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1. Introduction  
New GIS technologies have been employed to support public policies and actions towards 
environmental conservation, aiming to preserve biodiversity and mitigate the undesirable 
side-effects of human activities. The spatio-temporal simulation of systems dynamics is an 
example of such new technologies and helps scientists and decision-makers to understand 
the driving forces lying behind processes of change in environmental systems. In assessing 
how systems evolve, it is possible to figure out different scenarios, given by diverse socio-
economical, political and environmental conditions (Soares-Filho et al., 2001), and hence, 
anticipate the occurrence of certain events, like land cover and land use change, including 
deforestation. According to Openshaw (2000), computer simulation models provide 
qualitative and quantitative information on complex natural phenomena. In this sense, 
spatial dynamic models may be defined as mathematical representations of real-world 
processes or phenomena, in which the state of a given place on the Earth surface changes in 
response to changes in its driving forces (Burrough, 1998). 
Spatial dynamic models are commonly founded on the paradigm of cellular automata (CA). 
Wolfram (1983) defines CA as “[…] mathematical idealisations of physical systems in which 
space and time are discrete, and physical quantities take on a finite set of discrete values. A 
cellular automaton consists of a regular uniform lattice (or ‘array’), usually infinite in extent, 
with a discrete variable at each site (‘cell’). […] A cellular automaton evolves in discrete time 
steps, with the value of the variable at the site being affected by the values of variables at 
sites in its ‘neighbourhood’ on the previous time step. The neighbourhood of a site is 
typically taken to be the site itself and all immediately adjacent sites. The variables at each 
site are updated simultaneously (‘synchronously’), based on the values of the variables in 
their neighbourhood at the preceding time step, and according to a definite set of ‘local 
rules’.” (Wolfram, 1983, p. 603). 
This work applies a CA model – Dinamica EGO – to simulate deforestation processes in a 
region called São Félix do Xingu, located in east-central Amazon. EGO consists in an 
environment that embodies neighbourhood-based transition algorithms and spatial 
feedback approaches in a stochastic multi-step simulation framework. Biophysical variables 
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drove the simulation model of the present work, and statistical validation tests were then 
conducted for the generated simulations (from 1997 to 2000), by means of multiple 
resolution fitting methods. This modelling experiment demonstrated the suitability of the 
adopted model to simulate processes of forest conversion, unravelling the relationships 
between site attributes and deforestation in the area under analysis. 

2. Study area 
The region of São Félix do Xingu is regarded as one of the current three main occupation 
fronts in the Brazilian Amazon. Recent official data indicate that São Félix do Xingu was the 
Amazonian municipality owning the highest deforestation rates at the end of last decade 
and the beginning of this decade. According to Becker (2005), São Félix do Xingu and other 
occupation fronts represent the new inland Amazonian frontiers, namely mobile frontiers, 
which differ from the frontiers observed in the early stages of human occupation in this 
region  in the 1970s with regard to three aspects: i) the prevailing migration is intra-regional, 
and mostly rural-urban; ii) the private capital plays a crucial role in such fronts, which 
present a great diversity of local actors, mainly loggers, cattle raisers, and grains producers, 
and iii) these fronts own greater accessibility and connectivity, relying on a denser (air, 
terrestrial, and fluvial) transportation network as compared to the one available in the 1970s. 
Recent data on deforestation show that São Félix do Xingu was also the Amazonian 
municipality presenting the greatest absolute values of deforested areas between the years 
2000 and 2006. Out of the total deforested area assessed in the Brazilian Legal Amazon in the 
years 2005 (665,854 km2) and 2006 (679,899km2), São Félix do Xingu alone accounted for 
13,626 km2 (2.0%) and 14,496 km2 (2.1%), respectively (Brazilian National Institute for Space 
Research or Instituto Nacional de Pesquisas Espaciais [INPE], 2006). Part of the occupation 
history in this region can be ascribed to natural rubber and mahogany exploitation, mining, 
cattle raising, and huge private and public rural settlements projects, among which cattle 
raising is the chief economic activity (Escada et al., 2007). 
The study area comprises most of the São Félix do Xingu municipality and its surroundings, 
located in the State of Pará (PA), east-central Amazon, north of Brazil. The Xingu river, one 
of the major tributaries of the Amazon river, crosses Pará in the longitudinal direction (Fig. 
1). The data used in this research are set in the Polyconic Projection System, Datum SAD-69, 
between longitude coordinates 52° 30’ and 51° 00’W, and latitude coordinates 05° 52’ and 
07° 07’S. Besides the municipality of São Félix do Xingu, the study area also comprises the 
municipal seats of Ourilândia do Norte and Tucumã, and part of the municipalities of Marabá, 
Parauapebas, and Água Azul do Norte. Within São Félix do Xingu, the study area contains the 
following villages and districts: Vila Taboca, Nereu, Tancredo Neves, Carapanã, Minerasul, and 
Ladeira Vermelha. Part of the Indian reserves Apyterewa, Kayapó, and Xinkrin do Cateté are also 
included in the study area. 
The portion of São Félix do Xingu embraced by the study area presents already a 
consolidated occupation. In the 1980s, this area sheltered pioneer fronts, marked by intense 
land occupation processes concentrated along the PA-279 road, which connects Tucumã to 
São Félix do Xingu (Shimink & Wood, 1992; Research Network for Environmental Modelling 
in the Amazon [GEOMA], 2004). This region is currently characterised by the presence of 
large farms, landed property concentration, and very often, illegal practices of land 
ownership (Escada et al., 2005).  
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Fig. 1. Location of study area: São Félix do Xingu municipality and surroundings 

Although this region has cattle raising as the leading economic activity, ore exploitation 
(mainly cassiterite and gold) has had an important role in its economy and regional spatial 
structure since the 1970s. Initially, ore was transported along the Xingu river and its 
tributaries, and also through small aircrafts (Santana, 2007). From the first half of the 1990s 
onwards, mining activities entered into decline, leaving behind them a dense network of 
roads connecting farms in the region, which considerably reduced the importance of the air 
and fluvial transport (Amaral et al., 2006; Escada et al., 2007).  

3. Input data for the spatial dynamic model of deforestation 
A platform for the spatio-temporal modelling of landscape dynamics – Dinamica EGO – was 
used to generate the simulations of deforestation in the analysed study area. Dinamica EGO 
consists in a cellular automata environment that embodies transition algorithms operating 
commonly through a Moore neighbourhood (3 x 3 window) as well as spatial feedback 
approaches in a stochastic multi-step simulation framework. Dinamica EGO is a free 
domain platform and was developed by the Centre for Remote Sensing of the Federal 
University of Minas Gerais – CSR-UFMG1 (Soares-Filho et al., 2002, 2009; Rodrigues et al., 
2007).  
Real data on deforestation from 1997 to 2000 drove the simulation model, helping to assess 
the total amount of forest conversion into other land cover classes in the study area for the 
given period of analysis. A set of explaining variables related to deforestation together with 
internal parameters of Dinamica EGO were jointly combined to generate a simulation for 
the year 2000. In the following sections, methodological procedures employed at each stage 
of the modelling process (data acquisition, variables selection, exploratory analysis, 
calculation of transition probabilities, parameterisation, and accuracy assessment) will be 
dealt with in a thorough manner. 
                                                 
1The CA modelling platform Dinamica EGO is available for download at  
http://www.csr.ufmg.br/dinamica/  
   

Polyconic Projection–Datum SAD 69

Brazilian  Amazon 
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3.1 Deforestation data 
The original deforestation map, containing the land cover classes forest, grasslands, rivers, 
deforested areas until 1997, and deforested areas from 1997 to 2000, was acquired from the 
digital PRODES (Brazilian Deforestation Assessment Project) database (INPE, 2006) and is 
shown in Fig. 2. This map and other input data were pre-processed in the software IDRISI 
Kilimanjaro (Eastman, 2003). 
 

 
Fig. 2. PRODES deforestation map for the study area from 1997 to 2000 

This PRODES deforestation map was reclassified, so as to generate the land cover maps for the 
initial time of simulation − year 1997 (Fig. 3), and for the final time of simulation − year 2000 
(Fig. 4). Considering that PRODES methodology does not take into account deforestation over 
natural grasslands, this work similarly restricted itself to simulate deforestation only over 
forested areas. Due to generalisation procedures adopted in the PRODES maps, only the Xingu 
river and its major tributary, Fresco river, are visible, since minor streams were disregarded in 
face of the spatial resolution adopted in the maps (120 x 120 m). 

3.2 Explaining variables 
The proper choice of a set of explaining variables is critical for the success of a spatial 
dynamic model. The forested cells suitability to undergo deforestation precisely depends on 
the relations between such variables and the response variable (deforestation). In this 
experiment, the analysed variables were selected based upon similar previous studies 
(Alves, 2002; Laurance et al., 2002; Aguiar et al., 2007; Soares-Filho et al., 2006; Pereira et al., 
2007; Brandão Júnior et al., 2007), which report the prevailing variables in deforestation 
processes. The factors which influence deforestation are manifold. However, the difficulties 
in data acquisition limit the input data actually employed in the modelling process. Six 
biophysical variables were evaluated: i) distance to paved roads; ii) distance to non-paved 
roads; iii) distance to urban centres; iv) distance to rivers; and v) distance to previously 
deforested areas in 1997. 



Spatial Dynamic Modelling of Deforestation in the Amazon   

 

51 

 
Fig. 3. Land cover map in 1997, derived from the PRODES deforestation map reclassification 

 

 
Fig. 4. Land cover map in 2000, derived from the PRODES deforestation map reclassification 

By means of a visual analysis of the original deforestation map in 1997, it was possible to 
observe that both the distance to roads and to urban centres have a limited influence on 
deforestation processes. In 1997, the occupation in the study area was already well-
established, reducing the availability of land for deforestation close to roads and urban 
settlements. Although the fluvial transport plays a minor role in the region, as previously 
exposed, it was observed the mushrooming of deforestation patches in the vicinities of the 
Xingu and Fresco rivers during the analysed period, which although occurred to a reduced 
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extent in farther areas, justified the inclusion of the variable ‘distance to rivers’ in the model. 
In CA models, two types of variables can be used: i) the static ones, which are kept constant 
throughout the model run, and ii) the dynamic ones, that suffer changes throughout the 
successive time steps, which are then continuously updated at each iteration. Both of them 
were built upon basis of the PRODES reclassified map in the year 1997 (Fig. 3). The static 
variable corresponds to the map of distance to rivers (Fig. 5), and the map of distance to 
previously deforested areas in 1997 (Fig. 6) entered the model as a dynamic variable. In 
order to categorise the grids of distances, i.e. generate optimal discrete ranges of distances, 
special automatic routines available in the Dinamica EGO were used, which are based on 
algorithms of lines generalisation (Agterberg & Bonham-Carter., 1990; Goodacre et al., 1993). 
 

 
Fig. 5. Colour-sliced map of distance to rivers (static variable), defined in meters 

4. The spatial dynamic modelling experiment 
4.1 Exploratory analysis 
The statistical method ‘weights of evidence’ was employed for the parameterisation of this 
modelling experiment. Such method is entirely based on Bayes´s theorem, also known as the 
conditional probability theorem, which assumes the independence of events. In this sense, 
the eventual existence of spatial dependence (or spatial association) between pairs of 
explaining variables must be initially verified. For this end, two statistical indices were used: 
the Cramer´s Coefficient (V) and the Joint Information Uncertainty (U) (Bonham-Carter, 
1994). Both of them are based on the ratio of overlapping areas among the different 
categories (in this case, ranges of distance) belonging to two maps of explaining variables (or 
evidences). The Cramer´s Coefficient operates with absolute values of area, while the Joint 
Information Uncertainty deals with relative (percentage) values, and hence, tends to be 
more robust than the former index, for it avoids the risk of bias represented by absolute area 
values.  
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Bonham-Carter (1994) reports that values less than 0.5 either for V or U suggest less 
association rather than more. In this way, the threshold of 0.5 was adopted to decide 
whether a variable should remain in the model (V or U < 0.5) or be excluded from it (V or  
U ≥ 0.5). In this work, the Cramer’s Coefficient and the Join Information Uncertainty 
presented low values (V = 0.21 and U = 0.0485), indicating that both variables could be 
simultaneously employed in the model. 

4.2 Global transition rates 
The global transition rates refer to the total amount of change in the simulation period, 
regardless of its spatial distribution, i.e. without taking into account spatial peculiarities at 
the local level, which are those related to biophysical and infrastructural characteristics of 
each cell in the study area.  
In this modelling experiment and in other experiments where the initial and final land cover 
maps are available, the transition rates were calculated by a cross-tabulation operation 
between the land cover maps from 1997 and 2000, producing as output a transition matrix 
with land cover change rates observed during this period. 
 
 

 
Fig. 6. Colour-sliced map of distance to previously deforested areas in 1997 (dynamic 
variable), defined in meters 

4.3 Local transition probabilities 
The local transition probabilities, different from the global transition rates, are calculated for 
each cell considering the natural and anthropic characteristics of the site. For estimating the 
land cover transition probabilities in each cell, represented by its coordinates x and y, an 
equation converting the logit formula into a conventional conditional probability was used. 
The logit corresponds to the natural logarithm of odds, which consists in the ratio of the 
probability of occurring a given land cover transition to its complementary probability, i.e. 
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the probability of not occurring the transition. This concept derives from the Bayesian 
weights of evidence method, from which the land cover transition probability can be 
obtained through algebraic manipulations of the logit formula, as follows (Bonham-Carter, 
1994): 

 

m mα α+ +
1,v 1,v

α v=1 v=1

ηW W
mα 1 α α

i i i ii
α=1

P(T /V ,...,V )=O(T ) e /1+ O(T ) e
∑ ∑

⋅ ⋅∑  (1) 

where P corresponds to the probability of transition in a cell; i corresponds to a notation of 
cells positioning in the study area, defined in terms of x,y coordinates; α represents a type of 
land cover transition, e.g. from a class c to a class k, within a total of η transitions (in this 
particular experiment, there is only one type: from forest to deforested areas); Vi1 
corresponds to the first variable observed in cell i, used to explain transition α; Vimα

  corresponds to the m-th variable observed in cell i, used to explain transition α; O (Ti
α) 

represents the odds of transition Tα in the i-th cell, expressed by the ratio of the probability 
of occurrence of Ti

α over its complementary probability, i.e., P (Ti
α)/ P (Ti

α); and W+i,v 
corresponds to the positive weight of evidence for the i-th cell regarding the v-th variable 
range, defined as: 

 α αm m+ α α
i,v e i ii iW =log P(V /T )/P(V /T )  (2) 

where P (Vimα/ Ti
α) is the probability of occurrence of the m-th variable range observed in 

cell i, used to explain transition α, in face of the previous presence of transition Ti
α, given by 

the number of cells where both Vimα and Ti
α are found divided by the total number of cells 

where Ti
α is found; and P(Vimα/ Ti

α) is the probability of occurrence of the m-th variable 
range observed in cell i, used to explain transition α, in face of the previous absence of 
transition Ti

α, given by the number of cells where both Vimα and Ti
α are found, divided by 

the total number of cells where Ti 
α  is not found. 

The W+ values represent the attraction between a determined landscape transition (in this 
case, from forest to deforested areas) and a certain variable range. The higher the W+ value 
is, the greater is the probability of a certain transition to take place. On the other hand, 
negative W+ values indicate lower probability of a determined transition in the presence of 
the respective variable range. Using the W+ values concerning the several distances ranges 
of the static and dynamic variables employed in the analysis of deforestation, the Dinamica 
EGO model calculates the cells transition probabilities according to Equation (1). The grid 
cells are assigned a value of probability and a probability map is then generated. In order to 
evaluate if the model is well calibrated, i.e. if the employed explaining variables are 
appropriate and if the categorisation of the numerical grids is optimal, this map must 
present the area with the highest transition probability values as close as possible to the 
areas that actually underwent deforestation processes.  

4.4 Defining the dinamica EGO internal parameters 
Dinamica EGO incorporates two empirical land cover allocation algorithms (or transition 
functions) called: expander and patcher. The expander function accounts for the expansion 
of previous patches of a certain land cover class. The patcher function, on its turn, is 
designed to generate new independent patches (seed cells), which are not physically 
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connected with previous patches of the same land cover class (Soares-Filho et al., 2002). In 
summary, the expander function performs transitions from a state i to a state j only in the 
adjacent vicinities of cells with state j. And the patcher function performs transitions from a 
state i to a state j only in the adjacent vicinities of cells with state other than j. 
Based on a visual analysis of the PRODES deforestation map (Fig. 2) during the analysed 
period (1997-2000), it was not observed the occurrence of deforestation by means of diffusion 
processes, i.e. amidst the virgin forest, what is emulated by the patcher function. In this way, 
only the expander function was employed in the model, which simulates the formation of 
deforestation patches through the expansion of previously deforested areas, as exposed above. 
The average size and variance of size (in hectares) of the new deforestation patches are also 
required as internal parameters by Dinamica EGO. The definition of these parameters is 
done heuristically. The ideal average size (μ) was set to 300 ha, and the variance (σ2) to 500 
ha. The model contains another heuristically determined parameter, which is the so-called 
‘patch isometry index (PII)’. This index represents a numerical value ranging from 0 to 2, 
which is multiplied by the probability values of the eight cells belonging to the Moore 
neighbourhood, before the application of the transition function. A high isometry index 
results in compact patches, while low values are reflected in more fragmented landscape 
patterns. In this modelling experiment, an isometry index of 1.5 was adopted, what 
represents a balance between compactness and fragmentation. This value generates results 
in compliance with the deforestation pattern observed in the study area, which presents a 
mixture of geometrically stable (compact) deforestation patches produced by capitalised 
farmers that use tractors for the forest clear-cut, as well as fragmented patches generated by 
small farmers, deprived of sophisticated means for the forest removal.  

5. Validation  
For assessing the accuracy of the CA simulation model performance, fuzzy similarity 
measures applied within a neighbourhood context were used. Several validation methods 
operating on a pixel vicinity basis have been proposed (Costanza, 1989; Pontius, 2002; 
Hagen, 2002, 2003; Hagen-Zanker et al. 2005; Hagen-Zanker, 2006), aimed at depicting the 
spatial patterns similarity between a simulated and a reference map, so as to relax the 
strictness of the pixel-by-pixel agreement. The fuzzy similarity method employed in this 
work is a variation of the fuzzy similarity metrics developed by Hagen (2002), and has been 
implemented in the DINAMICA model by the CSR team. 
Hagen´s method is based on the concept of fuzziness of location, in which the representation 
of a cell is influenced by the cell itself and, to a lesser extent, by the cells in its 
neighbourhood. Not considering fuzziness of category, the fuzzy neighbourhood vector can 
represent the fuzziness of location. In the fuzzy similarity validation method, a crisp vector 
is associated to each cell in the map. This vector has as many positions as map categories 
(land cover classes), assuming 1 for a category = i, and 0 for categories other than i. Thus, the 
fuzzy neighbourhood vector (Vnbhood) for each cell is given as: 
 

                         μnbhood 1 
                         μnbhood 2                 

                                               Vnbhood =                                                            
                          μnbhood C      

 

 
 

 (3) 
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 μnbhood i = | μnbhood i,1 * m1 , μcrisp i,2 * m2 , …, μcrisp i,N * mN | Max (4) 

where μnbhood i represents the membership for category i within a neighbourhood of N cells 
(usually N=n2); μcrisp ij is the membership of category i for neighbouring cell j, assuming, as 
in a crisp vector, 1 for i and 0 for categories other than i (i ⊂ C); mj is the distance-based 
membership of neighbouring cell j, where m accounts for a distance decay function, for 
instance, an exponential decay (m = 2-d/2), with d being the unitary distance measured in 
between two cells centroids). The selection of the most appropriate decay function and the 
size of the window depend on the vagueness of the data and the spatial error tolerance 
threshold (Hagen, 2003). As it is intended to assess the model spatial fit at different 
resolutions, besides the exponential decay, a constant function equal to 1 inside the 
neighbourhood window and to 0 outside can also be applied. Equation (5) sets the category 
membership for the central cell, assuming the highest contribution is found within a 
neighbourhood window n x n. Next, a similarity measure for a pair of maps can be obtained 
through a cell-by-cell fuzzy set intersection between their fuzzy and crisp vectors: 

 S(VA, VB) = [ |μA,1, μB,1|Min, |μA,2, μB,2|Min, …, |μA,i, μB,i|Min ] Max (5) 

where VA and VB refer to the fuzzy neighbourhood vectors for maps A and B, and μA,i and 
μB,i are their neighbourhood memberships for categories i ⊂ C in maps A and B, as in 
Equation (6). According to Hagen (2003), since the similarity measure S (VA,VB) tends to 
overestimate the spatial fit, the two-way similarity is instead applied: 

 Stwoway(A, B) = |S(VnbhoodA, VcrispB), S(VcrispA, VnbhoodB)|Min (6) 

The overall similarity of a pair of maps can be calculated by averaging the two-way 
similarity values for all map cells. However, when comparing a simulated map to the 
reference map (real land cover in the final time of simulation), this calculation carries out an 
inertial similarity between them due to their areas that did not suffer any change. To avoid 
this problem, the CSR team introduced a modification into the overall two-way similarity 
method of Dinamica EGO, using two maps of differences, which present value 1 for the cells 
that underwent change, and 0 for those that did not change. In this way, each type of change 
is analysed separately using pair-wise comparisons involving maps of differences: (i) 
between the initial land cover map and a simulated one, and (ii) between the same initial 
land cover map and the reference one. This modification is able to tackle two matters. First, 
as it deals with only one type of change at a time, the overall two-way similarity measure 
can be applied to the entire map, regardless of the different number of cells per category. 
Second, the inherited similitude between the initial and simulated maps can be eliminated 
from this comparison by simply ignoring the null cells from the overall count. However, 
there are two ways of performing this function. One consists of counting only two-way 
similarity values for non-null cells in the first map of difference, and the other consists in 
doing the opposite. As a result, three measures of overall similarity are obtained, with the 
third representing the average of the two ways of counting. As random pattern maps tend 
to score higher due to chance depending on the manner in which the null cells are counted, 
it is advisable to pay close attention to the minimum overall similarity value. This method 
has proven to be the most comprehensive when compared to the aforementioned methods, 
as it yields fitness measures with the highest contrast for a series of synthetic patterns that 
depart from a perfect fit to a totally random pattern (Soares-Filho et al., 2009). 
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6. Results and discussion  
Table 1 presents the transition matrix resulting from the cross-tabulation operation between 
the initial (1997) and the final (2000) land cover maps. It provides the percentages of forest 
conversion, what corresponds in the particular case of this work to the global transition 
rates from forest to deforested areas, calculated as 13.8%. The classes ‘deforested areas’ and 
‘rivers’ did not suffer any change during the study period. 
 

2000 Land                   
Cover                  

Classes 
Forest/                Deforested                  Rivers 

  Grasslands                 Areas 
Forest/Grasslands 0.861641846 0.138358154 0 
Deforested Areas 0 1 0 19

97
 

Rivers 0 0 1 

Table 1. Land cover transition matrix for the period from 1997 to 2000 
According to what was previously explained in Section 4.3, the calculation of the local 
transition probabilities, i.e. the probabilities of land cover change for each cell, is based on 
the values of the positive weights of evidence (W+). Tables 2 and 3 present the values of W+ 
for each distance range of the dynamic variable ‘distance to previously deforested areas in 
1997’ and to the static variable ‘distance to rivers’, respectively. Fig. 7a and 7b graphically 
present the behaviour of the W+ values in relation to the successive distance ranges of these 
two explaining variables. 
The curve of W+ for the variable ‘distance to previously deforested areas in 1997’ (Fig. 7a) 
reveals the concentration of weights with the greatest values in the first distance ranges, 
what demonstrates the predominance of new deforestation patches in the surroundings of 
pioneer areas (Alves, 2002; Aguiar et al., 2007). Said in other words, the pattern of 
deforestation expansion in the study area during the analysed period mostly presents 
patches of large extensions, following a trend to take place in the vicinities of previously 
deforested areas, also in face of the reported landed property concentration in this region. 
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Fig. 7. Behaviour of the positive weights of evidence (W+) in relation to the distance ranges 
for: a. distance to previously deforested areas in 1997, and b. distance to rivers 
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Values of the Positive Weights of Evidence 
Ranges Sequential Order Distance to Deforested Areas (m) W+ 

1 0 - 170 1.74594629 
2 170 – 240 1.41006378 
3 240 - 268 1.18230916 
4 268 - 339 0.983065336 
5 339 - 360 0.836426843 
6 360 - 480 0.650478547 
7 480 - 509 0.460166267 
8 509 - 537 0.312746731 
9 537 – 720 0.179722679 

10 720 – 805 -0.0177924833 
11 805 – 960 -0.143699617 
12 960 – 975 -0.0110620882 
13 975 – 988 -0.287776212 
14 988 – 1,017 -0.221559314 
15 1,017 – 1,045 -0.313774626 
16 1,045 – 1,108 -0.247802748 
17 1,108 – 1,137 -0.383389447 
18 1,137 – 3,325 -0.686325958 
19 3,325 – 3,335 -1.54902 
20 3,335 – 3,340 -1.25484549 
21 3,340 – 3,390 -1.4529907 
22 3,390 – 3,757 -1.73329591 
23 3,757 – 4,539 -2.2167735 
24 4,539 – 4,720 -3.09234848 
25 4,720 – 29,889 -3.28531919 
26 29,889 – 2,147,483,647 0 

Table 2. Values of the positive weights of evidence (W+) for the distance ranges of the 
dynamic variable ‘distance to previously deforested areas in 1997’ 
 

Values of the Positive Weights of Evidence 
Ranges  Sequential Order Distance to Rivers (m) W+ 

1 0 – 240 -1.23872974 
2 240 – 360 -0.681253599 
3 360 – 1,320 -0.515391121 
4 1,320 – 1,440 -0.353605584 
5 1,440 – 25,800 -0.212681384 
6 25,800 – 25,920 -0.0495070727 
7 25,920 – 29,400 0.104666667 
8 29,400 – 29,760 0.286801266 
9 29,760 – 32,880 0.193898811 

10 32,880 – 2,147,483,647 0 

Table 3. Values of the positive weights of evidence (W+) for the distance ranges of the static 
variable ‘distance to rivers’ 
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Regarding the variable ‘distance to rivers’ (Fig. 7b), it is possible to observe, however, that 
the distance ranges closest to rivers present the lowest W+ values. This can be explained by 
the fact that, although deforestation processes to a reduced extent occur nearby rivers, these 
new deforestation patches account for a very limited share of the total deforested area in this 
region, what causes a decrease in the weights values referring to such distance ranges. As 
ranges are located ever further from rivers, their weights gradually start to assume 
increasing positive values. These farthest ranges actually correspond to the very bordering 
areas of well-established occupations, which are exactly those prone to experience 
deforestation processes. In brief, this variable acted as a fine tuning device for the variable 
‘distance to previously deforested areas in 1997’. 
As previously stated in Section 4.3, Dinamica EGO generates maps of local probabilities 
based on the calculated W+ values, assigning to each map cell a value of transition 
probability. Fig. 8 presents the map of local land cover change probabilities (from forest to 
deforested areas), generated in this experiment. 
 

 
Fig. 8. Map of local land cover change probabilities (from forest to deforested areas) for the 
period from 1997 to 2000 
The areas in black have null values of transition probability. The blueish and greenish cells 
own very low and low values of probability, while the areas in tones of yellow, orange, and 
red respectively present intermediate, upper intermediate and high values of transition 
probability. The areas with the highest probability values pretty much correspond to the 
areas where deforestation indeed occurred, as it can be observed in the PRODES 
deforestation map (Fig. 2).  
The simulated deforestation map produced by the model (Fig. 9), considering both the static 
and the dynamic variables, presented high fuzzy similarity indices for multiple spatial 
resolutions, i.e. for multiple sampling window sizes (Table 4), in the case of the constant 
decay, what denotes the good performance of the model.  
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Comparing the simulated land cover map with the real land cover map in 2000 (Fig. 4), it is 
possible to notice that very regularly-shaped patches generated by real deforestation 
processes undertaken by capitalized farmers could not be reproduced in the simulation. 
This can be ascribed to the fact that the current transition functions available in Dinamica 
EGO still cannot cope with extremely rigid requirements regarding the patches geometry.  
Nevertheless, the spatial pattern of deforestation patches in the simulated map is very 
similar to the one found in the real scene, indicating the CA simulation model efficacy.  
It is worth mentioning that the aim of modelling is not to reproduce reality as close as 
possible, but solely to detect main spatial patterns and trends of land cover change. Spatial 
patterns refer to morphological aspects in the patches formation, i.e. whether they are 
geometrically stable or irregular, whether they are originated by expansion or diffusion 
processes, and so on, whilst trends concern the directions (or vectors) of deforestation 
propagation in space. 
 

 
Fig. 9. Map of simulated deforestation for the year 2000, with patches average size set to 300 
ha, and variance of size to 500 ha 
Since the fuzzy similarity index (FSI) is a flexible method for CA model validation, in the 
sense that it does not operate on a pixel basis but rather on multiple levels of resolution, the 
values of this index in the cases where the constant decay is adopted tend to be slightly 
superior when compared to indices based on strict agreement, which are those derived from 
a direct pixel-by-pixel comparison between the real and the simulated scene. The agreement 
increases with the size of the sampling window until it reaches a resolution of around 11 x 
11 or 13 x 13 pixels, when the similarity index stabilises (Fig. 10), what shows that the FSI is 
inefficient to assess the model fitness with rough spatial resolutions. It is worth reminding 
that the use of agreement indices based on multiple spatial resolutions to assess the 
performance of CA models can be justified by the fact that it is unfeasible not only to 
reproduce the configurations of changes in the past, but also and mainly to foresee future 
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land cover transitions with a very fine spatial accuracy, given the intrinsic randomness of 
land cover change processes. 
 
 

Window Parameters 
CA Deforestation Model 

Size (Pixels) of Patches 
FSI*          

(constant decay) 

3 x 3  0.877 

5 x 5 μ = 300 ha 0.891 

7 x 7 σ2 = 500 ha 0.900 

9 x 9 PII** = 1.5 0.903 

11 x 11  0.904 

Simulation from 1997 to 2000 

13 x 13  0.905 

*FSI = Fuzzy Similarity Index   /    PII** = Patch Isometry Index 

Table 4. Result of the model validation using different sampling window sizes 

  
 

 
Fig. 10. Variation of the fuzzy similarity index (FSI) as a function of different sampling 
window sizes 
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7. Conclusion 
This chapter presented an experiment on spatial dynamic modelling based on cellular 
automata, designed to simulate deforestation in the region of São Félix do Xingu, southeast of 
Pará State, north of Brazil, during the period from 1997 to 2000. The employed explaining 
variables (evidences) do not exhaustively represent the set of deforestation drivers in the 
area, but they correspond however to strategic inducing factors of such type of land cover 
change.  
The dynamic variable ‘distance to previously deforested areas in 1997’ was decisive for 
simulating deforestation processes observed in the vicinities of forest clear-cut areas. In face 
of the historically reported landed property concentration in this region, the deforestation 
pattern in the analysed period mostly presents patches of large extensions, which are 
predominantly found in the surroundings of pioneer areas. The static variable ‘distance to 
rivers’, on the contrary, revealed the limited importance of the fluvial transport for 
deforestation and human occupation in this region. Nevertheless, considering that 
deforestation still takes place nearby rivers, this variable acted as an alternative for the fine 
tuning of the variable ‘distance to previously deforested areas in 1997’. The obtained result 
demonstrates the suitability of the employed CA model for simulating deforestation 
processes in the study area for the time span from 1997 to 2000, what was confirmed by the 
high values of the fuzzy similarity index. 
The Dinamica EGO platform proved to be appropriate for achieving the goals of this 
research experiment, also in view of one of its transition allocation algorithms – the 
expander function – which is able to reproduce the spatial pattern of deforestation 
expansion in the vicinities of previously occupied areas, as it is the case in São Félix do Xingu. 
Further advantages of Dinamica EGO concern its flexible structure that accepts different 
parameterization methods (Almeida et al, 2008) and varied sets of static and dynamic 
variables, which, when associated in a thoughtful manner, may meet the modelling 
requirements of the most diverse study areas, with peculiar land cover (or land use) change 
patterns. These properties allow the transferability of this and other models developed in 
this platform to other areas in the Amazon (Soares-Filho et al., 2009; Maeda et al., 2010), 
owning distinct occupation histories, at different consolidation stages, and involving specific 
local actors, with very particular characteristics. 
As directions for future research, the authors intend to explore a wider scope of explaining 
variables, like indicators of the land ownership legal status, local unpaved roads as well as 
vectors of ongoing occupation fronts, besides operating with further stochastic 
parameterization methods. The authors as well intend to deal with longer temporal series, 
so as to use a more in-depth knowledge on the area occupation history, and hence, provide 
differentiated future simulation scenarios for São Félix do Xingu in the short- and medium-
term. These forecasts would be based on plausible political, socio-economic, and 
infrastructural arrangements at the local and regional level. 
Although models in general have continuously been the target of severe criticism, mainly in 
view of their reductionism and constraints to fully capture the reality inherent complexity 
(Briassoulis, 2000), it can be argued that they ought to exist, for they offer an incomparable 
way of abstracting patterns, order and main dynamic trends of real world processes (Batty, 
1976). 
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Actually, urban models should be conceived, handled, applied and interpreted in a wise 
and critical way, so that modelers, practitioners, public and private decision-makers as well 
as citizens as a whole could take the best of what they can offer and sensibly acknowledge 
their limits (Almeida, 2003; Almeida et al., 2005). Spatial dynamic models, of which CA is 
one of the best representatives, are still the most promising means for rendering land cover 
change simulations communicable and transparent to politicians, planners, decision-makers 
as well as to the lay public in general. 
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