to a specific range of ori-
entations. Then, one investigates first the use of directional granulome-
tries, computed by morphological openings, using directional structuring
elements. This approach allows one to determine the main directions of
the structures by identifying the minima of the granulometric distribution
function. In order to define a local approach, a quadtree structure is used
to decompose the image with different resolution according to the levels of
the tree.

After illustrating some drawbacks of using a bank of morphological fil-
ters (openings) and a quadtree structure to characterize orientation fields,
one introduces an approach based on directional erosions. This method con-
siders a local approach using the concept of line-segment function combined
with the watershed transformation. In our case, the line-segment function
is computed from the supremum of directional erosions. This function con-
tains the information of the longest line segments that can be placed inside
the structure. In order to know their orientation, a second image is defined
by observing the construction of the line-segment function and its evolution.
This second image is computed by detecting the orientation of the supre-
mum of directional erosions. These local descriptors, for the element size
and the orientation, enable the identification of the orientation fields based
on the watershed transformation.

This paper is organized as follows. In Section 2, the concepts of morpho-
logical filter and directional morphology are presented. In Sections 3 and
4, a study for segmenting orientation fields based on the directional granu-
lometry is carried out. Next, in Section 5 the notions of line-segment and
orientation functions, derived from the supremum of directional erosions,
are introduced. Finally, in Section 6 an approach of working with direc-
tional morphology, the watershed transform and a region adjacency graph
(RAG) for segmenting orientation fields is proposed.

2. Some basic concepts of morphological filtering

In mathematical morphology one calls morphological filter all increasing
and idempotent transformation [4, 12]. The basic morphological filters are
the morphological opening γµB and the morphological closing ϕµB given
a structuring element B (for example a square of 3 × 3 pixels) and an
homothetic parameter µ. Let B̌ is the transposed set of B (B̌ = {−x :
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x ∈ B}), the morphological opening and closing are given by: γµB(f) =
δµB̌(εµB(f)) and ϕµB(f) = εµB̌(δµB(f)), where the morphological erosion
εµB and dilation δµB are expressed by εµB(f)(x) = ∧{f(y) : y ∈ µB̌x} and
δµB(f)(x) = ∨{f(y) : y ∈ µB̌x}, and where ∧ is the infimum and ∨ is the
supremum.

Morphological directional transformations are characterized by two pa-
rameters. Their structuring elements are line segments L having a length
(size µ) and a slope (angle α). For α ∈ [0, 90], the line segment L(α, µ) is
formed of the set of points {(xi, yi)} computed using the following expres-
sions:

if 0 ≤ α ≤ 45 then, yi = xitan(α) for xi = 0, 1, · · · , (µ/2)cos(α),

if 90 ≥ α > 45 then, xi = yicot(α) for yi = 0, 1, · · · , (µ/2)cos(α),

and of the set of points {(−xi,−yi)}.
In this way, the structuring element is a symmetric, i.e., L(α, µ)=L̂(α, µ).

Similar expressions can be used for α ∈ (90, 180].
For the sake of simplicity, from now on, we will denote the morphological

opening γL(α,µ) and closing ϕL(α,µ), respectively, γα,µ and ϕα,µ.
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Figure 1. (a) Fingerprint image. (b) Pearlitic phase image.

3. Directional granulometry

Granulometry was formalized by Matheron for binary images and extended
to complete lattices by Serra [12]. Granulometry is defined as follows:

Definition 1 (Granulometry). A family of openings {γµi} (or respectively
of closings {ϕµi}), where i ∈ {1, 2, . . . n}, is a granulometry (respectively
antigranulometry) if for all i, j ∈ {1, 2, . . . n} and for all function f ,

µi ≤ µj ⇒ γµi(f) ≥ γµj (f) (resp. ϕµi(f) ≤ ϕµj (f)).
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Fig. 2. (a) Binary image (b), (c) and (d) Directional opening size 80 at directions

0, 55, 112, respectively
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Figure 2. (a) Binary image. (b–d) Directional opening of size 80 and angles 0, 55,
112, respectively. (e) Granulometric curve computed from image (a). (f) Minima
detection.

The ordering relationship implies that greater the parameter, more se-
vere the opening (closing). The granulometric analysis of a binary or gray-
level image, consists in associating with each µi value a measure of the image
γµi(f). Two functions are associated to these transformations: the granulo-
metric density function g and its distribution function G given respectively
by:

g(α, λ)(f) = (Mes(γα,λ+1)(f)−Mes(γα,λ)(f))/Mes(f),

G(α, λ)(f) = (Mes(f)−Mes(γα,λ)(f))/Mes(f),

where Mes represents the volume for gray-level images and the area for
binary images. To illustrate the use of the granulometry for detecting
anisotropies inside a structure, the binary image of Figure 2(a) was com-
puted from the gray-level image of Figure 1(a). Figures 2(b), 2(c) and 2(d),
illustrate the output images computed from the image of Figure 2(a), us-
ing a directional opening of size µ = 80 and angles 0, 55 and 112 degrees,
respectively. Observe that this microstructure contains a main direction at
approximately 112 degrees. To detect automatically the main direction in
a structure one computes a granulometry as described below.
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Fig. 4. (a) First hierarchy of the quatree, b) and c) Second hierarchy of the quadtree,

d)and (e) Final segmentation
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Fig. 4. (a) First hierarchy of the quatree, b) and c) Second hierarchy of the quadtree,
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Fig. 4. (a) First hierarchy of the quatree, b) and c) Second hierarchy of the quadtree,
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Fig. 4. (a) First hierarchy of the quatree, b) and c) Second hierarchy of the quadtree,
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Figure 3. (a) First hierarchy of the quatree. (b, c) Second hierarchy of the
quadtree. (d) Final segmentation. (e–h) Granulometric curves of the first hi-
erarchy.

4. Directional granulometry and quadtree structure

By computing the density function g(α, λ) one obtains the portion of the
structure, for a given direction α, of size λ, whereas the distribution function
G(α, λ) gives the fraction of the structures greater than or equal to the
length λ in the direction α. This latter function is more interesting since
it permits the selection of the main structures in a given direction. Thus,
instead of fixing the parameter α, the parameter λ was fixed. Figure 2(e),
illustrates the distribution function of the image of Figure 2(a), for λ = 80
and 0 < α < 180. This expression permits one to know the percentage of
the structure removed by the opening.

For some angles the directional opening removes all of the structure,
and G(α, λ)(f) ≈ 1, whereas in the direction of the longest structures
G(α, λ)(f) < 1. The global minimum of this function permits us to de-
termine the direction of the main structures. The minimum in Figure 2(f),
was computed from the function of Figure 2(e), using morphological trans-
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formations in one-dimensional case. To carry out the minimum detection,
the distribution function was scaled into the interval [0, 255] in integer num-
bers and then, the traditional morphological tools for detecting minima in
mathematical morphology were applied. In fact, the minima of the function
will enable us to have a criterion to go from a global approach to a local
one by means of the quadtree structure.

In the quadtree approach, the coding by regions is made by an homogene-
ity criterion (or criteria) that enables us to discriminate whether a square
region can be considered a connected component. One starts with a square
of 2n pixels that is subdivided in four square zones. Each square zone is
analyzed as a part of the original image using one or several homogeneity cri-
teria (for example, variance, max-min values). If the homogeneity criterion
(or criteria) is verified, a function value is given at all points of the square
region (for example, the average of the intensity values in the square). For
any square region that does not satisfy the homogeneity criterion, a similar
procedure is performed in a recursive way by further dividing the square
region by four.

For orientation fields, it is clear that an homogeneity criterion is given by
a directional one and in our case, the minima of the distribution function are
used as the criterion. If the distribution function in a square region presents
only a principal minimum, then the region is considered homogeneous. In
this case, the pixel values of the region are replaced by the angle of the
minimum where the minimum was found. Otherwise, if the distribution
function of a square region has several representative minima, then the
region is devided again by four.

Figure 3(a) illustrates the approach to determine the orientation field in
the image. After dividing the image by four (see Figure 3(a), the four distri-
bution functions were computed as illustrated in Figures 3(e), 3(f), 3(g) and
3(h). In particular observe that the distribution functions of Figures 3(g)
and 3(h), corresponding to the bottom right and left squares each contains
only one principal minimum, while the other two squares, Figure 3(e) and
Figure 3(f), contain several representative minima. Thus, these two squares
were subdivided by four and their distribution functions were computed to
know their directional homogeneity. Figure 3(c) illustrates the top square
regions divided by four squares regions. Finally, Figure 3(d) illustrates the
final hierarchy.

5. Size and orientation codification based on
directional erosions

The approach described above for segmenting orientation fields has some
main drawbacks. The first one is due to the fact that some regions must
be processed several times (according to the hierarchy of the quadtree). A
second problem is that the final segmentation will be composed by square
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Figure 4. (a) Original image. (b) Binary image. (c, d) Line-segment and orien-
tation functions. (e) Straight lines at the regional maxima of the line-segment
function.

regions (or the union of square regions) which is not a real representation
of image structures.

In this section and in the following ones we will look for another approach
where the connectivity notion plays a fundamental role for segmenting the
orientation fields. In fact, it is well-known that the notion of connectivity
is linked to the intuitive idea of segmentation task, where the objective
is to split the connected components in a set of elementary shapes that
will be processed separately. Then, the problem lies in determining what a
connected component is for an image such as those illustrated in Figure 1(a)
and in Figure 1(b). Given that, we will look for another approach where
the information of scales and directions of the structures of the image are
easily accessible. Two functions that codify the size and the orientation are
introduced below.

The idea for codifying size structure come from the notion of the distance
function DX(x) that is a transformation that associates with each pixel x
of a set X its distance from the background. The distance function can
be computed by successive erosions of the set X. Let us now build a new
function derived from the notion of distance function. The goal of building
this function consists in codifying the size information in such a way that
local directional information can be accessed from each point of the function.

This codification of the size information will be used to build a local
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approach for detecting orientation fields on an image. This function, which
we call line-segment function Dm, is computed by using the supremum
of directional erosions. To stock the size information for all λ values, a
gray-level image Dm is used. Thus, one begins with a small structur-
ing element by taking into account all orientations to compute the set
supα∈[0,180]{εL(λ,α)(X)}. Then one increases Dm(x) by one at all points
x belonging to the set supα∈[0,180]{εL(λ,α)(X)}, and one continues the pro-
cedure by increasing the size of the structuring element until the structure
is completely removed. This means that the procedure continues until one
has a λmax value such that supα∈[0,180]{εL(λmax,α)(X)} = ∅. The maxima
of the function Dm are the loci of longest structuring elements. Thus, one
knows the position of the largest structuring elements that can be included
completely in the structure.

However, the angles of these structuring elements (line segments) are
not accessible from the image Dm. Therefore, one stocks the directions of
the line segments in a second image Om, called orientation function, when
the line-segment function is computed.

A real example (pearlitic phase) is shown in Figure 4(b), which is the
binary image of that in Figure 4(a). The image of Figure 4(c) illustrates
the line-segment function Dm whereas the image of Figure 4(d) shows the
orientation Om function, computed from the binary image of Figure 4(b).
Now, these functions can be now used for computing the line segments
that characterize the structure. To illustrate the information contained in
these images, the maxima of Dm were computed for obtaining the loci of
the maximal structuring elements. Next, a line segment was placed at each
maximum point x, with an angle given by Om(x). The longest line segments
in the image are illustrated in Figure 4(e). The line-segment function and
its associated orientation image containing the angles, serve to suggest a
method for segmenting images of orientation fields.

6. Image segmentation using directional morphology
and the watershed transformation

Image segmentation is one of the most interesting problems in image pro-
cessing and analysis. The main goal in image segmentation consists in
extracting the regions of greatest interest in the image [3, 8]. A segmenta-
tion method must allow the introduction of specific criteria to obtain the
desired regions (e.g., gray level, contrast, size, shape, texture, etc). In math-
ematical morphology, the watershed-plus-marker approach is the traditional
image segmentation method [8]. This method has proved to be an efficient
tool in many image-segmentation problems. Here, the watershed will be ap-
plied directly for obtaining a fine partition, and then a systematic merging
process will be applied to obtain the final segmentation.

Figure 5(a) shows the inverse image of image Dm in Figure 4(c), while
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Figure 5. (a) Inverse line-segment function. (b) Watershed image. (c) Weigthed
catchment basins. (d) Segmented image. (e, f) Connected components.

Figure 5(b) illustrates its watershed image. To realize the merging process
it is preferable to work with the catchment basins associated with the water-
shed image. Figure 5(c) shows the catchment basins weighted by the values
of the angles of the regional maxima of the image Om of Figure 4(d). Now,
by analyzing a region of the image of Figure 5(c), one can identify the neigh-
boring regions with more-or-less similar orientations. In order to take into
account their neighborhood relationships, a region adjacency graph (RAG)
must be computed. In fact, the RAG simplifies the merging process. We
have chosen the method proposed in [13] for the merging process. Let us
introduce some concepts concerning graphs.

A graph is a pair made of a set V of vertices and a family of arcs.
Here, one considers the case of a graph without loops. This means that

there are no arcs connecting a vertex to itself. In the general case, arcs are
oriented; in this work, however, one takes the case of non-oriented graphs:
if there exists an arc joining vertex v to vertex v′, then there also exists an
arc joining v′ to v.

A vertex v′ is said to be a neighbor of a given vertex v if there exists an
arc joining v to v′.

Thus, one way to represent a RAG consists of associating a vertex to
each region and an edge to each pair of adjacent regions. By definition the
RAG provides a simple connectivity view of the image. Beyond this simple
connectivity view this graph also gives a high-level connectivity view of the
image. Consider three regions A, B and C of an image. Thus, if two regions
A and B are adjacent, and also the regions B and C are adjacent, but A
and C are not adjacent, that leads us to consider that regions A and C have
a second order connectivity relationships.
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Fig. 15. (a) and (b) Images computed after the merging process using criteria values

of 10 and 20, respectively, (c) and (d) Contours imposed to the original image, (e)

and (f) the color representation of both segmentations
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Figure 6. (a) Original image. (b, c) Line-segment and orientation functions. (d, e)
Images computed after the merging process using criteria values of 10 and 20
degrees, repectively. (f, g) Contours imposed to the original image.

In fact, the simple connectivity view contains inherently all high-level
connectivity relationships of the image. Each vertex vi corresponds a region
Ri with orientation values (for example, −→µ i and −→σ i mean value and vari-
ance value of the region) representative of the orientation distribution of this
region. Each edge eij represents a pair of adjacent regions {Ri, Rj} with a
corresponding orientation distance d(Ri, Rj), which can be used to compare
the orientation distribution of these two regions. In our case, the compu-
tation of the RAG, using the angles of the regions, guides the subsequent
merging of regions and provides a complete description of the neighbor-
hoods. The RAG graph is constructed by use of the catchment basins of
the image of Figure 5(c).

One takes a point from each minimum of the inverse line-segment func-
tion for representing each catchment basin. Remember that the inverse
distance function is used. Since the graph under study is a valued, one
must introduce some numerical values. Each edge is then assigned a value
given by the absolute value of the difference between the angles of two neigh-
boring regions, computed from the orientations image. The neighborhood
graph of the maxima of the line-segment function and the directional func-
tion synthesize the directional field of the image. Two vertices of the graph
are linked by an edge if the catchment basins are neighbors, and the value
of the edge represents the directional similarity. One the regions are codi-
fied on a graph, we can compute the orientation fields based on the valued
graph.

The following method (see [13]) for reducing the numbers of regions was
carried out.
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1. Each border has assigned an angle distance between the two regions
it separates.

2. The borders are sorted in increasing order.

3. Two regions separated by the least value border are merged.

4. Step 2 is repeated until the criterion cannot be satisfied.

We illustrate the method by identifying the adjacent regions with more-
or-less similar orientation by considering the image of Figure 4(a), a micro-
graph of the pearlite structure in steel. To achieve such a goal, one merges
the vertices (catchment basins) with a difference of angles smaller than
or equal to a given angle value d(Ri, Rj) = |angle(Ri) − angle(Rj)| ≤ θ.
Figure 5(d), shows the segmented image of the orientation function of Fig-
ure 5(c), while Figures 5(e) and 5(f) show some connected components after
the merging process using angles difference criterion θ of 20. The same ap-
proach was carried out with the fingerprint image shown in Figure 6(a).
Figures 6(b) and 6(c) illustrate the line-segment function and the orien-
tation function, whereas in Figures 6(d) and 6(e), one shows the images
computed after the merging process using criteria values θ of 10 and 20,
respectively. Finally, Figures 6(f) and 6(g), illustrate the contours imposed
to the original image.

7. Conclusion and future works

This paper has shown the possibilities for application of morphological direc-
tional transformations to segment images with orientation fields. Initially,
one investigates the directional granulometries and the notion of quadtree
structure. The quadtree is used to describe a class of hierarchical data
structures; thus it permits one to classify the orientation fields at different
scales. After some drawbacks of this approach are illustrated, one considers
a second local approach. This approach involves a local analysis using the
notions of the line-segment and orientation functions proposed in this pa-
per. The maxima of the line-segment function were used for computing the
loci of maximal structuring elements, and the orientation function was used
to obtain the angles of the line segments. These pairs of local parameters
enable us to produce a good description of the image by means of line seg-
ments. Then, a partition of the image may be computed by means of the
catchment basins associated with the watershed transform. This enables
us to realize a neighborhood analysis, using a RAG structure, in order to
merge adjacent regions of the partition according to appropriate criteria,
thus segmenting the images into orientation fields. The results based on
the algorithms presented in this paper show the good performance of the
approach. Future work will be in the direction of seeking for an optimal seg-
mentation based on lattice approach for morphological image segmentation
proposed recently by Serra [11].
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