Geometric and Topological Multi-Resolution of n-Dimensional Solids

Luiz Velho

IMPA - Instituto de Matematica Pura e Aplicada

Acknowledgements

- PhD. Thesis Work
 - Esdras Medeiros Filho (IMPA)
- Co-Supervision
 - Helio Lopes (PUC-Rio)
- Collaboration
 - Thomas Lewiner (PUC-Rio)

Outline

- Context and Motivation
- Mathematical Background
- Sampling Solid Objects
- Geometric / Topological Multiresolution
- Adaptive Multi-Triangulation Structure
- Examples and Applications
- Future Work

Motivation

Why Solids?

Most Objects are NOT Hollow...

Matter Inside!

[Kopf et al, 2007]

An Empty Glass is Full of Air...

Inside Matters ;-)

[C-SAFE, 2005]

3D Applications

- Modeling
 - CSG
- Animation
 - Deformation
- Simulation
 - Fluids
- Scientific Visualization

[Romeiro et al, 2005]

[de Goes et al, 2007]

[de Goes et al, 2007]

2D Applications

- Image Analysis
 - Segmentation

[Felzenszwalb et al, 2004]

- Image Compression
 - Adaptive Triangulation

- Medical Imaging
 - Contouring

[Lewiner et al, 2006]

Related Work

- Geometric Multiresolution
 - Multi-Triangulations
 - Adaptive Meshes
 - Etc...

[Marroquim et al, 2005]

- Topology Control
 - Simplification
 - Filtration / Persistence
 - Etc..

[Zomorodian et al, 2005]

What is Missing?

<u>Unified Geometric – Topological Framework</u>

- For Example:
 - Simplest Topology / Highest Resolution
 - Only Holes with Size Greater than X
 - Fine Boundary and Coarse Interior

[Romeiro et al, 2005]

* Why it is difficult?

- Continuous Geometry x Discrete Topology
- Representation / Data Structure
- Adaptation, Computation, etc ...

Game Plan

Characteristic Function

$$\chi(S)$$

Multiresolution Hierachy

$$M_{gt}(S)$$

Adaptation

$$A(f, M_{gt}(S))$$

* Obs: Attributes!

Relations with M.M.

Morphological Scale-Spaces

- Mathematical Morphology
 - Dilation / Erosion
 - Binary Image (Characteristic Function)
 - * Discrete Representation
- Level Sets
 - Diffusion
 - Interface Curve (Boundary)
 - * Continuous Front Evolution

Our Framework

- Key Ideas
 - Solid Topology + Stochastic Point Sampling
 - Geometric / Topological Operators
 - Variable-Resolution Structure
- Advantages
 - Integrate Geometry and Attributes
 - Natural Notion of Scale
 - General Adaptation

Contributions

- Solid Poisson-Disk Sampling
 - Scale Space for Characteristic Function
- α-Filtration
 - Multiresolution of α -Solids
- G/T Multi-Triangulation
 - Adaptation with Stellar and Handle Operators

Stochastic Sampling/Reconstruction

Poisson-Disk Distribution

- Random Uniform Sampling
 - Irregular Pattern
 - Points r-Distant, at least

Combined Low-Pass Filter

Sampling Solid Regions

- * Poisson-Disk Sampling is only Defined for \mathbb{R}^n
- Restriction to $\chi(S)$ does not follow geometry
- Must take into account $\partial(S)$

Algorithm (1)

- Two-Steps
 - 1. Sample the Boundary
 - 2. Sample the Interior minus *r*-Tubular Neighborhood
- * Stratified Sampling
 - Feature Sensitive
- Implementation
 - Dart Throwing
 - Quad-Tree Acceleration

Multiresolution Sampling Spaces

- Nested Poisson-Disk Scale Spaces
 - Disk Radius $r=2^j$
- Multiresolution Hierarchy $\{P_j\}, \quad j \in \mathbb{Z}$

$$\{0\}\cdots\subset P_1\subset P_0\subset P_{-1}\cdots L^2(\mathbb{R})$$

Multiresolution Solid Sampling

• Apply Algorithm (1) for $r=2^j$

- Tagged Samples:
 - Boundary / Interior
 - Resolution Level

Structuring and Reconstruction

Piecewise-Linear Approximation

- α-Solids
 (α-shape + Regularization)
- * Subset of Delaunay Triangulation

circumradius < α

Looking for the Right Operators...

- Operations on Simplicial Complexes
 - Building
 - Change Resolution
 - Change Topology
- Types of Operators
 - Topological
 - Handlebody Theory
 - Geometric
 - Stellar Theory

19

Handle Operators

Change Topology

Connected Components

Boundary

Stellar Operators

Change Combinatorial Structure

Resolution

Structure

 $\sqrt{3}$

Integrated Framework

Combinatorial Manifold Operators

- Handle
- Stellar
- Properties
 - Atomic
 - Minimal Set
 - Consistent (by construction)
- * Effective Abstractions

Reconstruction from α-Sampling

Advancing Front Triangulation

Ball-Pivoting Algorithm (2)

```
while (points to process)

while (e=candidate edge)

p = ball\_pivot e

create \ \sigma_p

glue \ \sigma_p

if (t=find seed)

create \ \sigma_t
```


* Obs: Roll lpha-Ball in $\,\mathbb{R}^{n+1}$

Topological Guarantees

Theorem (Amenta, 1999):
 "If P_r is an r-Sample for r < k.LFS(S), then the crust is homeomorphic to S."

* Applies to α -Solids, (α = r)

Quality Guarantees

• Theorem (Medeiros et al, 2007): "Let P_{α} be an α -Sampling of S, then the aspect ratio of $C_{\alpha}(P_{\alpha})$ is bounded by $4\sqrt{3}$ ".

Worst case:

$$a = b = r = \alpha$$
$$c = \alpha\sqrt{3}$$

Sampling Independence

Different α-Samplings

Aspect Ratio Distribution

α-Filtration

- Defining the Multiresolution of Solids
 - Ball-Pivoting at Each Level...
- How to Move <u>Gradually</u> Between Levels?
 - Change radius: $2^{j} < \alpha < 2^{j+1}$
 - Apply Stellar and Handle Operators
 - * $g(\alpha)$ defines an Order for Samples
- Construction Strategies:
 - Refinement
 - Simplification

Top-Down Construction

Point Insertion

 Algorithm (3) while (samples to insert) if (inside) split σ_{p} else create σ_{p} glue σ_p while (not Delaunay) switch (condition) case 1: flip e case 2: destroy σ_t

Bottom-Up Construction

Point Removal

Algorithm (4)

Resolution Levels

- Coarse Grain
 - Global

30

Intra Levels

- Fine Grain
 - Local

Properties

• Theorem (Uniqueness): "Given \mathbf{S}_{α} and \mathbf{g} , the α -Filtration generates a <u>unique family</u> of triangulations \mathbf{T}_{α} "

Theorem (Symmetry):
 "In α-Filtration, the refinement sequence is the inverse of the simplification sequence"

insert p_1 split t_1 flip e_1 insert p_2 create t_2 glue t_2 insert p_n split t_n

G/T Multi-Triangulation

- Operators (stellar / handle) make only local changes (geometry / topology)
- Changes are <u>weakly</u> interdependent!
- Multi-Triangulation Structure
 - Encodes
 - Hierarchy
 - Dependencies
- Representation for <u>All</u> Possible Meshes!

Geometric Hierarchy

- Lattice
 - Interior Decomposition

34

Topological Hierarchy

- Graph
 - Boundaries

Dependencies

- Geometric
 - Incident Faces at Same Level

- Topological
 - All Edges must be <u>Interior</u>

Data Structure

• Mesh (half-edge)

vertex

Multi-triangulation

face-vertex

edge-edge

int-bd edge

Adaptation

Spatially Variant Function

$$f:D\to\mathbb{R}^+$$

- Domains
 - Geometric
 - Boundary (Shape)
 - Interior (Attributes)
 - Structure
 - Components (Topology)
 - Combinatory (Quality)

Covering

- Elements Partition the Mesh in Regions
 - simp.Face \leftrightarrow ref.Vertex
 - int.Edge ↔ int.Edge
 - int.Edge ↔ bd.Edge

Priority Queues

Sort Regions based on Adaptation Function

simp-faces	int-edges	int-edges
ref-vertices	int-edges	bd-edges

Maintaining the Queues

Algorithm (5)

```
while (top_val > target)

pop queue

apply transition

update elements
```

- Same Algorithm for All Tasks!
 - Refinement / Simplification / Improvement
- Transition includes Dependencies
- Update re-evaluates Changes

Dynamic Adaptation

Algorithm (6)

```
T_0 = base_triangulation initialize priority_queues while (adapting) read parameters evaluate f on T_k simplify T_k refine T_k Algorithm (5) improve T_k
```

* Obs: Conservative!

Applications

- Adaptation Criteria
 - Single Criteria(defaults for others)
 - Multiple Criteria (must solve conflicts)
- Examples
 - Attribute Resolution
 - Topology Granularity
 - Geometry Detail

Attribute Example

Area of Triangles

Topological Example

Size of Holes

Final Remarks

- Future Work
 - Applications
 - Extend to 3D
- Conclusions
 - Theoretical Results
 - Computationally Efficient
 - Effective in Practice

45

Thanks!