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ABSTRACT

This paper evaluates a strategy for the assimilation of satellite radiance observations with the local en-

semble transform Kalman filter (LETKF) data assimilation scheme. The assimilation strategy includes

a mechanism to select the radiance observations that are assimilated at a given grid point and an ensemble-

based observation bias-correction technique. Numerical experiments are carried out with a reduced (T62L28)

resolution version of the model component of the National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS). The observations used for the evaluation of the assimilation strategy are

AMSU-A level 1B brightness temperature data from the Earth Observing System (EOS) Aqua spacecraft.

The assimilation of these observations, in addition to all operationally assimilated nonradiance observations,

leads to a statistically significant improvement of both the temperature and wind analysis in the Southern

Hemisphere. This result suggests that the LETKF, combined with the proposed data assimilation strategy for the

assimilation of satellite radiance observations, can efficiently extract information from radiance observations.

1. Introduction

Although ensemble-based Kalman filter (EnKF) data

assimilation schemes were first proposed more than a de-

cade ago (Evensen 1994; Burgers et al. 1998; Houtekamer

and Mitchell 1998) and several successful attempts at

assimilating observations of the atmosphere have been

reported in the last few years (e.g., Houtekamer et al.

2005; Whitaker et al. 2004, 2008; Szunyogh et al. 2008;

Miyoshi and Sato 2007; Miyoshi and Yamane 2007; Torn

and Hakim 2008; Bonavita et al. 2008), evidence has

emerged only recently that EnKF schemes may be via-

ble alternatives to the variational techniques in opera-

tional numerical weather prediction (e.g., Buehner et al.

2010a,b; Miyoshi et al. 2010).

In the present paper, we focus on the performance

of one particular EnKF scheme, the local ensemble

transform Kalman filter (LETKF), for assimilating sat-

ellite radiance observations. The LETKF algorithm was

developed by Ott et al. (2004) and Hunt et al. (2004,

2007) and was tested on both simulated observations in

the perfect-model scenario (Szunyogh et al. 2005) and

on observations of the real atmosphere (Miyoshi and

Sato 2007; Szunyogh et al. 2008; Whitaker et al. 2008). In

particular, Szunyogh et al. (2008) and Whitaker et al.

(2008) assimilated nonradiance observations in a reduced-

resolution version of the model component of the Na-

tional Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) and found that the perfor-

mance of the LETKF was superior to that of the Statis-

tical Spectral Interpolation (SSI) of NCEP in data-sparse

regions.1
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Our goal here is to extend the study of Szunyogh et al.

(2008) by augmenting the observational dataset with

satellite radiance observations. To assimilate these sat-

ellite observations, we employ techniques for the lo-

calization and bias correction of the satellite radiance

observations, which were developed and tested in an

idealized setting in Fertig et al. (2007, 2009). The ob-

servations we assimilate are the Advanced Microwave

Sounding Unit-A (AMSU-A) level 1B brightness tem-

perature data from an instrument flown on the Earth

Observing System (EOS) Aqua spacecraft (Olsen 2007).

Hereafter, we refer to brightness temperature and radi-

ance observations collectively as radiance observations,

as the assimilation of both of these types of data requires

the use of a radiative transfer model. The performance of

the LETKF in assimilating radiance observations is as-

sessed by comparing the results to those obtained by as-

similating only the nonradiance observations.

Ours is not the first attempt at assimilating satellite

radiance observations with an implementation of an

EnKF scheme on a model of operational complexity:

some studies assimilated satellite radiance observations

using an offline estimate of the observation bias, which

was provided by a variational data assimilation system

(e.g., Houtekamer et al. 2005; Miyoshi and Sato 2007;

Buehner et al. 2010b), while Miyoshi et al. (2010) com-

bined the ensemble based estimation of the state with an

online deterministic estimation of the observation bias.

The unique aspect of our study is that it uses the ensemble-

based approach to estimate both the bias and the state.

The structure of the paper is as follows. Section 2 pro-

vides a summary of our implementation of the LETKF

on the model component of the NCEP GFS, while sec-

tion 3 is a brief description of the AMSU-A observational

datasets. Section 4 explains the design of our numerical

experiments, whose results are reported in section 5.

Section 6 offers a summary of our conclusions.

2. The LETKF for the NCEP GFS model

In what follows, we explain our implementation of

the LETKF algorithm using the model component of the

NCEP GFS. We introduce the major components of the

data assimilation algorithm and summarize the data as-

similation procedure for the conventional nonradiance

observations. Then, we explain the modifications re-

quired to assimilate satellite radiance observations.

a. Definitions

We assume that, similar to the practice of operational

numerical weather prediction, at the analysis time tn,

observations are assimilated from the observation time

window:

t
n

5 (t
n
� Dt/2, t

n
1 Dt/2).

The observations from tn form the vector of observations

yn
o. In a typical global data assimilation system Dt 5 6 h.

We introduce the notation gn for the state space tra-

jectory of the model in tn:

g
n

5 x(t), t 2 t
n
, (1)

where the vector x(t) is the finite-dimensional represen-

tation of the atmospheric state on the model grid. Sim-

ilar to other ensemble-based data assimilation schemes,

the LETKF algorithm prepares an ensemble of anal-

yses, fxn
a(k): k 5 1, 2, . . . , Kg, based on the obser-

vation vector yn
o and an ensemble of K analyses,

fxa(k)
n�1: k 5 1, 2, . . . , Kg, from the previous analysis time

tn21 5 tn 2 Dt. The associated computations consist of

two main steps: the forecast step and the state-update

step.

In the forecast step, a K-member ensemble of forecasts

from time tn21 to time tn 1 Dt/2 is prepared using the

analysis ensemble members fxa(k)
n�1: k 5 1, 2, . . . , Kg, as

initial conditions. This ensemble of forecasts provides

an ensemble of model trajectories for the 3Dt/2 long time

period between tn21 and tn 1 Dt/2. The Dt-long section of

the trajectories, which falls into tn provides the ensemble of

background forecast trajectories, fgn
b(k): k 5 1, 2, . . . , Kg.

For instance, in our current implementation of the

LETKF, the members of the background ensemble are

6-h forecast trajectories starting at the 3-h forecast lead

time and ending at the 9-h forecast lead time relative to

tn21. To obtain fg1
b(k): k 5 1, 2, . . . , Kg for the first

analysis time, t1, we use a random set of operational

NCEP analyses valid at different times as the initial

conditions fx0
a(k): k 5 1, 2, . . . , Kg.

The formulation of the state-update step of the

LETKF, similar to that of all other modern data as-

similation schemes, is based on the assumption that we

know the observation operator h(gn) that satisfies

yo
n 5 h(gtrue

n ) 1 «
n
, t 2 t

n
. (2)

Here, gn
true is the model representation of the (unknown)

true system trajectory and en is a vector of Gaussian

random observation noise with zero mean and error

covariance matrix Rn. In practice, the observation op-

erator, which operates on the background trajectories,

typically consists of an interpolation of gn
b to the time and

location of the observations and a conversion of the model

variables to the observed physical quantities. In our im-

plementation of the LETKF on the NCEP GFS, the time

interpolation component of h(gn
b) is performed by storing

the background trajectories fgn
b(k): k 5 1, 2, . . . , Kg with
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a 1-h resolution and applying a linear interpolation to

the stored model fields to obtain the ensemble of model

states at the observation times.

In what follows, we discuss how to obtain an ensemble

of analyses at time tn; thus, we can drop the subscript

n from the notation without sacrificing clarity. In par-

ticular, we introduce the notation xb(k) for the state at

time tn along the trajectory gn
b(k). LETKF obtains the

different vector components of the members of the

analysis ensemble independently for each grid point. We

define a local state vector x‘ that is composed of the

model variables at model grid point ‘. LETKF generates

a K-member ensemble of local analyses, fx‘a(k): k 5 1, 2,

. . . , Kg by computing an ensemble of local ‘‘weight

vectors,’’ fw‘
(k): k 5 1, 2, . . . , Kg such that

x
a(k)
‘ 5 xb

‘ 1 Xb
‘w

(k)
‘ , k 5 1, 2, . . . , K. (3)

Here, xb
‘ is the ensemble mean of the local background

state vectors, fx‘b(k): k 5 1, 2, . . . , Kg, which are defined

by the local components of the global background state

vectors, fxb(k): k 5 1, 2, . . . , Kg. (Hereafter, the bar in-

dicates the ensemble mean.) The kth column of the

matrix of ensemble perturbations X‘
b is the kth local

background ensemble perturbation defined by x
b(k)
‘ � xb

‘ .

We estimate the state at location ‘ by the mean

xa
‘ 5 xb

‘ 1 Xb
‘wa

‘ (4)

of the analysis ensemble. The members of the global

analysis ensemble, fxa(k): k 5 1, 2, . . . , Kg are obtained

by collecting the local analyses, fx‘a(k): k 5 1, 2, . . . , Kg.
for all locations ‘. We obtain the global estimate xa of

the state by collecting the local ensemble mean analyses,

xa
‘ , for all locations ‘.

b. Conventional observations

For the conventional (nonradiance) observations, the

time interpolation component of the observation opera-

tor h(g) is defined by the linear interpolation procedure

described in section 2a, while in the two horizontal spatial

dimensions, h(g) is a bilinear interpolation. Since the

vertical coordinate in the NCEP GFS model is s (defined

as the ratio of the pressure and the surface pressure) and

the vertical position of the observations is given in pres-

sure, the vertical interpolation for a given observation is

carried out in three steps:

1) We calculate the pressure at each s level at the hori-

zontal location of the observation. This calculation

requires the horizontal interpolation of the back-

ground surface pressure to the horizontal location of

the observation and the multiplication of the results of

the interpolation with s at the given model level.

2) We define 28 s layers, each bounded by a pair of s

levels (the lowest layer is defined by the model sur-

face and the lowest s level).

3) We find the s layer that contains the observation and

linearly interpolate the logarithm of the pressure to the

vertical location of the observation based on the pres-

sure values at the two s levels that bound the layer.

We compute the local weight vectors fw‘
(k): k 5 1, 2, . . . ,

Kg and their ensemble mean w‘, which then provide the

analysis ensemble and its mean through Eqs. (3) and (4),

by the following procedure:

1) The observation operator h(g) is applied to each

member of the ensemble of background trajectories,

fgb(k): k 5 1, 2, . . . , Kg, to obtain an ensemble, fyb(k):

k 5 1, 2, . . . , Kg, of the model-predicted values of the

observables at the observation locations. The ensemble

average yb of the ensemble fyb(k): k 5 1, 2, . . . , Kg is

computed and the matrix Yb is constructed by taking its

columns to be the vectors yb(k) � yb: k 5 1, . . . , K
� �

.

2) The localization is performed. For each location (grid

point) ‘, the observations that are thought to have

useful information about the atmospheric state at grid

point ‘ are selected for assimilation. The selected ob-

servations form the local observation vector y‘
o. The

vector yb
‘ and the matrices Y‘

b and R‘ are formed by

selecting those vector components and matrix ele-

ments that are associated with the selected set of ob-

servations at ‘. The sensitivity of the LETKF scheme

to the localization parameters and the number of

ensemble members was investigated in detail in

Szunyogh et al. (2005). The issue was further investi-

gated in Szunyogh et al. (2008), where it was found that,

within a reasonable range, the accuracy of the analysis

and the short-term forecasts was only weakly sensitive

to the localization parameters. Here, we use the same

localization parameters as in Szunyogh et al. (2008):

(i) In the horizontal direction, observations are

considered from an 800-km radius neighbor-

hood of the location (grid point) ‘. The influ-

ence of observations is tapered as a function

of the radius r from the grid point. Formally,

the tapering is achieved by multiplying R‘
21 by

a factor m(r): m(r) 5 1 for r # 500 km and m(r) 5

(800 2 r)/300 for 500 km # r # 800 km.2

2 This tapering function was introduced in Hunt et al. (2007) and

tested in Szunyogh et al. (2008), where it was found that the ta-

pering (i) had no effect on the accuracy of the analyses and the

short-term forecasts in densely observed regions, but (ii) improved

the accuracy in sparsely observed regions by making the spatial

changes in the weight vector wa
‘ smoother.
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(ii) In the vertical direction, observations are

considered from a layer around ‘. The depth of

the layer is 0.35 scale height between model

levels 1 and 15 (below s 5 0.372), and, starting

with level 15, the depth gradually increases

with height to reach 2 scale heights at the top of

the model atmosphere (defined by s 5 0.003,

which is equivalent to about 3 hPa). (The scale

height is defined by the vertical distance in

which the pressure drops by a factor of e ’

2.718.) Surface pressure observations are also

considered from the local horizontal region

when the state is analyzed at a model grid

point, which is at or below model level 15.

(iii) The surface pressure components of the state

vector are treated differently from the other

components. To obtain the surface pressure

analysis at a location ‘, we use all surface pres-

sure observations from an 800-km radius of

‘ and all temperature and wind observations

from an 800-km radius of ‘ between model

levels 2 (s 5 0.982) and 5 (s 5 0.916). As for all

other observation types, the influence of the

surface pressure observations is tapered beyond

a 500-km radius.

3) The weight vector w‘ is computed by

w
‘
5 Pa

‘ (Y
b
‘ )TR�1

‘ (yo
‘ � yb

‘ ). (5)

In Eq. (5), P‘
a is the local analysis error covariance

matrix, which is computed by

Pa
‘ [(K � 1)I/r 1 (Yb

‘ )TR�1
‘ Yb

‘ ]�1. (6)

Here, r $ 1 is a multiplicative covariance inflation

factor and I is the identity matrix. In our implemen-

tation, r is a smoothly varying three-dimensional

scalar field: r tapers from 1.25 at the surface to 1.2 at

the top of the model atmosphere in the SH extra-

tropics and from 1.35 to 1.25 in the NH extratropics,

while r changes smoothly throughout the tropics

(between 258S and 258N) from the values of the SH

extratropics to the values of the NH extratropics.

4) The matrix W‘, whose columns are the local weight

vectors for the ensemble perturbations, is computed

by W‘ 5 [(K 2 1)P‘
a]1/2.

5) The weight vector w
‘

is added to each row of W‘. The

columns of the resulting matrix are the members of

the ensemble of weight vectors fw‘
(k): k 5 1, . . . , Kg.

c. Satellite radiance observations

The assimilation procedure is more complicated for

the radiance observations than for the conventional

observations. The primary source of the added com-

plexity is the observation operator h(g), whose com-

ponents for the radiance observations involve the use

of a complex radiative transfer model, T(g). For the

radiance observations, T(g) replaces the simple inter-

polation procedure described in step 1 of the LETKF

algorithm. Since we follow different procedures for the

radiance and the nonradiance observations, we decom-

pose the observation operator into two components:

h(g) 5 [h(nr)(g), h(r)(g)]T. The first component h(nr)(g)

maps the state trajectory for the nonradiance observa-

tions and the component h(r)(g) maps the trajectory for

the radiance observations.

The first challenge to be addressed is the correction of

the bias in the radiance observations: the observation

operator defined by h(r)(g) 5 T(g) typically does not

satisfy Eq. (2), because the observation error has a

slowly varying, nonrandom component. To correct for

this component of the error, we define the component of

the observation operator for the radiance observations by

h(r)(g) 5 T(g) 1 b, (7)

where b is the bias-correction term. The implementation

of the observation operator defined by Eq. (7) requires

a computational procedure to estimate b. Following the

general practice of numerical weather prediction (e.g.,

Eyre 1992; Derber and Wu 1998; Harris and Kelly 2001;

Dee 2005), we make the estimation of b part of the data

assimilation process. In particular, we assume that the

O(r) components of b can be estimated by the linear

combination

b
o
(t) 5 b0

o(t) 1 �
I

i51
bi

0(t)pi(t), o 5 1, 2, . . . , O(r), (8)

of a set of scalar predictors fpi(t): i 5 1, . . . , Ig [O(r) is the

number of radiance observations]. Our task is to esti-

mate the bias-correction parameters: fbo
i : o 5 1, 2, . . . ,

O(r); i 5 0, 1, 2, . . . , Ig.
The estimation of the (I 1 1) 3 O(r) bias parameters is

computationally not feasible, because in a typical NWP

application O(r) is of order 106–108. To reduce the num-

ber of bias-correction parameters, we use the same set of

predictors for all radiance observations, and assume that

the bias-correction parameters are the same for all ob-

servations taken by a given instrument in a given channel.

Thus, when the total number of channels we assimilate

is J, the total number of bias-correction coefficients is

Q 5 (I 1 1) 3 J. These coefficients, fbj
i : j 5 1, 2, . . . , J;

i 5 0, 1, 2, . . . , Ig are the components of the vector of

bias-correction coefficients b. When all predictors are

zero, the bias correction for the jth channel is equal
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to bj
0. Thus, we refer to bj

0 as the intercept for the jth

channel. In addition, because the bias-correction pro-

cedure introduces a dependence of the observation

operator on b, for the radiance observations we write

Eq. (7) as

h(r)(g, b) 5 T(g) 1 b(b). (9)

With this notation Eq. (2) becomes

yo
n 5

yo(nr)

yo(r)

� �
5

h(nr)(gtrue) 1 e(nr)

h(r)(gtrue, btrue) 1 e(r)

" #
, (10)

where yo(nr) is the vector of nonradiance observation

and yo(r) is the vector of radiance observations, while enr

is the vector of random observation errors for the non-

radiance observations and er is the vector composed of

the random part of the observation errors for the radi-

ance observations.

The predictors fpi(t): i 5 1, . . . , Ig can be defined by

any scalar physical parameters from the model or from

the information provided with the observations (e.g.,

Eyre 1992; Derber and Wu 1998; Harris and Kelly 2001).

Typical examples for model-based predictors are the

skin temperature and the thickness of different atmo-

spheric layers, while an example for an observation-

related predictor is the scan angle at which the radiance

observation is taken by the satellite-based observing

instrument.

We obtain estimates of the bias parameters by the

method of state augmentation (e.g., Friedland 1969;

Derber and Wu 1998; Dee 2005), that is, we augment the

state vector x by the Q components of b to obtain

z 5
x

b

� �
, (11)

and apply the LETKF algorithm to the augmented state

vector z instead of the state vector x.

The method of state augmentation requires an equa-

tion to evolve b from one analysis time to the next. In

our current implementation of the method, we evolve

the bias parameters between two analysis times by as-

suming persistence of the bias parameters:

bb(k)
n 5 b

a(k)
n�1: k 5 1, 2, . . . , K

n o
. (12)

Using Eq. (12) in the forecast step of the analysis does

not mean that the estimates of the bias-correction param-

eters cannot change with time. In fact, the state-update

step typically changes the value of the bias parameters,

that is,

ba(k)
n 6¼ bb(k)

n : k 5 1, 2, . . . , K
n o

, (13)

which leads to

ba(k)
n 6¼ b

a(k)
n�1: k 5 1, 2, . . . , K

n o
. (14)

The second important issue is the nonlocal nature of the

observation operator for radiance: in contrast to the case

of the conventional observations, where the observation

operator for a given observation depends on the model

state only at the nearby grid points, the output of T(g)

depends on the entire atmospheric column of the model

atmosphere. Thus, the vertical localization strategy,

described in step 2 of the LETKF for the nonradiance

observations, must be modified for the radiance ob-

servations (Fertig et al. 2007).

Our modified data selection strategy is based on the

vertical weighting function vm, which is computed by

T(g) for each radiance observation at all model levels

m 5 1, 2, . . . , M. For a given observation, T(g) computes

the radiance by

T(g) 5 R
s
1 �

M

m51
B(T

m
)v

m
, (15)

where Rs is the contribution of the earth’s surface to the

radiance, Tm is the temperature at model level m, B(Tm) is

the Planck function, and the weights fvm: m 51, 2, . . . , Mg
satisfy the following condition:

�
M

m51
v

m
5 1. (16)

We apply the cutoff-based observation strategy of Fertig

et al. (2007) to select the model levels where a given

observation is assimilated. In particular, we choose a

cutoff parameter h (0 , h # 1), which we will use in step

3 of the data selection procedure below to determine the

depth of the layer where the observation will be assim-

ilated. (We use the same value of h for all channels.) We

determine the layer for each observation in the follow-

ing steps:

1) We apply T(g) to all members of the ensemble of

background trajectories fgb(k): k 5 1, 2, . . . , Kg to

obtain an ensemble fvm
k : k 5 1, 2, . . . , Kg of the

weight vm for the given observation.

2) We find the model level mk
max, where vm

k takes its

maximum value vk
max for each ensemble member.

3) We search for the top, mk
top, and the bottom, mk

bottom,

of the deepest layer around level mk
max, in which the

weighting function satisfies the condition vk
m $ hvk

max.
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4) We compute the ensemble mean of the index of the

top layers m
top

and the ensemble mean of the index

of the bottom layers, m
bottom

.

5) We assimilate the observations at model levels that

fall into the layer bounded by mbottom and mtop.

An observation space localization approach, such as the

one we have just described, may incorrectly eliminate

correlations between the components of the background

in observation space (between the components of the

vectors that form Yb), unless all radiance observations

associated with the correlated background errors in ob-

servation space are assimilated simultaneously at a given

location l. The potential to incorrectly eliminate corre-

lations is higher for the radiance than the conventional

observations, because the neighboring satellite channels

typically have broad overlapping weighting functions;

thus, T(g) may introduce significant correlations be-

tween model layers that are only weakly coupled by the

dynamics (Campbell et al. 2010). The number of chan-

nels assimilated simultaneously is determined by h: the

smaller the value of h, the more channels are assimilated

simultaneously and the lower the chance that correla-

tions are eliminated incorrectly. This argument is also

supported by the results of Fertig et al. (2007), who

showed that assimilating each radiance observation at

multiple model levels, instead of the single level where

vm
k takes its maximum value, resulted in more accurate

analyses. Reducing the value of h, of course, increases

the computational cost, because more observations are

assimilated at each location. Thus, we determine the

value of h by numerical experimentation, choosing a

value of h, which is slightly smaller than the value at

which the analysis and forecast accuracy starts to degrade

noticeably.

To incorporate the bias estimation procedure into the

LETKF, we define the observation operator for the ra-

diance observations by Eq. 7, where T(g) is the Com-

munity Radiative Transfer Model (CRTM; Han et al.

2006) of the Joint Center for Satellite Data Assimilation

(JCSDA). In addition, we make the following specific

changes in the main steps of the LETKF algorithm:

1) The ensemble of model-predicted radiance values at

the observation locations is obtained by applying h(r)

to the background trajectories fgb(k): k 5 1, . . . , Kg.
2) The horizontal localization is done the same way as

for the conventional observations, while the vertical

localization is done by the cutoff-based strategy. The

components of the local augmented state vector z‘ at

location ‘ are the components of the local state vector

x‘, and the local vector of bias-correction parameters

b‘, which is composed of the bias-correction param-

eters for the channels that are assimilated at location ‘.

Steps 3–5 of the algorithm, which provide the weights

w‘
(k) for the computation of the analysis of the local

augmented state vector,

z
a(k)
‘ 5 zb

‘ 1 Zb
‘w

(k)
‘ , (17)

are the same as for the conventional observations. The

state analysis components fxa(k): k 5 1, 2, . . . , Kg of

fza(k): k 5 1, 2, . . . , Kg are obtained as before, collecting

the state vector components x‘
a(k) of the local analyses

of the augmented state vectors z‘
a(k)for all locations ‘.

A different procedure is needed, however, to obtain the

global analysis ensemble of bias parameters, fba(k): k 5

1, . . . , Kg from the bias-correction component, fb‘a(k):

k 5 1, . . . , Kg, of the local augmented state vectors,

fz‘a(k): k 5 1, . . . , Kg. Because each component of the

augmented state vector is estimated at many different

locations ‘, we need a computational strategy to obtain

a single estimate of each of the Q bias parameters. We

achieve this goal by averaging the local estimates of each

bias parameter over all locations ‘ where it is estimated

by the following formula:

ba(k)
q 5

�
‘

cos(f
‘
)b

a(k)
q,‘ s�2

q,‘

�
‘

cos(f
‘
)s�2

q,‘

, q 5 1, . . . , Q. (18)

Here, bq
a(k) and b

a(k)
q,‘ are the qth components of ba(k) and

b‘
a(k), respectively; f‘ is the latitude at location ‘; and the

factor cos(f‘) accounts for the dependence on the lati-

tude of the area represented by a grid point. The factor

s�2
q,‘ is the inverse of the variance,

s2
q,‘ 5 (K � 1)�1 �

K

k51
[b

a(k)
q,‘ � b

a

q,‘]
2
, (19)

of the analysis ensemble for the qth component of the

bias parameter vector b at location ‘. (Here, b
a

q,‘ is the

ensemble mean analysis of the bias-correction parame-

ter bq,‘ at location ‘.) Weighting with the inverse of the

variance ensures that locations where the uncertainty in

the estimate of a given bias parameter is larger con-

tribute with a smaller weight to the global estimate of

that bias parameter.

3. The observations

Following the convention of operational numerical

weather prediction for global models, we use a 6-h win-

dow and prepare analyses 4 times a day: at 0000, 0600,

1200, and 1800 UTC. A typical example for the number of
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observations we assimilate is shown in Table 1.3 On any

given day, we assimilate about 1 million observations, of

which about 15%–20% are radiance observations. These

radiance observations fill important data voids in the

coverage by the conventional data (see Figs. 1 and 2).

We process many more observations than indicated by

Table 1, but the number of observations is reduced by

selecting only a subset of the radiance observations for

assimilation and by rejecting observations that do not

pass quality control. The data selection strategy and the

quality control procedure are explained in section 4.

a. Conventional observations

We assimilate all conventional observations that were

assimilated operationally at NCEP between 0000 UTC

1 January 2004 and 1800 UTC 29 February 2004. This

dataset includes observations of the surface pressure by

synoptic land stations; virtual temperature and surface

pressure by surface marine observing platforms; splash-

level virtual temperature by dropsondes; virtual tem-

perature and wind by rawinsondes; sensible temperature

and wind by commercial airliners; flight-level virtual

temperature and wind by reconnaissance planes; cloud-

drift wind by the Meteorological Satellite-5 and -7

(Meteosat-5) and (Meteosat-7), the Geostationary Oper-

ational Environmental Satellite-8 and -10 (GOES-8), and

(GOES-10); and the Quick Scatterometer (QuikSCAT)

surface wind by scatterometers. Figure 1 shows the spatial

distribution of the assimilated temperature observations

for a typical 6-h observation time window.

b. AMSU-A level 1B brightness temperature data

AMSU-A is primarily a temperature sounder that

provides atmospheric information in the presence of

nonprecipitating clouds. We assimilate a subset of the

AMSU-A level 1B brightness temperature dataset, which

contains calibrated and geolocated brightness temper-

atures in kelvin for 15 microwave channels. We assimi-

late only 8 of the 15 channels, since the observations

from channels 1, 2, 3, and 15 have a strong surface signal

component, while channels 12, 13, and 14 are strongly

influenced by the atmospheric conditions at altitudes

that are higher than the top of our model atmosphere.

Figure 2 shows the spatial distribution of the assimilated

AMSU-A observations for a typical 6-h observation

time window.

The number of vertical levels used in the computation

of the radiative transfer is one of the input parameters

of the CRTM. After consulting colleagues with exten-

sive experience with the CRTM, we decided to use 101

levels. Thus, in our implementation, the h(r)(g) obser-

vation operator for the AMSU-A observations involves

TABLE 1. Number of assimilated observations on a typical day

(31 Jan 2004).

Assimilation

cycle

0000

UTC

0600

UTC

1200

UTC

1800

UTC

Daily

Tot

AMSU-A 34 694 35 131 35 794 36 133 141 752

Pressure 12 214 11 413 12 272 11 235 47 134

Temperature 44 424 17 325 39 385 26 060 127 194

Zonal wind 97 531 64 622 93 899 77 322 333 374

Meridional wind 97 948 64 911 94 256 77 373 334 488

Total 286 811 193 402 275 606 228 123 983 942

FIG. 1. Spatial distribution of the conventional temperature ob-

servations in a typical 6-h observation time window. The locations

of the observations that were assimilated at grid points between s

levels 0.45 and 0.55, at 1200 UTC 15 Feb 2004, are marked by 3s.

The total number of observation locations in this figure is 1415.

FIG. 2. Spatial distribution of the AMSU-A observations in a

typical 6-h observation time window. The locations of the obser-

vations that were assimilated at 1200 UTC 15 Feb 2004 are marked

by 3s. The total number of observation locations in this figure is

6394.

3 The small (less than 0.5%) difference between the number of

observations of the zonal and meridional components of the wind is

a result of our approach of treating the two components of the wind

as independent scalar variables in the data assimilation process

(e.g., we perform quality control of the two wind components in-

dependently).
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an interpolation of the background fields from the 28

model levels to the 101 levels used in the computation of

the radiative transfer. Since the radiative transfer de-

pends on the full atmospheric state, the maximum value

of the weighting function, vk
max and the pressure at the

model level where vm
k takes that value, vk

max, are dif-

ferent at the different geographical locations and ob-

servation times. A couple of typical examples for the

pressure values at which the different channels have the

peak sensitivity according to the CRTM are shown in

Table 2.

4. Numerical experiments

The primary goal of our numerical experiments is to

determine how much improvement is achieved in the

analyses when, in addition to the conventional obser-

vations, we assimilate the AMSU-A observations with

the proposed strategy. We assess the performance of the

data assimilation system when the AMSU-A observations

are included by comparing the analysis and short-term

(48 h) forecast errors with those from two reference ex-

periments. In one of these reference experiments, we as-

similate the AMSU-A observations but do not apply bias

correction to the radiance observations, while in the other

reference experiment, we assimilate only the conven-

tional observations.

a. Experiment design

For the sake of computational efficiency, in the two

experiments that assimilate radiance observations, we

do not assimilate more than one radiance observation

per channel at a given grid point. Instead, we assimilate

the first observation from the dataset that satisfies all

quality control criteria. In particular, we do not assimi-

late observations from mixed-surface footprints (e.g.,

from areas where seawater is mixed with ice), observa-

tions from channels 4 and 5 over land, and observations

for which the scan angle is larger than 358. We also reject

observations for which the difference between the ob-

served value and h(g) is more than 5 times larger than

both the ensemble spread (standard deviation of the

ensemble) and the presumed standard error of the ob-

servations.

The model used in this study is the 2004 model com-

ponent of the operational NCEP GSF truncated to

T62L28 resolution. This model is identical to the one

that was used in Szunyogh et al. (2008) and Whitaker

et al. (2008). The only important improvement in our

LETKF data assimilation system, compared to the one

we evaluated in Szunyogh et al. (2008), is the correction

of a coding error that led to the rejection of most scat-

terometer observations in the former implementation of

the system. This correction leads to an improvement of

the analyses and short-term forecasts in the Southern

Hemisphere extratropics near the surface. We use this

improved set of analyses as the baseline for the evalu-

ation of the results obtained with the augmented ob-

servational dataset. Despite the aforementioned coding

error, the former version of the LETKF provided

analyses and short-term forecasts that in the SH, on

average, were more accurate at the 99% significance

level than those obtained with the then-operational

SSI of NCEP at the same T62L28 resolution. Conse-

quently, our baseline dataset consists of reasonably

high quality analyses.

b. Verification methods

We verify analyses and forecasts on a 2.58 by 2.58

horizontal resolution grid at 16 standard pressure levels

from 1000 to 10 hPa. We introduce the notation xa and

x f (lgl
, ugu

, pgp
, ti) for the state estimate (analysis or

forecast) of an arbitrary scalar variable at the grid point

located at longitude lgl
(gl 5 1, 2, . . . , 144), latitude ugu

(gu 5 1, 2, . . . , 73), and pressure level pgp
(gp 5 1, 2, . . . , 16)

at time ti (i 5 1, 2, . . . , T). Since we verify forecasts

started from the 0000 and 1200 UTC analyses between

10 January and 27 February 2004, T 5 2 3 49 5 98. We

measure the error in the state estimate at pressure level

pgp
and verification time ti with the root-mean-square

error:

E
rms

(p
g

p
, t

i
) 5

1

144 3 73
�
144

g
l
51

�
73

gu51
[xf (l

g
l

, u
gu

, p
g

p
, t

i
)

8<
:

� xy(l
g

l

, u
gu

, p
g

p
, t

i
)]2

9=
;

1/2

. (20)

In Eq. (20), xy(lgl
, ugu

, pgp
, ti) is a proxy for the true

value of the scalar variable, which we define by the

projection of the operational NCEP analysis at time ti

TABLE 2. AMSU-A channels selected for assimilation. The

pressure level of peak sensitivity for each channel is shown for

a randomly selected analysis time (1800 UTC 18 Feb 2004) at 2

particular locations (458N and 458S) along the date line.

AMSU channel Peak at 458N Peak at 458S

No. (hPa) (hPa)

4 902 969

5 861 892

6 590 586

7 349 340

8 242 230

9 161 158

10 79 82

11 43 46
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onto the verification grid. Since the AMSU-A observa-

tions from the Aqua satellite were not assimilated by the

operational NCEP analysis system,4 and the algorithm

used by the then-operational SSI data assimilation sys-

tem of NCEP is substantively different from our LETKF

algorithm, we have reason to believe that most of the

changes we detect in the quality of the analyses are not

due to correlation between the errors in xf(lgl
, ugu

,

pgp
, ti) and xy(lgl

, ugu
, pgp

, ti).

We introduce the notation ERrms(pgp
, ti) for the root-

mean-square error of the experiments that assimilate the

AMSU-A observations and the notation ENRrms(pgp
, ti)

for the root-mean-square error of the experiment that

does not assimilate the AMSU-A observations. Likewise,

we denote the sample mean of the root-mean-square er-

ror for the two experiments by ERT (pgp
) and ENRT (pgp

)

where the sample mean is defined by the time mean:

E
T

(p
g

p
) 5

1

T
�
T

i51
E

rms
(p

g
p
, t

i
). (21)

We test the statistical significance of the difference

between the time series of root-mean-square errors for

the two configurations of the data assimilation system by

testing the statistical significance of the difference be-

tween ERT(pgp
) and ENRT(pgp

) Our test is based on

the two-sample t test for correlated data described in

Example 5.2 of Wilks (2006). In particular, we define the

time series,

D(p
g

p
, t

i
) 5 ER

rms
(p

g
p
, t

i
)� ENR

rms
(p

g
p
, t

i
),

i 5 1, 2, . . . , T, (22)

of the difference between the pairs of the root-mean-

square-errors for the two experiments. The sample mean,

D
T

(p
g

p
) 5

1

T
�
T

i51
D(p

g
p
, t

i
) 5 ER

T
(p

g
p
)� ENR

T
(p

g
p
),

(23)

is typically different from zero. The test computes the

likelihood that the true mean of the random variable

sampled by D(pgp
, ti) is also different from zero through

the following steps:

1) The effective sample size

T9(p
g

p
) ’ T[1� r(p

g
p
)][1 1 r(p

g
p
)]�1, (24)

is computed based on the assumption that D(pgp
, ti)

describes a first-order autoregressive process. The

autocorrelation coefficient r(pgp
) is computed by

r(p
gp

) 5

�
T�1

t51
[D(p

g
p
, t)� D

T1
(p

g
p
)][D(p

g
p
, t 1 1)� D

T2
(p

g
p
)]

n o

�
T�1

t51
[D(p

g
p
, t)� D

T1
(p

g
p
)]2 �

T

t51
[D(p

g
p
, t 1 1)� D

T2
(p

g
p
)]2

8<
:

9=
;

1/2
. (25)

Here, DT1(pgp
)5 (T � 1)�1�T�1

t51D(pgp
, t) and DT2(pgp

) 5

(T � 1)�1�T
t52D(pgp

, t). If r(pgp
) were zero, T9(pgp

)

would equal T, but as the autocorrelation increases,

T9(pgp
) decreases. [The sample size T has to be replaced

by the effective sample size T9(pgp
) because forecast

errors at verification times separated only by 12-h tend

to be strongly correlated.]

2) The test statistic

z(p
g

p
) 5

D
T

(p
g

p
)

[V
D

(p
gp

)/T9(p
gp

)]1/2
(26)

is computed, where VD(pgp
) is the sample variance

for the time series VD(pgp
, t), t51, 2, . . . , T). Under

the assumption that both time series of root-mean-

square errors sample normally distributed random

processes, when the true mean of the random process

sampled by D(pgp
, t) is zero, the random variable z is

normally distributed with standardized statistics.

3) The likelihood l that the particular value of z we

obtain for a given set of analysis or forecast errors is

from a standardized normal distribution is determined

(e.g., with the help of a table of cumulative probabilities

for the standardized normal distribution).

4) The difference between the accuracy of the forecasts

for the two configurations is deemed statistically

significant at the (1 2 L) level, if l # L. For instance,

the difference between the two time series of root-

mean-square errors is statistically significant at the

99% level if kzk $ 2.58 and only at the 90% level if

kzk $ 1.65.

4 In 2004 NCEP assimilated AMSU-A observations from the

NOAA-15 and NOAA-16 satellites.
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We prepare two types of figures to investigate the

spatial distribution of the forecast improvements (degra-

dations). In the first type of figure, we show the horizontal

distribution of the forecast improvements (degradations).

To obtain such figures, we first compute the square error,

E
s
(l

g
l

, u
gu

, p
g

p
, t

i
) 5 [(xf (l

g
l

, u
gu

, p
g

p
, t

i
)

� xy(l
g

l

, u
gu

, p
g

p
, t

i
)]2, (27)

for each grid point (lgl
, ugu

, pgp
) and verification time ti.

Then, we compute

E
ms

(l
g

l

, u
gu

, p
gp

) 5
1

T
�
T

i51
E

s
(l

g
l

, u
gu

, p
gp

, t
i
) (28)

at each grid point for both experiments. We denote the

value of Ems(lgl
, ugu

, pgp
) for the two experiments

by ERms(lg l
, ugu

, pgp
) and ENRms(lgl

, ugu
, pgp

) and

compute the improvement (degradation) due to the as-

similation of the AMSU-A data by
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g
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p
)
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.

(29)

The symbol j � j stands for the absolute value. The mag-

nitude of I(lgl
, ugu

, pgp
) is equal to the square root of the

difference between the mean-square error of the two

experiments and its sign is negative at locations

of improvement [ERms(lgl
, ugu

, pgp
) , ENRms(lgl

, ugu
,

pgp
)] and positive at locations of degradation [ERms(lgl

,

ugu
, pgp

) . ENRms(lgl
, ugu

, pgp
)] To filter I(lgl

, ugu
, pgp

)

based on the statistical significance, we follow the pro-

cedure described for the root-mean-square error, except

that we define the time series of differences by (lgl
, ugu

,

pgp
, ti)ERs(lgl

, ugu
, pgp

) 2 ENRs(lgl
, ugu

, pgp
, ti).

c. LETKF parameters

Most of our choices of the LETKF parameters, which

define the localization for the conventional observa-

tions and the variance inflation for the state vector

components, are discussed in section 2. Since observa-

tion density has a large influence on the optimal level of

variance inflation (e.g., Satterfield and Szunyogh 2011),

retuning the variance inflation factor, r, for the configu-

rations of the data assimilation system, which assimilate

the AMSU-A observations, would likely lead to a further

increase of the accuracy of the analyses and the ensuing

forecasts. Notwithstanding the potential positive effects

of retuning r on the accuracy of the analyses in the ex-

periment that assimilates the AMSU-A observations, for

the sake of a conservative comparison to the results of the

reference experiments, we opt not to retune r.

We find that the ensemble of bias-correction param-

eters collapses for some of the bias parameters unless we

apply an additional inflation, with coefficient rb . 1, to

the fba(k)
q � b

a(k)

q : k 5 1, 2, . . . , K; q 5 1, 2, . . . , Qg bias-

correction components of the analysis ensemble per-

turbations. We also find that by applying rb 5 1.07 to the

ensemble perturbations of all Q bias parameters, we can

avoid a collapse of the ensemble for all Q bias parameters.

The radiance observations are corrected using two

predictors: the skin temperature (p1) and the scan angle

(p2), that is, the bias-correction term is estimated by

b
j
b0

j 1 b1
jp1

1 b2
jp2

, j 5 1, . . . , J 5 8. (30)

Since we estimate all bias parameters adaptively5 and

the number of bias parameters for each channel is (I 1

1) 5 3, the total number of bias parameters that we es-

timate is Q 5 (I 1 1) 3 J 5 24. The areal average values

of the bias-correction parameters are obtained from the

local values by averaging them over all observation lo-

cations in three zonal latitude bands (908–308S, 308S–

308N, 308–908N) using Eqs. (18) and (19). We chose this

particular set of predictors and averaging regions based

on a large number of numerical experiments with dif-

ferent predictors suggested in the literature. We define

the initial value of the estimates of the Q bias parame-

ters by a set of random samples from a standardized

normal distribution.

We find that a 60-member ensemble provides a suffi-

ciently large number of degrees of freedom to obtain

accurate estimates of the bias parameters and the at-

mospheric state. We also find that a cutoff value of h 5

0.8 provides a performance that is similarly good to that

for lower values, but at a lower computational cost.

5. Results

a. Analysis and forecast verification results

Figures 3 and 4 show the time evolution of the root-

mean-square error Erms(pgp
, ti) (i 5 1, 2, . . . , T), for the

analysis of the temperature and the meridional compo-

nent of the wind at three atmospheric levels in the SH

extratropics. The results indicate that the assimilation of

the radiance observations with our strategy improves

the analysis and forecast not only of the temperature,

5 We note that some organizations (e.g., NCEP) estimate the

scan angle bias predictor by a separate offline procedure.
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which is the model variable most closely related to the

radiance through the observation operator, but also of

the two horizontal components of the wind. This result

suggests that the ensemble-based estimate of the cross

correlation between the errors in the background tem-

perature and wind is sufficiently accurate to lead to an

improvement of the wind analysis. Figures 3 and 4 also

show that the bias correction has a larger positive effect

in the upper troposphere than in the lower troposphere

and that employing a bias-correction scheme is espe-

cially important for the temperature analysis to benefit

from the AMSU-A observations.

We show the time series of root-mean-square error

only for the SH extratropics because this is the region

FIG. 3. Time evolution of the root-mean-square error Erms( pgp
, ti) (i 5 1, 2, . . . , T ), for the

temperature analysis at three different model levels in the SH. Shown are the results with the

satellite radiance observations using bias correction (blue), with the satellite radiance obser-

vations not using bias correction (green), and without satellite radiance observations (red).
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where the difference between the time series from the

different experiments is statistically highly significant (at

the 99% at most pressure levels). The full vertical profile

of ET(pgp
) is shown at both analysis and 48-h forecast

time for the SH and the NH extratropics, respectively, in

Figs. 5 and 6. These figures show that the bias correction

has a large positive impact on the analysis and forecast

accuracy in the upper troposphere and the stratosphere.

Interestingly, when the bias is not corrected, we observe

a large degradation instead of the large improvement in

the same atmospheric region due to the assimilation

of the AMSU-A observations. In addition, Fig. 5 also

shows that the assimilation of AMSU-A observations

leads to an improvement of the analyses and the fore-

casts in the lower troposphere in the SH extratropics

even without bias correction.

The geographical distribution of the improvement in

the 48-h forecasts is shown in Figs. 7 and 8. The only

difference between these two figures is that, in Fig. 8, the

difference between the forecast errors is not shown at

FIG. 4. As in Fig. 3, but for the meridional component of the wind instead of the temperature.
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FIG. 5. Time mean of the root-mean-square error, ET ( pgp
), at (left) analysis time and (right) 48-h

forecast time for different forecast variables in the SH extratropics. Results are show for the experi-

ments with the satellite radiance observations using bias correction (blue), with the satellite radiance

observations not using bias correction (green), and without satellite radiance observations (red).
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FIG. 6. As in Fig. 5, but for the NH extratropics.
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locations where it is not statistically significant at the

90% level. (We include the figure showing unfiltered

results to illustrate the effect of filtering based on sta-

tistical significance.) This pair of figures indicates that

the analyses are improved over the oceans, with the

largest improvement between and east of Cape Horn

and the Antarctic Peninsula, while the analyses are de-

graded over Antarctica. The statistically significant im-

provement in the surface pressure forecasts indicates

that the ensemble-based estimate of the background

error covariance matrix provides useful information

about the cross correlation between the surface pressure

FIG. 7. Color shades show the improvement I(lgl
, ugu

, pgp
) in the 48-h forecasts due to the

assimilation of AMSU-A observations: (top to bottom) surface pressure, 500 and 200 hPa

geopotential height. (Negative values indicate improvement, while positive values indicate

degradation.) Contours show the time mean of the verifying analyses.
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and the atmospheric state variables that directly affect

the radiative transfer.

In summary, we can conclude that the assimilation

of radiance observations with our proposed strategy is a

source of analysis improvement that leads to significant

forecast improvement in the SH midlatitudes, which

are especially large in the upper troposphere and the

stratosphere.

b. The behavior of the bias parameters

To illustrate the behavior of the bias-correction terms,

we choose two channels: one that has the average peak

sensitivity in the lower troposphere (channel 4) and one

that is most sensitive, on average, to the atmospheric

conditions in the stratosphere (channel 11). (See Table 2

for typical pressure levels of peak sensitivity for the

FIG. 8. As in Fig. 7, but that I(lgl
, ugu

, pgp
) is shown only at the location where it is significant at

the 90% level.
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different channels.) We investigate the time evolution of

the bias-correction terms for these two channels in the

extratropical SH region (Fig. 9).

The time evolution of the bias-correction term is

strikingly different for the two channels: while for the

channel with peak sensitivity near the surface (channel 4),

the time evolution of the bias correction is characterized

by a diurnal oscillation around a nearly constant level,

for the channel with peak sensitivity in the stratosphere

(channel 11), the value of the bias correction shifts from

a negative value (about 20.7 K) to a positive value

(about 0.3 K). To better understand the behavior of the

bias correction, in Fig. 10 we show the contribution of

the three predictors (bj
0, bj

1p1 and bj
2p2) to the total bias

correction. The results show that the diurnal oscillation

in the bias-correction term for channel 4 is due to the

oscillation in the term bj
2p2 associated with the surface

temperature predictor bj
2. In addition, the drift of the

value of the bias correction for channel 11 is the net

result of a drift of the intercept term bj
0and term bj

2p2

associated with the surface temperature predictor bj
2p2

in the opposite directions. This shift of the bias-correction

terms in the opposite directions suggests that the bias

model, which provides an overall good performance for

the 8 channels, may not be optimal for channel 11.

Except for the scan angle bias component, the magnitude

of the bias-correction components is larger for channel

11 than the magnitude of the respective components for

channel 4.

Finally, Fig. 11 shows the analysis and the spread of

the analysis ensemble for the bias parameters bj
0 bj

1, and

bj
2. This figure shows that, for our choices of the variance

inflation coefficients r and rb, the domain average of the

ensemble spread is stable and sufficiently large to allow

for continuous changes in the bias parameters. The

temporal variability of the bias parameters is clearly

larger for channel 11 than for channel 4, indicating that

the larger variability in the contribution of the differ-

ent bias-correction terms observed in Fig. 10 for this

channel is the result of changes in the estimates of the

bias parameters.

6. Conclusions

In this paper, we tested the techniques developed by

Fertig et al. (2007, 2009) for the assimilation of satellite

radiance observations in a realistic setting for the first

time. The results suggest that the tested strategy can

extract useful information about the atmospheric state,

especially in regions where the satellite radiance ob-

servations are the dominant source of observational

information. While our initial results with the ensemble-

based bias corrections are promising, several important

challenges remain to be addressed. Most importantly,

augmenting the local state vector with the bias compo-

nents significantly increases the dimension of the local

state vector (e.g., we added Q 5 24 extra components to

the 4 or 5 components of the state vector in this paper).

Since increasing the number of state vector components

inevitably increases the dimensionality of the space of

uncertainty, we expect that increasing the number of

satellite channels will require increasing the number

of ensemble members. The fact that we were able to

obtain good results without increasing the ensemble

size, while increasing the dimension of the local state

vector by a factor of 7, is promising for the future, but

does not guarantee that the ensemble size would re-

main manageable in case of a further massive increase

of the number of bias parameters.

Our approach for bias correction, which is based on a

simultaneous estimation of the state and bias parameters

based on an ensemble, is not the only way to estimate

and to correct for the bias in the radiance observations

in an ensemble-based data assimilation system. Fertig

et al. (2009) also introduced, in addition to the algo-

rithm tested here, a two-step approach in which first

the bias-correction parameters are estimated with an

ensemble-based scheme and then the state is estimated

FIG. 9. Time evolution of the estimate of the bias for (top) channel

4 and (bottom) channel 11 in the SH region.
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FIG. 10. Time evolution of the bias terms bj
0, bj

1p1 and bj
2p2 for (left) channel 4 and (right) channel 11 in the SH region:

(top) intercept, (middle) scan angle bias, and (bottom) surface temperature bias.
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FIG. 11. As in Fig. 10, but for the bias correction parameters bj
0, bj

1, and bj
2 in the SH region (thick solid line). Also

shown is the time evolution of the domain average of the spread (standard deviation) of the ensemble of bias pa-

rameter estimates (thin dashed line).
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in a subsequent step. Moreover, Miyoshi et al. (2010)

uses a deterministic approach to obtain a single esti-

mate of each bias parameter simultaneously with the

ensemble-based estimate of the atmospheric state. A

comparison of the different approaches for observation

bias correction in ensemble-based data assimilation sys-

tems should be the subject of future research.
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