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/! \) Two Key Considerations

What is the spatial scale of the feature?

What is the temporal scale of the process?
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>100-m scale data
acquired over decades
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- e Shorelines, 1930 - 2002










A. 30m USGS DEM B. 10m AverStar DEM C. 0.5m Lidar DE



Imagery Spatial Resolutions®

T

79m 1.1km

QuickBird, Landsat TM, Landsat MSS AVHRR
IKONOS ETM+

*Simulated

Slide courtesy of Amy Nuenschwander, Univ of Texas, Center for Space Research



TEXAS SHORELINE DEVELOPMENT
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Lj Goal

Determine how the shoreline is likely to change
during the next 60 to 100 years.

Compute average annual rate of shoreline change by linear
regression of select historical shoreline positions.

Qualitative evaluation of alongshore trend of the standard
errors of linear regressions at each transect.

Exclude earlier shorelines from calculation based on above
evaluation and knowledge of sediment-budget altering
engineering works.
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Shoreline Change Analysis

Mapping past and current shorelines
— Early maps

— Aerial photography

— Ground kinematic GPS

— Airborne lidar — shoreline plus beach and dune
topographic mapping

Calculating “average annual rate of change” and
projecting future shoreline position

— GIS-based Shoreline Change and Projection
Program (SSAPP)

Beach profile ground surveys
Data availability and public awareness

— Online reports
— Web-based GIS using ArcIMS software



Early Shoreline Surveys

Planetable surveying in the Philippines

Photos courtesy of Dave Doyle, NGS



Data Sources
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Sand Trapped by Jetty, Southwest end of Bolivar Peninsula (08/07/98)




Data Sources

1930°s to 1990’s - Vertical Aerial Photographs
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Shoreline Interpretation
WetlDry Llne
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Shoreline Interpretation
Shoreline and Vegetation Line




Data Sources
1990’s — Kinematic GPS Surveys




¢ Vi

Mirror sweeps laser beam
across the ground.

Range to target is
determined by measuring
time interval between
outgoing and return of
reflected laser pulse.

Aircraft position is
determined using GPS
phase differencing
techniques.

Pointing direction of laser
determined with Inertial
Measuring Unit (IMU) and

recording of mirror position.

Data streams recorded and
synchronized for post
processing.

v UT’s Airborne Topographic Lidar
(Optech Inc., ALTM 1225)

Q@ GPS sateuitg% 4@7

Aircraft GPS

ALTM lase
and IMU

GPS ground

> reference station
%light direction




Study area

50 1(|)0 mi

Texas .
100 km

oTOo

Galveston
Bay

e Beach profiles

@® GPS base station locations
with 50-km radius circles

Matagorda Bay SABP—U.S. Coast Guard Station, Sabine Pass

PTBO—Port Bolivar Tide Gauge
USCG—U.S. Coast Guard Station, Freeport
MATA—Matagorda Jetty Park, USACE mark

Corpus Christi Bay

Q)
Laguna Madre _\§’ PTOC—Port O'Connor Tide Gauge
%QJ PTAR—Port Aransas
Mouth of ‘16 QAIL—Padre Island National Seashore

Rio Grande PTMN—Port Mansfield Tide Gauge

SPAD—U.S. Coast Guard Station,
South Padre Island

Guyr




Lidar Instrument in Cessna 206
(Optech ALTM 1225)







Kinematic survey
data points

—— (Calibration aircraft
trajectory
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1-m grid
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* Ellipsoidal heights converted to orthometric heights
(NAVD 88) using GEOID99 gravity model.

°* Local mean sea level (MSL) correction applied.

Gibeaut_CCC_Jan31_2002 QAd496
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Galveston Beach

Wet/Dry Line
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,lj Shoreline Change Analysis

* Mapping shorelines
— Aerial photography
— Ground kinematic GPS

— Airborne lidar — shoreline plus beach and dune
topographic mapping

* Calculating “average annual rate of change” and
projecting future shoreline position

— GIS-based Shoreline Change and Projection
Program (SSAPP)

°* Beach profile ground surveys
° Data availability and public awareness
— Online reports
— Web-based GIS using ArcIMS software



Shoreline Change and
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Shoreline Change Rate
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Projected Shoreline
Galveston Island
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f_g Shoreline Change Analysis

* Mapping shorelines
— Aerial photography
— Ground kinematic GPS

— Airborne lidar — shoreline plus beach and dune
topographic mapping

* Calculating “average annual rate of change” and
projecting future shoreline position

— GIS-based Shoreline Shape and Projection Program
(SSAPP)

* Beach profile ground surveys
° Data availability and public awareness
— Online reports
— Web-based GIS using ArcIMS software
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,lj Shoreline Change Analysis

* Mapping shorelines
— Aerial photography
— Ground kinematic GPS

— Airborne lidar — shoreline plus beach and dune
topographic mapping

* Calculating “average annual rate of change” and
projecting future shoreline position

— GIS-based Shoreline Shape and Projection Program
(SSAPP)

°* Beach profile ground surveys
* Data availability and public awareness
— Online reports

— Web-based GIS using ArcIMS software



'; Shoreline Change Project - Microsoft Internet Explorer
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The Texas Shoreline Change Project
Goals Introduction

Objectives and Methods In June 1999, Governaor Bush signed into law the Coastal Erosion Planning and
Response Act (CEFPRA). This act provides funds for coastal erosion projects. It
authorizes the Texas General Land Office (GLO) to implement a
comprehensive coastal erosion response program that can include designing,
funding, building, and maintaining erosion projects. The GLO is named in the act
as the entity that will monitar shareline change rates with the assistance of the
Bureau of Economic Geology and local governments. The Texas Shoreline
Change Project is addressing reguirements of the CEFRA regarding (1) the
identification of "critical coastal erosion areas”, (2] the maonitaring of historical
Texas Historical Shorelines Inventory  |shareline erosion rates, (3) making data accessible on the Internet, and (4)
increasing public awareness of coastal erosion issues. This is an active web site.
Shoreline Types Users should check periodically for additional data and reports. Send comments
to Jim Gibeaut at jim. gibeaut@bey. utexas edu.

Geographic Information System (GIS)
Coastal maps and photographs with
shorelines, rates of shoreline change
and beach profiles

Reports : i :
The Texas Shoreline Change Project is parially funded by the Texas Coastal

Managerment Program and the National Oceanic and Atmospheric Administration.
Download Shoreline Data g g P
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Ground-based Lidar Mapping
(Opetch Inc., ILRIS Instrument)

Ground-based lidar scanners are capable of capturing
data at a rate of 2,000 points per second. Laser point
spacing is between 2 and 10 centimeters with individual
scans covering 10’s to 100’s of meters. Depending on
the distance between the scanner and the target and the
target rugosity, 100’s of meters to kilometer can be
scanned and merged in one day.
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Grond-based idar Scan







Merged Airborne and Ground-Based Lidar,
La Jolla, California




0 Vi Last Slide

We need to start or continue to
build a data set of adequate
spatial and temporal resolution.

www.beg.utexas.edu/coastal/coastal01.htm
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Problem Solving Cycle

Al

Engineering

Technology Applications

Science



Spatial Resolution of
Remote Sensors

BN ASA CAMS

SPOT Pan - 10m

Spatial Resolutions of Selected Remote Senszors

From Jensen and Jackson, University of South Carolina



Space - Based Lidar
GLAS

Geoscience Laser Altimeter System

D Qoo | Carried on the Ice, Cloud
Enmited ) B T and land Elevation Satellite

1064 and

e S A (ICESat)

Pulses "

70 - m diameter spot size
and 175 - m spacing
between spots

Launched January 2003

" Photon Scatter
/| due to Clouds
] Aerosols

| www.csr.utexas.edu/glas/

Surface

\* _~ Photon
?%\i"\ Scatter

Graphic by Deborah MclLean




- 2\ Ground-based Lidar Mapping
’ Y Merged ILRIS

(high intensity)
and ALSM point
clouds low
intensity), La Jolla,
California

Ground-based lidar scanners are capable of capturing
data at a rate of 2,000 points per second. Laser point
spacing is between 2 and 10 centimeters with individual
scans covering 10’s to 100’s of meters. Depending on
the distance between the scanner and the target and the
target rugosity, 100’s of meters to kilometer can be
scanned and merged in one day.

pef ey

Jerome Bellian on Seal Point, north
Scripps. Upper Eocene Scripps

La Jolla sea cliff exposures of
turbidite channel and canyon fill.

Formation is well exposed along the Merged ILRIS and ALSM point
beach cliffs. clouds
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Air — Based
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Geomorphic/Engineering Change

Bolivar Peninsula, Texas
1,000 ft

—

LA Rollover Pass Gulf of Mexico
1998
Pre-
Frances

1998 e > F xR A L T S ] i oagnd W,
Post-
Frances

2000
Geotube
installed

2001
July

Gibeaut_CCC_Jan31_2002 QAd496
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s \) T'he Lidar Advantage

——

Historically, coastal scientists and engineers
conducted regional studies using sparse data or
local studies using detailed data. Lidar makes it
possible to acquire detailed, accurate topographic
data over a broad region, allowing geomorphic
analysis across the continuum of the spatial scale.



DEM, 30 X 30 m

From National Elevation Data




Lidar-Derived
DEM,1 X1 m
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astal Studies Group
Mapping the Shoreline and

Somparing Beach
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Shaded Relief Topographlc Lla‘ar Image
Galveston Tsland Texas
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Color IR Photography Draped
On Lidar DEM




9.5 ft. Storm Surge
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Merged ILRIS (high intensity)
and ALSM point clouds low
intensity), La Jolla, California

Ground-baesd lidar scanners are capable of capturing data
at a rate of 2,000 points per second. Laser point spacing is
between 2 and 10 cms with individual scans covering 10s to
100s of meters outcrop exposure. Depending on the distance
between the scanner and the outcrop and the outcrop
rugosity, 100s of meters to kilometers of outcrop can be
scanned and merged in one day.

La Jolla sea cliff exposures of turbidite “‘
Jerome Bellian on Seal Point, north [ channel and canyon fill. Merged ILRIS
Scripps. Upper Eocene Scripps Formation | and ALSM point clouds.

is well exposed along the beach cliffs. ==
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Habitat Change Since 1950’s
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Estuarine marsh
Estuarine marsh/flat
Aquatic beds

Tidal flats/beach
Scrub/shrub
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