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Introduction

The Component Tree
Related Works

What Is the Component Tree?

@ Component/Level > Inclusion Relation > Tree Structure
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Introduction

The Component Tree
Related Works

Applications

@ The component tree captures essential features of a signal
e The attributes: the volume, surface and height
@ Applications

e Image Filtering and Segmentation
[Jones, 1997, Najman & Couprie, 2006]
e Video Segmentation [Salembier et al., 1998]
e Image Registration [Mattes et al., 1999]
e Image Compression [Salembier et al., 1998]
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Introduction

The Component Tree
Related Works

Other Algorithms

Morphological Operations - [Breen & Jones, 1996]

Study of times complexity - [Mattes & Demongeot, 2000]
O(n x L) [Salembier et al., 1998]
e The fastest one for practical use
A quasi linear O(n x a(n)) - [Najman & Couprie, 2006]
o where a(10%%) ~ 4
We propose a linear time and space algorithm to compute the
component tree for 1D signals
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Ordered Set

@ Let P be a set of points
@ Let < be a binary relation on P (<C P X P), which is

e transitive ((x,y) €<, (y,2) €<= (x,2) €<), and
o trichotomous (i.e., exactly one of (x,y) €<,(y,x) e<and x =y
is true)
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Ordered Set

@ Let P be a set of points
@ Let < be a binary relation on P (<C P X P), which is

e transitive ((x,y) €<, (y,2) €<= (x,2) €<), and
o trichotomous (i.e., exactly one of (x,y) €<,(y,x) e<and x =y
is true)

@ (P,<) - (totally) ordered set

Xo | X3 | Xa | X5 | X | X7 | Xg | Xg | X0 | X1 | %12 | X3 | X4 | X45

Rk
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Predecessor and Successor on Ordered Set

@ Let (P, <) be an ordered set
@ If (x,y) €< and there is no z such that (x, z) €< and (z, y) €<

e yis the successor of x
e xis the predecessor of y
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Predecessor and Successor on Ordered Set

@ Let (P, <) be an ordered set
@ If (x,y) €< and there is no z such that (x, z) €< and (z, y) €<

e yis the successor of x
e xis the predecessor of y

‘ Xo‘ X1 X0 | X1 | %12 | X3 | X4 | X5

Xe‘ X7

Xg‘ Xg

XZ‘X3‘X4‘X5

@ x4 is the successor of x3
@ X9 is the predecessor of xjg
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Connected Set on Ordered Set

@ Let (P, <) be an ordered set

o Let X = {xg,x1,....,x,) CP
where xp, x1, ..., X, are arranged in increasing order ((P, <))

@ Ifforanyi € [1,n], x; is the successor of x;_1, then we say that
X is a connected set
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Connected Set on Ordered Set

@ Let (P, <) be an ordered set

o Let X = {xg,x1,....,x,) CP
where xp, x1, ..., X, are arranged in increasing order ((P, <))

@ Ifforanyi € [1,n], x; is the successor of x;_1, then we say that
X is a connected set

X2 X1 | X12 | Xq3 | X4 | Xi5

Xs‘xe‘x7 Xs‘xg‘xlo

Xs‘ X4
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Connected Set on Ordered Set

@ Let (P, <) be an ordered set

o Let X = {xg,x1,....,x,) CP
where xp, x1, ..., X, are arranged in increasing order ((P, <))

@ Ifforanyi € [1,n], x; is the successor of x;_1, then we say that
X is a connected set

‘ Xo‘ X1 | X2 Xs‘ Xq Xs‘ Xe‘ X7 Xs‘ Xg ‘ X0 | X1 | X12 | %13 | X14 | %15
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Starting and Ending Points

@ Let (P, <) be an ordered set
@ Let X = {x3, x4, ..., x10} C P be a connected set

X5 X1 | X2 | X13 | X4 | X5

X2‘X3‘X4

Xe‘ X7

‘XO‘X]. XS‘XQ‘XIO

‘XS‘X4

XS‘XG‘XY

Xg ‘ Xg ‘ X10
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Starting and Ending Points

@ Let (P, <) be an ordered set
@ Let X = {x3, x4, ..., x10} C P be a connected set

X2‘X3‘X4

Xe‘ X7

Xg‘ Xg

‘ Xo‘ X1 X5 X0 | X1 | X12 | X3 | X4 | Xi5

‘XS‘X4

XS‘XG‘X7

Xg‘ Xg

X10

@ x3 is the starting point of X
@ xjo is the ending point of X
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Weighted Ordered Set

@ Let (P, <) be an ordered set

@ Let ¥ (P, D) be the set composed of all mappings from P to D
(e.9., DCN)

@ Fora F e ¥, (P,<,F)is called a weighted ordered set
(WOS)

@ For a point p € P, F(p) is called the weight (or level) of p
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Weighted Ordered Set

@ Let (P, <) be an ordered set

@ Let ¥ (P, D) be the set composed of all mappings from P to D
(e.9., DCN)

@ Fora F e ¥, (P,<,F)is called a weighted ordered set
(WOS)

@ For a point p € P, F(p) is called the weight (or level) of p

‘Xo‘ Xy | X2 | X3 | X4 | X5 | Xg | X7 | Xg | Xo | X0 | X1 | X2 | X43 | X4 | X5

o 1 202 o o2 4‘54‘5‘4

@ F(x7) = 2 is the weight/level of x;
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Upper-Weighted Set / The Connected Component

@ Upper-weighted set F, = {p € P|F(p) > h}

@ A connected set X of an upper-weighted set which is
maximal (i.e., X =Y whenever X C Y C Pand Y is
connected) is called a connected component
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Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Upper-Weighted Set / The Connected Component

@ Upper-weighted set F, = {p € P|F(p) > h}

@ A connected set X of an upper-weighted set which is
maximal (i.e., X =Y whenever X C Y C Pand Y is
connected) is called a connected component
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Proper Component

@ Let (P, <, F)be aWOS, and s C P a connected component
@ f(s) = max{h|s is a (h-weighted) connected component of F}
@ Let h = f(s), we say that s is a (h-weighted)

proper component of F
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Component Tree

Let (P, <, F) be a WOS
Let C(F) be the set of all components of F
Let x and y be distinct elements of C(F)

o xis the parent of y and y is the child of x, if y C x and there is
no other z € C(F) suchthatyczc x

This parent-children relationship, C(F) forms a directed tree
named component tree of F

Any element/component of C(F) is called a node

The node that has no parent, is called the root of the
component tree
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

The Component Tree
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Algorithm Description and Applications

@ For sake of algorithm description
® cpy = [h,n] - the (n + 1)-th h-weighted component of C(F)
@ Component Mapping - Application

e Link between the WOS (Signal) and the Component Tree
e M(p) = [h,n],where h=F(p)and p € ¢,
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Basic Notions for Ordered Set
Basic Notions for Weighted Ordered Set
Component Tree

Basic Concepts

Attributes

An Example

: o (oo
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@ Level 1
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Basic Notions for Ordered Set

Basic Notions for Weighted Ordered Set
Component Tree

Attributes

Basic Concepts

Attributes

el il [ ekl

Height Surface Volume
ht(chn) = max{F(x) — hp},
XECpp
s(cpn) = cardinality(cpp),
viena) = L (F() = hy)
XEChp

where h, is the weight/level of the parent of ¢,
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Our Algorithm

@ We propose a linear time and space algorithm to compute the
component tree for 1D signals
@ No pre-processing is required
e For instance, extracting local maxima of the signal as done in
[Salembier et al., 1998]

@ Use of a stack to maintain the relation inclusion

David Menotti et al. 1D Component Tree in Linear Time and Space



Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Our Algorithm

@ Why is it linear?
e In an 1D space, components can be determined by their limits
(the starting and ending points)
e The starting and ending points of all components can be
detected by processing the signal with a single scan

ok N W A O

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

@ We do not need to know the exact position of
the components in the WOS

@ We need to know the components hierarchy
(inclusion relation)
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Our Algorithm Roughly Works as

@ To Build the Component Tree and Component Mapping

@ For each point in the WOS, one checks its status regarding to
its successor

@ If a component indicated by a point is found to have
descendants it is stored into a stack

@ The stack plays a fundamental role to maintain the hierarchy
of the component tree

@ The parent-children relationships are created as edges
between parent and child components

David Menotti et al. 1D Component Tree in Linear Time and Space



Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Summary of the Algorithm

@ Initialization - The first point of the WOS
@ Processing the n — 1 points of the WOS
e The point p ([ps, px]) is analyzed based on

e The point r ([ps, pn]), which is the predecessor of p, and
e The point g ([px, pn]), which is the stack head

I'h Ih

‘fh ‘fn‘Pn‘ ph‘ ‘qh ‘qh Ph Pn

@ Finishing - Until the Stack Is Empty
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

The Structures

@ e
Y

o P N W »

0 1 2 3 4 5 6 7

Label Component
WOS Tree
[3,0]
34 h | [10]
0|0 n [0,0]
I
Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Xo - Starting Point
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&
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Component
Tree
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Our Linear Time and Space Algorithm

Xo - Starting Point
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Tree
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Xo - Starting Point

o P N W »
- [e]ee]e]

Label Component
Tree

Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

x1 - pr > r, (New Component)

o B N W »
- [e]ee]e]

Label Component
Tree

Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

x1 - pr > r, (New Component)

o P N W »
o] [e]e]

Label Component
Tree
[0,0]
Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

x1 - pr > r, (New Component)

Component
Tree

Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

X2 - pr < r, (New Component) and p;, > g, (Stack)

o P N W »
o] [e]e]

Label Component
Tree
h
n [0.0]
Component Mapping Stack
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Description

An lllustration
Implementation
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Our Linear Time and Space Algorithm

X2 - pr < r, (New Component) and p;, > g, (Stack)

Component
Tree

Component Mapping Stack
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Our Linear Time and Space Algorithm

X2 - pr < r, (New Component) and p;, > g, (Stack)

Component
Tree

Component Mapping Stack
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Description

An lllustration
Implementation

Our Linear Time and Space Algorithm

Complexity Analysis

Component
Tree

Stack

Component Mapping
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Description

An lllustration
Implementation

Our Linear Time and Space Algorithm

Complexity Analysis
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Description

An lllustration
Implementation

Our Linear Time and Space Algorithm
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

X4 - pr > 1, (New Component)

o P N W »
e[ o]

-

ab

[0}

Component
Tree

h (1.0

n [0.0]
I

Component Mapping Stack
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An lllustration
Implementation
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Our Linear Time and Space Algorithm

X4 - pr > 1, (New Component)

o P N W »

Label Component
Tree
[3,0]
h (1.0
n [0.0]
Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

X4 - pr > 1, (New Component)
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Description

An lllustration
Implementation
Complexity Analysis

X5 - pn < r;, (Ending Point) and p;, < g, (Stack)

Our Linear Time and Space Algorithm

o P N W b

-

abel Component
Tree

[3.0]
3| 4 %% h [1,0]
0|0 %% n [0,0]

Component Mapping Stack
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Our Linear Time and Space Algorithm

X5 - pn < r;, (Ending Point) and p;, < g, (Stack)

Component
Tree

[3.0]
3| 4 %% h [1,0]
0|0 %% n [0,0]

I
Component Mapping Stack
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Description

An lllustration
Implementation
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Our Linear Time and Space Algorithm

X5 - pn < r;, (Ending Point) and p;, < g, (Stack)

o P N W b

-

ab

3|4 %% h [1,0]
0|0 %% n [0,0]

Component Mapping Stack
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Component
Tree
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

X5 - pn < r;, (Ending Point) and p;, > ¢, (Stack)

o P N W b

-

ab

3|4 %% h [1,0]
0|0 %% n [0,0]

Component Mapping Stack

[0}

Component
Tree
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An lllustration
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Our Linear Time and Space Algorithm

X5 - pn < r;, (Ending Point) and p;, > ¢, (Stack)

Component
Tree

h (1.0

n [0.0]
I

Component Mapping Stack
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Our Linear Time and Space Algorithm

X5 - pn < r;, (Ending Point) and p;, > ¢, (Stack)

4 [1] (1s0)
3 |1 )
2 2| (e ()
- an (ua)
52 0 [ (o)
0 1 2 3 4 5 6 7 Label Component
WOS Tree
0|o % n [0,0]
Component Mapping Stack
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

X6 - pn < 1, (Ending Point) and p;, = g, (Stack)

o P N W »

0 1 2 3 4 5 6 7 Label Component
WOS Tree
3|4 h [1,0]
0|o % n [0,0]
I
Component Mapping Stack
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X6 - pn < 1, (Ending Point) and p;, = g, (Stack)

Component
Tree

h (1.0

n [0.0]
I

Component Mapping Stack
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X6 - pn < 1, (Ending Point) and p;, = g, (Stack)

o P N W »

Label Component
Tree

Component Mapping Stack

David Menotti et al. 1D Component Tree in Linear Time and Space



Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

x7 - pp = 1, (At the same level)

o P N W »

Label Component
Tree

Component Mapping Stack
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x7 - pp = 1, (At the same level)
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x7 - pp = 1, (At the same level)
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0 1 2 3 4 5 6 7 Label Component
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

Finishing - Until the Stack Is Empty
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Finishing - Until the Stack Is Empty
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Our Linear Time and Space Algorithm

Finishing - Until the Stack Is Empty
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Description

An lllustration
Implementation
Complexity Analysis

Our Linear Time and Space Algorithm

A Possible Implementation

Data: (P, <, F) - weighted ordered set with n points
Result: CT - component tree structure
Result: M - a map from P to [Auin...Fimax, 0..n — 1]
// Starting Point - Initialization
fori—1;i<n;i++do// Processing
if (py > rp) then StackPush(CP, [ry, r,]) ;
else if (p, = r,) then // code
else if (p; < ry) then
while (! (CP))do
[gn qn] < (CP);
if (pi > qi) then break;
StackPop(CP) ;
if ( (CP) and (py < rp)) or (py > qn) then // code
else if (p; = g,) then StackPop(CP);

while (! (CP)) do StackPop(CP);// Finishing
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Our Linear Time and Space Algorithm

Time and Space Complexity

@ Space - O(max(m, n))
e n - number of points in the WOS
@ the maximum stack size
e m - number of levels/weight, i.e., h,ux — Apin + 1 (€.9., L = 256)
@ a vector for the current label at each level &
@ Time O(max(m, n))
o Initialization (label vector) O(m)
e Processing n — 1 points, i.e., O(n — 1)
@ The component pointed by a point is inserted into the stack only
once (worst case)

e Finalizing n — 1 points (worst case), i.e., O(n — 1)
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Segmentation by Multiple-threshold Selection

@ Histogram Clustering/Classification
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Segmentation by Multiple-threshold Selection

@ Assumption - homogeneous regions present in the image can
be detected in the histogram of the image
@ Five main steps
@ Histogram Computation
© Computation of the Component Tree
© Identification of Saliencies
[Najman & Couprie, 2006, Algorithm 3]
© Histogram Segmentation
@ Image Segmentation
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1) Histogram Computation

Original Image .
VRN 11 | 13| 14 Computed 1D Histogram

CRRCRRVA 11| 12| 14
AN 10 | 12| 12| 13
11111)10| 7
1211217 | 8
9
3

o B N W > O
o B N W M O

13|13

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8| 8
919
919
4 5

0o 1 2

6 x 6 = 36 pixels and 2* = 16 levels
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2) Computation of the Component Tree

Original
Histogram

ok N W A O

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The Component
Tree

o r N W A~ G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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3) Identification of Saliencies

The Component
Tree

o P N W A~ O

Saliencies

o r N W A~ G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

David Menotti et al. 1D Component Tree in Linear Time and Space



The method
An Example
Application - Multithresholding Tests on Real Images

4) Histogram Segmentation - Watershed 1/3

5

4

3

Saliencies 2
1
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 sal | By
4 [4.0 [41]
3 [3,0]
2 [20] 21 Markers
1 [1,0]
0] [00] |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4) Histogram Segmentation - Watershed 2/3

50| |

[4.0]

Markers 21

\ [0,0]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minima

o r N W A~ G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4) Histogram Segmentation - Watershed 3/3

5
4
3
2
1
0

Minima

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segmented
Inverse Histogram

o r N W A~ G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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5) Image Segmentation 1/2

Segmented
Inverse Histogram

ok, N W A oG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Segmented
Original Histogram

o r N W b O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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5) Image Segmentation 2/2

Segmented
Original Histogram

o r N W A O

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 [RERECEIECE 11 | 13 | 14 5 BERRCRRCE 12 | 12 | 12
4 BERECREVA 11 | 12 | 14 4 [BEHECRCE 12 | 12 | 12
3 AN 10 (12| 12 | 13 Input X OUtpUt 3 BERREl 12 112 12| 12
2/11)11/10| 7 | 8 | 8 Ima ge 211211211218 | 8 | 8
1112/12/ 7|8 |9 |9 1/12/12/8 /8|8 | 8
0/13/13/8 9|9 9 012|121/ 8 | 8|8 8

0 1 2 3 4 5 0 1 2 3 4 5
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Input / Output

5 nn 11]13] 14 12]12
BEE | 2|« 12|12
3 B 10]12] 12] 13 12] 12
2lululwol7lele 8|8
11212071899 8|8
ol13|13f8lalolo 8|8

01 2 3 4 5 4 5
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Image Lena - 5 regions
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Image House - 5 regions

David Menotti et al. 1D Component Tree in Linear Time and Space



The method
An Example
Application - Multithresholding Tests on Real Images

Image GoldHill - 5 regions
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PSNR for test images

Our Otsu
Images Kapur  Khotanzad Method Optimal
lena 25.3574 27.0722 27.5316 28.2001
goldhill 21.8978 224819 21.6181 27.0583
fruits 20.7996  22.5991 19.6554 26.3987
barbara 25.4540 26.1957 26.4002 27.1348
cameraman 19.3428 25.5831 25.2907 27.8837
house 20.1270 28.2576  28.1030 29.3351
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Conclusion

@ A (easy to implement) time and space linear complexity
algorithm to compute the Component Tree for 1D signals
@ A new method for multithresholding gray-level images
e Hypothesis - objects that appear on an image can be
represented by salient classes present in a histogram of the
image
e Salient classes were modelled as the most significative
components (volume attribute)
e Experiments showed that our method is competitive to
classical ones when the hypothesis hold
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Future Work

@ Methodology to select automatically the number of the most
significative components present in the component tree

e yielding an automatic multithresholding algorithm with respect
to the number of classes in the output image
@ Improve the way to select the most significative components
@ Extend our method to segment color images
[Geraud et al., 2001]
@ Application to

e Image Contrast Enhancement through Histogram Equalization
e Automatic Gray-Level Range Selection on Medical Images
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Questions

That'’s all folks!
Thanks for your attention!
Questions?
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