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ABSTRACT

We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions,
which improves on past implementations of this technique. The need for cluster finder algorithms able to produce
reliable cluster catalogs up to redshift 1 or beyond and down to 1013.5 solar masses is paramount especially in light
of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in
photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine
the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect
clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT
to mock catalogs which extend to redshift 1.4 reproducing the ΛCDM cosmology and the clustering properties
observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of
the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder.
We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT
can produce a cluster catalog with completeness and purity > 80% for the redshift range up to ∼1 and mass range
down to ∼1013.5 solar masses.
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1. INTRODUCTION

Today we recognize that galaxies constitute a very small
fraction of the total mass of a cluster, but they are nevertheless
some of the clearest signposts for detection of these massive
systems. Furthermore, the extensive evidence for differential
evolution between galaxies in clusters and the field—and its
sensitivity to the underlying cosmological model—means that it
is imperative to quantify the galactic content of clusters. Perhaps
even more importantly, optical detection of galaxy clusters is
now inexpensive both financially and observationally. Large
arrays of CCD detectors on moderate telescopes can be utilized
to perform all-sky surveys with which we can detect clusters to
z ∼ 1, and even further with IR mosaics.

Forthcoming projects such as the Dark Energy Survey (DES;
http://www.darkenergysurvey.org), Pan-STaRRS (http://www.
pan-starrs.ifa.hawaii.edu), and the Large Synoptic Survey Tele-
scope (LSST; http://www.lsst.org) will map thousands of square
degrees to very faint limits (∼29th magnitude per square arc-
second) in at least five filters, allowing the detection of clusters
through their weak lensing signal as well as directly through
the visible galaxies. Combined with ever more efficient cluster-
finding algorithms, these programs will expand optical cluster
detection to redshifts greater than unity. Prospects for utiliza-
tion of such data to address one of the most important scientific
problems of our time by measuring the cosmological parame-
ters with improved precision are outstanding. In fact, given the
statistical power of these surveys, clusters have become one of
the strongest probes for dark energy (e.g., Haiman et al. 2001;
Holder et al. 2001; Levine et al. 2002; Hu 2003; Rozo et al. 2007,

2010). Two unavoidable challenges imposed by these projects
are to produce optimal cluster catalogs—with high complete-
ness and purity—and to determine their selection function as a
function of cluster mass and redshift.

To see how to proceed, we must understand the strengths and
important limitations of the techniques in use today, especially
with respect to the characterizability of the resulting catalogs.
We focus on photometric techniques rather than on cluster
finding in redshift space, which also has a long story, starting
with Huchra & Geller (1982), and has been successfully applied
to spectroscopic redshift survey data such as 2dFGRS (Eke et al.
2004) and DEEP2 (Gerke et al. 2005). Although the Voronoi
Tessellation (VT) uses redshift information, it is a photometric
technique and this motivates a discussion focused on this class
of cluster finders.

The earliest surveys relied on visual inspection of vast
numbers of photographic plates, usually by a single astronomer.
The true pioneering work in this field did not appear until the
late 1950s, upon the publication of a catalog of galaxy clusters
produced by Abell (1958), which remained the most cited and
utilized resource for both galaxy population and cosmological
studies with clusters for over 40 years. Abell et al. (1989,
hereafter ACO) published an improved and expanded catalog,
now including the Southern sky. These catalogs have been the
foundation for many cosmological studies over the last decades,
even with serious concerns about their reliability. Despite the
numerical criteria laid out to define clusters in the Abell and
ACO catalogs, their reliance on the human eye and use of older
technology and a single filter led to various biases. These old
catalogs suffered as much from being black and white as they
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did from being eye-selected. Even more disturbing, measures of
completeness and contamination in the Abell catalog disagree
by factors of a few. Unfortunately, some of these problems will
plague any optically selected cluster sample, but the use of color
information, objective selection criteria, and a strong statistical
understanding of the catalog can mitigate their effects.

Only in the past 20 years has it become possible to utilize
the objectivity of computational algorithms in the search for
galaxy clusters. These more modern studies required that plates
be digitized, so that the data are in a machine-readable form.
The hybrid technology of digitized plate surveys blossomed
into a cottage industry. The first objective catalog produced was
the Edinburgh/Durham Cluster Catalog (Lumsden et al. 1992),
which covered 0.5 sr (∼1600 deg2) around the South Galactic
Pole. Later, the APM cluster catalog (Dalton et al. 1997) was
created by applying Abell-like criteria to select overdensities
from the galaxy catalogs. The largest, most recent, and the last
of the photo-digital cluster survey is the Northern Sky Optical
Survey (Gal et al. 2000, 2003, 2009; Lopes et al. 2004). This
survey relies on galaxy catalogs created from scans of the second
generation Palomar Sky Survey plates, input to an adaptive
kernel galaxy density mapping routine. The final catalog covers
11,733 deg2, with nearly 16,000 candidate clusters, extending
to z ∼ 0.3. A supplemental catalog up to z ∼ 0.5 was generated
by Lopes et al. (2004) using VT and adaptive kernel maps.

With the advent of CCDs, fully digital imaging in astronomy
became a reality. These detectors provided an order of magni-
tude increase in sensitivity, linear response to light, small pixel
size, stability, and much easier calibration. The main drawback
relative to photographic plates was (and remains) their small
physical size, which permits only a small area (of order 15′)
to be imaged by a larger 40962 pixel detector. Realizing the
vast scientific potential of such a survey, an international col-
laboration embarked on the Sloan Digital Sky Survey (SDSS,
http://www.sdss.org), which included construction of a special-
ized 2.5 m telescope, a camera with a mosaic of 30 CCDs, a
novel observing strategy, and automated pipelines for survey
operations and data processing. Main survey operations were
completed in the fall of 2005, with over 8000 deg2 of the north-
ern sky image in five filters to a depth of r ′ ∼ 22.2 with cali-
bration accurate to ∼1%–2%, as well as spectroscopy of nearly
one million objects.

With such a rich data set, many groups both internal and exter-
nal to the SDSS collaboration have generated a variety of cluster
catalogs, from both the photometric and the spectroscopic cata-
logs, using techniques including:

1. VT (Kim et al. 2002);
2. overdensities in both spatial and color space (maxBCG,

Annis et al. 1999; Koester et al. 2007b; Hao 2009);
3. subdividing by color and making density maps (cut-and-

enhance, Goto et al. 2002);
4. the Matched Filter and its variants (Kim et al. 2002);
5. surface brightness enhancements (Zaritsky et al. 1997,

2002; Bartelmann & White 2002);
6. overdensities in position and color spaces, including red-

shifts (C4, Miller et al. 2005); and
7. friends-of-friends (FoF, Berlind et al. 2006).

Each method generates a different catalog, and early attempts
to compare them have shown not only that they are quite
distinct, but also that comparison of two photometrically derived
cluster catalogs, even from the same galaxy catalog, is not
straightforward (Bahcall et al. 2003).

In addition to the SDSS, smaller areas, but to much higher
redshift, have been covered by numerous deep CCD imaging
surveys. Notable examples include the Palomar Distant Cluster
Survey (PDCS, Postman et al. 1996), the ESO Imaging Survey
(EIS, Lobo et al. 2000), and many others. None of these surveys
provide the angular coverage necessary for large-scale structure
and precision cosmology studies, and have been specifically de-
signed to find rich clusters at high redshift. The largest such
survey to date is the Red Sequence Cluster Survey (Gladders
& Yee 2005), based on moderately deep two-band imaging us-
ing the CFH12K mosaic camera on the Canada–France–Hawaii
Telescope 3.6 m telescope, covers ∼100 deg2. This area cover-
age is comparable to X-ray surveys designed to detect clusters
at z ∼ 1 (Vikhlinin et al. 2009).

Any cluster survey must make many different mathematical
and methodological choices. Regardless of the data set and
algorithm used, a few simple rules should be followed to
produce a catalog that is useful for statistical studies of galaxy
populations and for cosmological tests.

1. Cluster detection should be performed by an objective,
automated algorithm to minimize human biases.

2. The algorithm utilized should impose minimal constraints
on the physical properties of the clusters, to avoid selection
biases. Any remaining biases must be properly character-
ized.

3. The sample selection function must be well understood,
in terms of both completeness and purity, as a function of
both redshift and mass. The effects of varying the cluster
model on the determination of these functions must also be
known.

4. The catalog should provide basic physical properties for all
the detected clusters, including estimates of their distances
and some mass proxy (richness, luminosity, overdensity)
such that specific subsamples can be selected for future
study.

One of the most popular and commonly used methods today
is the VT (Ramella et al. 2001; Kim et al. 2002; Lopes et al.
2004). Our implementation of this technique is described in
detail in Section 2. Briefly, it subdivides a spatial distribution
into a unique set of polygonal cells, one for each object, with
the cell size inversely proportional to the local density. One then
defines a galaxy cluster as a high-density region, composed
of small adjacent cells. VT satisfies the above criteria for
generating statistical, objective, cluster samples. It requires no
a priori assumption on galaxy colors, the presence of a red
sequence, a specific cluster profile, or luminosity function. Mock
catalogs have been used to test the efficiency of the detection
algorithm. These attractive qualities have led to its employment
in numerous projects beginning almost 20 years ago (van de
Weygaert & Icke 1989; Ikeuchi & Turner 1991; van de Weygaert
1994; Zaninetti 1995; El-Ad et al. 1996; Doroshkevich et al.
1997). Ebeling & Wiedenmann (1993) used VT to identify
X-ray sources as overdensities in X-ray photon counts. Kim
et al. (2002), Ramella et al. (2001) and Lopes et al. (2004) looked
for galaxy clusters using VT. van Breukelen & Clewley (2009)
included the VT as one of two methods in their 2TecX detection
algorithm, an extension of their work on clusters in UKIDSS
(van Breukelen et al. 2006). Barkhouse et al. (2006) used the
VT to detect clusters on optical images of X-ray Chandra fields.
Diehl & Statler (2006) applied a modified version of the VT
algorithm to X-ray data.

Here we improve on past implementations of this technique
focusing on optical data. We build the VT in photometric
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redshift shells and use the two-point correlation function of
the galaxies in the field to determine the density threshold for
detection of cluster candidates and to establish their significance.
This allows us to detect clusters in a self-consistent way
using a minimum set of free parameters and without any
assumptions about the astrophysical properties of the clusters.
We provide a list of member galaxies for each cluster and use the
number of members as a proxy for mass. We apply the VT on
mock catalogs that accurately reproduce the ΛCDM cosmology
and the clustering properties observed in the SDSS data. By
comparing the VT cluster catalog with the truth table, we
measure the completeness and purity of our cluster catalog as a
function of mass and redshift. We show that our implementation
of the VT produces a reliable cluster catalog up to redshift ∼1
and down to ∼1013.5 solar masses.

The paper is organized as follows: Section 2 is dedicated to
a detailed presentation of the algorithm; Section 3 describes
the method used to compute the selection function of the
cluster catalog; in Section 4 we discuss the completeness
and purity results and show our ability to recover the mass
function of the mock catalog at redshift close to unity; Section 5
presents a summary of this work. The work on the relation
between the two-point correlation function and the VT cell
areas distribution—fundamental for the development of our
method—is detailed in the Appendix.

2. ALGORITHM

We present the VT cluster finder in 2+1 dimensions. The
method is non-parametric and does not smooth the data, making
the detection independent of the cluster shape. It uses all galaxies
available, going as far down in the luminosity function as the
input catalog permits. It does not rely on the existence of features
such as a unique brightest cluster galaxy (BCG) or a tight
ridgeline in the color–magnitude space. It works in shells of
redshift, treating each shell as an independent two-dimensional
field.

Central to the VT algorithm is the background over which an
overdensity must rise to be identified as a cluster. In contrast
to earlier implementations of the VT algorithm (Ebeling &
Wiedenmann 1993; Ramella et al. 2001; Kim et al. 2002;
Lopes et al. 2004), we do not assume a Poissonian background.
We use a more realistic assumption that the angular two-point
correlation function of the background galaxy distribution is
represented by a power law (e.g., Connolly et al. 2002). Another
improvement over earlier works on VT-based cluster finders is
the use of photometric redshifts instead of magnitudes (Ramella
et al. 2001; Lopes et al. 2004) or colors (Kim et al. 2002). This
eliminates the need for a percolation step and allows for a cluster
finder which is not based on astrophysical properties of clusters
(the luminosity function or color–magnitude relation), but on
the characteristics of the large scale clustering process. This
makes the VT a cluster finder subject to different systematics
from color-based methods.

The fundamental inputs required for cluster detection using
the VT are the coordinates R.A., decl., and redshift of each
galaxy and the redshift error σz(z) for the full galaxy sample.
The input catalog is sliced in non-overlapping 1σz wide redshift
shells. Note that the velocity dispersion of a typical cluster
is much smaller than realistic values of σz. For each shell an
estimate of the parameters (A,γ ) of the two-point correlation
function is required. This can be obtained directly from the data.

We then build a Voronoi diagram and compare the distribution
of cell areas with the distribution expected from a background-

dominated field. Since small cell size implies high density, this
allows us to establish a size threshold below which the distri-
bution is dominated by cluster members. The most significant
clumps of contiguous cells smaller than this threshold are listed
as clusters. This procedure is repeated on all redshift shells and
the results are merged into a unique list of cluster candidates.
The merge proceeds as follows. From the input galaxy catalog
we extract three-dimensional boxes centered at the coordinates
of each candidate. We run the VT on those boxes to confirm the
detection. This recursive procedure eliminates the edge effects
at the interface between successive shells, reduces the number of
fake detections due to projection effects, and eliminates multiple
detections.

In the resulting cluster catalog, we report position, redshift,
redshift error, galaxy density contrast, significance of detection,
richness, size, and shape parameters of the clusters. We also
provide a list of members with the local density of their
respective cells and flags indicating the central galaxy (the
galaxy found in the highest density cell).

Although it is possible to build Voronoi diagrams on a sphere,
we use a rectangular coordinate system, which is easier to imple-
ment. This implies that we must process small sky areas at a time
to avoid distortions due to tangential projection. We have tested
different area sizes and concluded that boxes of 3 × 3 degrees
are adequate. A buffer region is implemented to avoid edge
effects and the effective area is the central 1×1 deg2 box. Clus-
ters found in the buffer regions are rejected prior to the merging
of the shells’ candidate lists. The size of the buffer zone cor-
responds to the angular scale of a large cluster at the lowest
redshift (a 1◦ scale corresponds to ∼3 Mpc at z = 0.05).

In the following, we detail each step of the cluster detection
process and explain how each of the above quantities is derived,
justifying the choices made in designing the algorithm.

2.1. VT Construction

The Voronoi diagram of a two-dimensional distribution of
points is a unique, non-arbitrary, and non-parametric fragmen-
tation of the area into polygons. A simple algorithm to perform
such fragmentation is the following (see Figure 1): starting from
any position P1, we label its nearest neighbor P2 and walk along
the perpendicular bisector between those points. We stop when
we reach for the first time a point Q1 equidistant from P1, P2
and any third point P3. We now walk along the perpendicular
bisector between P1 and P3 until we reach the point Q2 and
identify the next point P4 by the same criterion. Successive rep-
etition of this process will eventually bring us back to Q1 after
a finite number of steps. The set of points Qi are the vertices
of a polygon, the Voronoi cell, associated with P1. If this pro-
cess is repeated for each point Pi we will have built the VT
corresponding to this point field.

However, there are several more robust and efficient computa-
tional algorithms to build a Voronoi diagram from a given distri-
bution. In our code, we use the so-called divide and conquer al-
gorithm (D&C) implemented in the Triangle library (Shewchuk
1996). The D&C is based on recursive partition and local tri-
angulation of the points and then on a merging stage. The total
running time for a set of n points is O(n log n).

There are no arbitrary choices in building the VT. The cell
edges are segments of the perpendicular bisectors between
neighbor points and each vertex is an intersection of two
bisectors. This implies that the cells will be smaller in the high-
density regions and since each cell contains one and only one
point, the inverse of the cell area gives the local density. The
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P1 P2

P3

Q1

P4

Q2

Figure 1. Portion of a typical VT is shown together with its dual Delaunay mesh
(solid and dashed lines, respectively) to illustrate the Voronoi diagram building
process. For each generator set Pi, there is one and only one set of Voronoi cells
given by the vertices Qi. See text for details.

VT cluster finder takes advantage of this fact in the process of
detection.

2.2. Cluster Candidate Detection

Each realization of a given point process will result in a
distinct unique tessellation, but the distribution of Voronoi cell
areas will be the same. The case of the Poisson point process
has been extensively investigated and it has been shown (Kiang
1966) that the resulting distribution of Voronoi cell areas is well
fitted by a gamma distribution

p(x) = βα

Γ(α)
xα−1 exp−βx (1)

with β = α = 4 (only for the Poisson case) and x being the cell
area normalized by the mean area of all cells. Here we extend
Kiang’s formula to a more general case.

Consider a random distribution of points in a plane with
two-point correlation function given by w(θ ) = Aθ1−γ , where
the variable θ is the separation between point pairs and the
parameters A and γ are respectively the amplitude and slope of
the power law. The Poisson distribution is the particular case
where A → 0. A general relation between the statistics of the
point field and the VT areas distribution remains as a conjecture
yet to be proved, but in the case of a point field generated
from the above two-point correlation function, the gamma
distribution still holds with the values of α and β modified.
We have proven this fact and obtained the relation between
α, β and the parameters A, γ numerically. Using the simulated
annealing method described in the context of materials science
(Rintoul & Torquato 1997), we generate test fields spanning a
wide range of A, γ pairs. On each test field we applied the VT
algorithm and obtained the corresponding distribution of cell
areas, fitting Equation (1) to obtain the corresponding pair α, β.
These two parameters are not independent. They are related by

cluster dominat
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Figure 2. Differential and cumulative distributions of normalized cell densities
illustrating the process of detection in the VT cluster finder. The dashed lines
correspond to a background distribution with A = 0.005 and γ = 1.7. The solid
lines correspond to the distributions distorted by an artificial Gaussian-shaped
cluster contribution (dotted line). The vertical line is the threshold for detection
δ∗. All cells above the threshold are selected as cluster member candidates.

a simple relation: β = α−0.26. See the Appendix for a detailed
discussion of these results.

Information about the background is given to the VT code via
the two input parameters A, γ . These will depend on the redshift
shell and, ideally, they should be estimated directly from the
data being considered. High accuracy in the parameters is not
required, though. Note that no free parameters are introduced
by A and γ , since they can be completely determined from
the global input galaxy catalog. Clusters and groups present in
the field when the two-point correlation function is measured
do not affect the cluster finder. On the contrary, our method is
based on the idea that the clustering process resulting in the
power law described by A and γ also results in the formation of
clusters, which are found in the high-density end of the VT cell
distribution.

Taking the differential probability distribution (1) as a func-
tion of the normalized cell density, δ = 1/x, our goal is to
identify a density threshold δ∗ above which the contribution of
the clusters starts to dominate over the background. A schematic
example is shown in Figure 2. To the background distribution
given by A = 0.005 and γ = 1.7 (upper panel, dashed line), we
add a cluster contribution of 10% given by a simple Gaussian
(upper panel, dotted line). As a result, the total distribution is
distorted by the presence of the clusters. To perform the detec-
tion, we take the corresponding cumulative distributions. For
the background, the cumulative distribution is given by

P (δ) = Γ(α, β/δ)

Γ(α)
(2)

and depends on the input parameters A, γ through α and β. The
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maximum of the difference between the background (dashed)
and the total (solid) distributions corresponds to the point where
the total distribution increases faster than the background. This
point is a natural choice for the threshold δ∗ (vertical line).

In the example above an artificial cluster contribution with a
particular shape was added to illustrate the principle of detection.
In the actual process, we work only with the cumulative
distributions. Once the threshold is computed we select all
the cells with δ � δ∗. We then take the clumps of contiguous
selected cells as cluster candidates.

Setting the threshold at the point of maximum difference
between the two distributions leads to the detection only of the
central regions of the most massive clusters (M > 1014.5 M�).
This is a consequence of the fact that the two-point correlation
function of the field includes the contribution of clusters,
and only the highest density peaks deviate significantly from
the distribution predicted by Equation (2). To improve this
result, we allow this to be an adjustable parameter, called scl.
By comparing the two-point correlation function of galaxies
measured by Davis & Peebles (1983) in the 14.5mB CfA redshift
survey with the two-point correlation function of rich (R � 1)
Abell clusters measured by Bahcall & Soneira (1983), Bahcall
(1986) has estimated that ∼25% of all galaxies are associated
with clusters and the 10 Mpc scale structures that surround
them. We therefore set our threshold at the point δ∗ where the
cumulative distribution reaches ∼75%. As this fraction must
change with redshift, magnitude limit of the galaxy catalog and
lower mass limit of the cluster catalog, we determine the exact
values of the cumulative distribution used to set δ∗ in each
redshift bin, scl(z), by applying the cluster finder on simulated
galaxy catalogs and maximizing the completeness and purity of
the output catalog. This process does introduce a free parameter
that we must tune.

2.3. Selection of High-significance Candidates and
Membership Assignment

For a given threshold δ∗, we assume that each cluster
candidate has a probability

p(δmin, Ng) = 1 − Erf

((
δmin

δ∗ − 1

)
Ng√

2

)
(3)

of being caused by random fluctuations of the background field.
Here δmin is the minimum cell density and Ng is the number
of galaxies in the candidate. Note that the process of detection
implies δmin � δ∗. A confidence level of 95% is required for a
candidate to be accepted. If a given candidate has p(δmin, Ng)
below this level, we iterate on its cells, dropping the one with the
lowest density and recomputing p(δmin, Ng), until this candidate
falls within the acceptable level or runs out of galaxies. As a
result, some cluster candidates will be reduced in size and others
will be eliminated. The final list of candidates is composed
of clusters above the required confidence level. This cleaning
process is necessary as the δ∗ threshold is set to be permissive;
the estimate by Bahcall (1986) that ∼25% of all galaxies are
associated with clusters was accompanied by a hypothesis that
these galaxies were distributed in ∼30 Mpc scale overdense
regions about clusters, while we aim to detect clusters closer to
the ∼1 Mpc Virial scale. This process results in a list of cluster
members, given by all the galaxies within the final VT footprint
of the cluster. The galaxy belonging to the cell of highest density
is taken as the central galaxy.

The accuracy of the membership assignment is limited by
the errors in the redshift of the galaxies and width of the

redshift shell. As discussed in Section 2.5, the membership list
is improved in the second run of the VT cluster finder, which
is performed in boxes centered at the central galaxies flagged
during this first run.

2.4. Shape Measurement

To obtain the cluster shape parameters, we take the galaxies
within the cluster VT footprint and compute the second moments
of the galaxy distribution with respect to the coordinates (xc, yc)
of the central galaxy, using the cell densities δ as weights. These
second moments are

mxx =
∑

i δi(xi − xc)2∑
i δi

myy =
∑

i δi(yi − yc)2∑
i δi

(4)

mxy =
∑

i δi(xi − xc)(yi − yc)∑
i δi

where the x and y directions are aligned with the R.A. and
decl. axes, respectively. We use these quantities to compute the
semimajor and semiminor axes, a and b, respectively:

a =
[

1

2
(mxx + myy + f )

]1/2

b =
[

1

2
(mxx + myy − f )

]1/2

(5)

where

f = (mxx − myy + 4mxy)1/2.

The position angle is also obtained in terms of the same
quantities,

PA = 180

π
tan−1

(
b2 − mxx

mxy

)
, (6)

and is given in degrees.

2.5. Catalog Construction

A global list of cluster candidates is made by merging the
results of the individual shells. For each cluster in that list we
extract from the full input galaxy catalog (not the z shells) a
three-dimensional box centered at its central galaxy and with
the same size as in the first run: 3 × 3 deg2 and σz width. These
boxes are processed with the VT algorithm, repeating the steps
described in Sections 2.1–2.4, and a new global list of cluster
candidates is constructed, taking only the clusters found at the
center of each box.

We perform a matching between the two global lists. In this
matching scheme, candidates are considered the same cluster
if they have more than 50% of shared galaxies and multiple
matches are not allowed. When a matching occurs, that cluster
is eliminated from the list of candidates available for matching
with other candidates. The clusters found in the first run but
undetected in the second run are eliminated as projection effects.
The primary function of this stage, however, is to deal with
photo-z slice edge effects.
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Because the new boxes are allowed to cross the initial
shell boundaries, edge effects in the redshift dimension are
eliminated. Clusters split in several components during the
initial detection will result in cluster candidates with a number
of shared galaxies after the second run. For a given pair of
candidates found to be the same cluster (i.e., sharing more than
50% of their galaxies), only the one with the largest number of
members is added to the final cluster catalog. Otherwise, they
are said to be distinct clusters with shared galaxies (which are
flagged in the members list) and both are included in the cluster
catalog. Setting the threshold of shared galaxies to 50% is a
natural choice between the two extremes where all candidates
would be duplicated or only the clusters found with the same
set of member galaxies would be accepted.

At this point the detection is completed. We have the final list
of clusters containing R.A., decl., redshift, and a list of member
galaxies including the parameters of the corresponding VT cells.
This forms the VT footprint of the cluster. The cluster redshift is
estimated as the median of the redshift of the cluster members.
The quantity is better estimated in the second run after a cleaner
membership list is obtained, so as to avoid projection effects
along the line of sight.

The output parameters of the VT cluster catalog are: ID, R.A.,
decl. (coordinates of its central galaxy or the highest density
peak), z (given by the median of all members), σz (rms value),
δc (density contrast measured at the final stage of detection), σ
(significance of detection), richness (number of members), size
(radius of the circle enclosing all galaxies), a (semimajor axis),
b (semiminor axis), and P.A. (position angle).

We also report a members list containing: ID, host ID (most
likely host cluster), cell density, shared flag (1 if the galaxy is
shared with another cluster, 0 otherwise), and central flag (1 for
central galaxy, 0 for regular members). Note that we do not list
every possible galaxy–cluster association in the output. Galaxies
not associated to any cluster are listed with host ID, shared flag
and central flag set to −1. These non-member galaxies can be
used, for instance, to compute the local density of non-member
galaxies around a cluster or to run afterburners to measure cluster
properties such as richness and R200.

Having a list of members generated by the cluster finder is
highly desirable, because properties such as the optical richness
and R200 can be estimated. The lack of membership assignment
in VT implementations using magnitudes was a drawback and
we improve on that matter. Also, this allows us to compute the
algorithm efficiency as follows.

3. ALGORITHM EFFICIENCY

The effectiveness of the algorithm is evaluated by measuring
the VT catalog completeness and purity as a function of mass
and redshift. These quantities are the selection function needed
to understand the catalog. The completeness and purity are best
measured with mock galaxy catalogs with known relations to
dark matter halos. The field can no longer be advanced by
placing single clusters in the center of an image with random
backgrounds.

We apply the algorithm to a mock galaxy catalog and
match the resulting cluster catalog with the corresponding
mock truth table of halos—the truth table. This allows us to
define completeness as the fraction of halos with a VT cluster
counterpart and purity as the fraction of VT clusters with a
matching halo. We perform this in bins of redshift and we also
estimate the impact of redshift errors.

3.1. Mock Catalogs

Mock galaxy catalogs are created using the ADDGALS code
(Busha & Wechsler 2008; Wechsler 2004; see also Gerdes et al.
2010, Appendix A). ADDGALS takes an N-body simulation
light cone and attaches galaxies to its dark matter particles
to create a deep mock photometric catalog using an N-body
simulation with only modest mass resolution. The result-
ing galaxy catalog reproduces the luminosity function, the
magnitude-dependent two-point correlation function, and the
color–density–luminosity distribution measured from the SDSS
data. The mock catalogs used here were based on the Hubble
volume simulation that modeled a 3 Gpc h−1 box with 10243 par-
ticles in a flat ΛCDM cosmology with ΩM = 0.3 and σ8 = 0.9
(Evrard et al. 2002).

ADDGALS first builds a list of galaxies r-band luminosities
drawing from a luminosity function φ(Mr ), and assigns these
galaxies to individual dark matter particles in the simulation.
Here, φ(Mr ) is the observed SDSS r-band luminosity function
at redshift ∼0.1 from Blanton et al. (2003) assuming passive
evolution of 1.3 mag per unit redshift. These galaxies are then
mapped to individual dark matter particles using a probability
relation P (Rδ|Lr/L∗) that relates to local dark matter overden-
sity to the luminosity of a galaxy. Overdensities of dark matter
are computed using the characteristic radius Rδ , defined as the
radius enclosing 1.8 × 1013 h−1 solar masses of dark matter.
The form of P (Rδ|Lr/L∗) is taken to be a Gaussian plus a
log-normal representing galaxies in the “field,” i.e., unresolved
low-mass halos, and those in higher mass, well-resolved “halos.”
The exact form of this relation is

P (Rδl|Lr/L∗) = (1 − p(L))

R
√

2πσc(Lr/L∗)

× e−(ln(Rδl)−μc(Lr/L∗))2/2σc(Lr/L∗)2

+
p(Lr/L∗)√

2πσf (Lr/L∗)
e(Rδ−μf (Lr/L∗))2/2σf (Lr/L∗)2

. (7)

The exact values of the parameters for this function are de-
termined using a Monte Carlo Markov chain analysis, imposing
that the observed magnitude-dependent two-point correlation
function is matched.

The next step is to assign galaxy colors. The local galaxy
density is computed for each galaxy in the simulation and in a
training set of galaxies from the magnitude-limited SDSS DR6
catalog using the projected distance to the fifth nearest neighbor
in a bin of redshift as in Cooper et al. (2007). Each mock galaxy
is assigned the spectral energy distribution (SED) of a randomly
selected SDSS galaxy with similar local galaxy density and
absolute magnitude Mr. When doing this matching, we do
not match absolute measurements of the densities, but instead
opt for a relative matching where the SEDs from the densest
galaxies in our training set are matched to the densest galaxies
in the mock. This lets up more robustly assign SEDs to higher
redshift objects where our training set is incomplete. The SED is
then k-corrected and the appropriate filters are applied to obtain
SDSS colors. At high redshift, color information is extrapolated
from low redshifts: r-band magnitudes are passively evolved
before selecting the SED from our training-set galaxy which
is then k-corrected assuming that the rest-frame colors and the
color–density–luminosity distribution remain unchanged.

The resulting catalog reproduces the overall photometric and
clustering properties of the SDSS galaxies at low redshifts
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(z ∼ 0.3) and extends, using simplified assumptions, to higher
redshifts (z ∼ 1.3) and deeper magnitudes (r ∼ 24). The
BCGs, however, are an exception. BCGs luminosities are tightly
correlated with their host halo mass and are not reproduced
by this method. Therefore, a BCG luminosity is calculated for
each resolved halo (of mass ∼5 × 1013 h−1 M� and above)
using the measurements from Hansen et al. (2005) before the
usual galaxy-to-dark-matter particle assignment begins. The
corresponding galaxies are then removed from the initial list
of galaxies and placed at the center of its host halo.

We run our cluster finder on the mock catalog and compare
our results with the truth table. The quantities featured in
the truth table are R.A., decl., redshift and M200, plus list of
member galaxies of each halo. In this paper, we refer to the
truth table as the halo catalog, and to the VT output as the
cluster catalog. The quantities we use as inputs are: R.A., decl.,
and photometric redshift. We generate photometric redshifts
from the true redshifts, using a Gaussian distribution of width
σz(1 + z). We test four different values of σz, namely 0.015,
0.03, 0.045, and 0.06, to access the impact of the photometric
redshift errors in our cluster finder.

The discussion so far was restricted to a perfect volume
limited galaxy catalog. A real galaxy catalog, however, will
have an irreducible level of contamination and incompleteness.
Here we mimic the effects of these two quantities in the mocks
by assuming that the input galaxy catalog has a completeness
function given by a Fermi–Dirac distribution

Cg(r) = f0

1 + exp((r − μ)/σ )
(8)

where μ is the magnitude limit of the catalog, f0 is a normal-
ization constant, and the parameter σ controls how fast the
completeness falls when the magnitude limit is reached. The
parameters f0 and σ are taken from processing of the SDSS data
with the 2DPHOT package (La Barbera et al. 2008). We found
that f0 = 0.99 and σ = 0.2 are typical values. We degrade the
mock catalogs using μ = 23.5, interpreting Cg(r) as the prob-
ability that a galaxy of magnitude r is detected. Similarly, from
the SDSS data we infer that a small fraction of contaminants,
due to misclassified stars, can be present in the input catalog.
The fraction of misclassified objects increases exponentially for
magnitudes above μ − 1.5. We take this fact into account by
generating false galaxies randomly above this limit and drawing
from (8) the probability that this object is actually added to the
catalog.

3.2. Membership Matching

The evaluation of completeness and purity requires a well-
defined matching scheme between the cluster catalog and the
truth table. We use a membership-based matching method.
Membership matching has been used in evaluating completeness
and purity of both photometric and spectroscopic catalogs
(White & Kochanek 2002; Eke et al. 2004; Gerke et al. 2005;
Koester et al. 2007a). Unlike cylindrical matching, which has
been largely employed in this kind of study, this method
is parameter-free, unambiguous and provides the means to
evaluate the efficiency of the cluster finder as a function of
halo mass regardless of the observable proxy for mass. This
allows us to distinguish the aspects relevant to the cluster finding
problem from aspects connected to the mass–observable proxy
calibration, which is a problem per se and is better addressed by
a separate set of post-finding algorithms.

The inputs for the matching code are the halo catalog and the
cluster catalog. The first is ranked by mass, while the latter is
ranked by the number of galaxies, both in descending order and
in bins of redshift. It is critical to do the ranking in bins of redshift
for both the halos and the clusters. In the case of halos, the mass
function is evolving, so the masses will be changing at fixed
rank. In the case of the clusters, the flux limit forces a changing
luminosity limit with redshift, so the ranks will be changing at
fixed mass. If this is not taken into account, a massive cluster at
high z (z ∼ 1) will get a much lower rank than a massive cluster
at low z (z ∼ 0.1).

After ranking, the first step is to fit a rank–mass relation
R(M) to the cluster catalog, provided rank, and the matched
halo catalog provided mass. We use the fitting formula

R(M) =
(

M

Mp

)α

exp

(
exp

(
M0 − M

Me

)
− M

M1

)
. (9)

This relation has no motivation other than a global fitting
function, valid at all redshifts provided that the ranking is
performed as described above. For our mock catalogs, the best-
fit parameters for this fitting function are Mp = 2.26 × 1017,
Me = 1.40 × 1014, M0 = 1.85 × 1013, M1 = 1.85 × 1014, and
α = −1.15. We then invert the relation above to compute an
“observed mass” for each cluster and proceed to the matching.
If the proxy used to rank the clusters has a tight correlation
with mass, the ranking will be accurate and the observed mass
will show a tight correlation with the true mass for the matched
pairs. It is important to notice that the use of ranking instead
of observed mass does not require the mass–observable relation
to be calibrated. Moreover, neither mass information nor the
ranking is used in the matching process, which is membership
based.

A match takes place if a fraction of member galaxies is shared
by a halo–cluster pair. The best match is the object sharing the
largest fraction of galaxies. We require unique matching, in
which a given halo/cluster is not allowed to be associated with
more than one cluster/halo. As both lists are ranked by number
of galaxies, uniqueness is imposed by eliminating a matched
object from the list of available objects for future matches down
the list. We also require two-way matching, where the best
matching pair is found when the matching is performed in both
directions, halos-to-clusters and clusters-to-halos.

We note that this approach to cluster–halo matching is quite
general and can be applied to any cluster-finding algorithm
that produces a list of cluster members. It will be developed in
more detail as a framework for comparing different algorithms
establishing their usefulness for cosmological tests (B. Gerke
et al. 2011, in preparation).

3.3. Completeness and Purity

Completeness is defined as the fraction of halos having a
counterpart in the cluster catalog. Purity in turn is defined as
the fraction of objects in the cluster catalog that correspond
to a true halo. In both cases, only unique two-way matches
are considered. Allowing for non-unique matching, where each
cluster may have more than one matching halo and vice versa,
would be a more permissive approach. For instance, purity
would not be affected by a halo being split in two components
and completeness would not be affected by two halos appearing
as a single cluster.
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We count the number of matched objects in bins of mass and
redshift. Therefore,

C(M, z) = Nmatched(M, z)

Nhalos(M, z)
(10)

P (M, z) = Nmatched(M, z)

Nclusters(M, z)
. (11)

Note that C(M, z) can be computed using the true mass of
the halos, being totally independent of the mass proxy used
to rank the clusters. The true mass of the clusters, however,
is available only for the matched objects. Therefore P(M, z)
has to be computed using the observed mass and does depend
on the ranking. We fit a power law to the Mobs–Mtrue relation
from the matched objects and use it to transform the scale
in the P(M, z) plots and show both completeness and purity
as a function of Mtrue. This cannot be performed before the
rank–mass relation fitting step, which is part of the matching
process. This method allow us to evaluate the efficiency of any
cluster finder imposing minimum requirements, namely a list of
members for each cluster. The selection function can be defined
in terms of completeness and purity as

f (M, z) = C(M, z)

P (M, z)
. (12)

This is a simplified definition. For cosmological studies with
real data, f(M, z) should be defined and evaluated in a likelihood
analysis that includes the scatter in the mass–observable relation
after calibration. Here, however, we simply want to compare the
observed cluster number counts Nobs(M, z) to the predictions
from the ΛCDM cosmological model NΛCDM(M, z). In this case,
the selection function is easily taken into account:

Nobs(M, z) = f (M, z)NΛCDM(M, z). (13)

This comparison allows us to develop a feel for how well we
can recover the true cluster number counts using the VT catalog
and our ability to perform a cosmological test using VT clusters
as a probe.

The method described above is very simplified with respect
to the procedures involved in an actual measurement of the
mass function. This would require a measurement of the
mass–observable relation and its scatter. We do not perform this
because the VT cluster catalog provides only Ngals, the number
of galaxies on the membership list, as a mass proxy. This Ngals
was not optimized to have a tight relation with mass, such as,
for example, the λ estimator of Rozo et al. (2009). Measuring
and optimizing a mass proxy is a necessary step if the VT is to
be used in performing cosmological tests. But this problem is
better addressed by a separate algorithm, specifically designed
to provide a calibrated mass proxy including the mean relation
and the scatter.

4. RESULTS AND DISCUSSION

In Figure 3, we show the completeness and purity as a
function of mass and redshift for different Gaussian σz values.
The photometric redshift errors have a strong impact on both
completeness and purity. For σz = 0.015, completeness lies
above 80% for all redshift bins and masses above ∼1013.5 M�.
Purity, however, drops significantly at the low-mass end. We
attribute this to the fact that the range 1013.5–1014 M� is at

the lower boundary of the halo catalogs associated with the
mock catalog. ADDGALS will populate some fraction of real
dark matter clumps in the simulation even if they are below
the threshold for detection in the halo catalog. A fraction of
these halos were populated with galaxies by ADDGALS, but
were not listed in the truth table. We have no means to determine
the exact fraction at this point and therefore we interpret the
purity curve as a lower limit.

In the high-redshift regime, completeness and purity do not
change much with σz. The lowest redshift bin, however, shows
the lowest purity and completeness in almost all cases. This
might be due to the large angular size of clusters at low z,
as at z ∼ 0.1 the target area of 1 deg2 corresponds to only
a few times the typical R200. However, even in this case the
VT catalog achieves completeness and purity above ∼80% at
all masses. Since we are most interested in a reliable catalog
at high redshifts, we consider the cluster finder efficiency, as
shown in Figure 3, very good.

Note that the behavior of purity is qualitatively different in the
last panel, σz = 0.060. This may be connected to low-redshift
clusters leaking to high redshift shells at higher rates than the
high redshift ones fall toward low redshift.

Testing the effect of changes in the cluster finder free
parameters on the completeness and purity functions, we find
the following.

1. Changing the fraction of shared galaxies required to con-
sider two candidates as the same cluster in the range
40%–60% has less than 1% impact on the results. We fix
this value at 50%.

2. The selection function is very sensitive to scl(z). Setting
scl(z) too high (> 0.97) leads to fragmentation of clusters,
which affects purity at all masses, and failure to detect
low contrast clusters, which affects completeness at the
low-mass end. Setting scl(z) below 0.75 causes merging
of clusters and affects completeness. An optimal value for
scl(z) in the range 0.75–0.97 has to be found at each redshift
bin.

3. The confidence level threshold has little effect on the detec-
tion. The final list of clusters shows less than 10% difference
when this parameter varies in the range 90%–99.5%. But it
affects the selection function by modifying the membership
list.

Figure 4 illustrates our ability to recover the true cluster
number counts of the input catalog. We take the case σz =
0.015(1 + z) and the redshift bin 0.9 < z < 1.1. For a given
mass bin Mi we divide the number of VT clusters detected by
the selection function term f (Mi, z). We then sum the corrected
counts through all bins of mass > M (red solid line). The curve
for the truth table is done by counting all the halos above M
(black dotted line). We finally plot (blue dashed line) the values
expected in a ΛCDM cosmology (e.g., Evrard et al. 2002) for
comparison.

There is a remarkable agreement between the three curves.
The tilt of the measured curve with respect to the truth table
may be interpreted as low-mass clusters being misplaced toward
more massive bins, due to our neglect of the scatter in the
mass–observable relation. As pointed out in Section 3.3, the
method used here does not take into account crucial steps
involved in an actual measurement of the mass function. This
issue must be addressed with a full program of mass calibration
and is beyond the scope of this paper. The result shown in
Figure 4 encourages the pursuit of such a program, though.
Our results show that the VT is a reliable cluster finder in the
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Figure 3. Completeness (left) and purity (right) curves as a function of mass for six redshift bins: 0.1 < z < 0.3 (blue), 0.3 < z < 0.4 (cyan), 0.4 < z < 0.6 (black),
0.6 < z < 0.7 (orange), 0.7 < z < 0.9 (purple), 0.9 < z < 1.1 (red). From top to bottom, the plot pairs feature different σz values: 0.015, 0.03, 0.045, 0.06. The
photometric redshift errors have a strong impact on both completeness and purity. In the best case, completeness and purity rest above 80% for all redshift bins and
masses above ∼1014.2. In the case of purity, this curve should be interpreted as a lower limit (see text for discussion).

(A color version of this figure is available in the online journal.)

redshift and mass range of interest, as seen in the completeness
and purity curves. Application of this algorithm on SDSS data

is underway and will be presented in a forthcoming paper
(M. Soares-Santos et al. (2011, in preparation).
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5. SUMMARY

In this paper, we present an improved implementation of the
VT cluster finder. Improvements with respect to earlier works
include the following:

1. the use of photometric redshifts instead of magnitudes;
2. a more realistic assumption that galaxy fields have two-

point correlation function described by a power law, and
not by a Poisson distribution; and

3. implementation of a membership assignment scheme.

The VT cluster finder in 2+1 dimensions was tailored to
fulfill the requirements of upcoming cosmological experiments
aiming at using clusters as probes for dark energy. The main
challenges toward this goal include the construction of reliable
cluster catalogs up to high redshifts (z ∼ 1) and down to low-
mass limits (∼1013.5 M�) and the measurement of the selection
function as a function of M and z. To achieve these goals using
the VT we:

1. adapted the VT algorithm to use photometric redshift shells
and take advantage of the relation that we have discovered
between the two-point correlation function of the galaxy
field and its distribution of VT cell areas;

2. defined the selection function in term of completeness
and purity, establishing an objective way to measure these
quantities using simulated catalogs;

3. applied the VT to mock galaxy catalogs and computed the
completeness and purity of the output cluster catalog with
the truth table, showing that the VT can produce cluster
catalogs with completeness and purity above 80% in the
ranges of interest within the M–z parameter space; and

4. computed the cluster abundance from the VT catalog and
compared it to the halo abundance in the mocks, finding a
remarkable agreement at all mass bins.

These results allow us to be confident in our ability to perform a
cosmological test for dark energy using the VT algorithm on a
data set of sufficient scope. Analysis of the application of the VT
to the SDSS data is underway and will be presented elsewhere.
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for this work. R.H.W. and B.F.G. received support from the
US Department of Energy under contract number DE-AC02-
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Jiao for pointing out the simulated annealing method applied in
this paper. Thanks to Jorge Horvath for careful reading of the
manuscript.

APPENDIX

THE VORONOI TESSELLATION CELL AREAS
DISTRIBUTION FOR POWER-LAW CORRELATED

POINT PROCESSES

Motivated by what is known about the two-point correla-
tion function of galaxies in the universe, we consider a two-
dimensional point field characterized by a two-point correlation
function of the form

w(θ ) = Aθ1−γ , (A1)

where θ is a distance, A is the amplitude of the correlation,
and γ is the slope of the power law. A = 0 represents the

Table 1
VT Cell Area Distribution Model Parameters

A γ α β χ2/ν

0.001 1.0 . . . 3.91 ± 0.05 3.66 ± 0.05 1.24
0.001 1.1 . . . 3.86 ± 0.05 3.61 ± 0.05 1.49
0.001 1.2 . . . 3.93 ± 0.04 3.68 ± 0.03 1.12
0.001 1.3 . . . 3.92 ± 0.04 3.67 ± 0.03 1.74
0.001 1.4 . . . 3.81 ± 0.04 3.57 ± 0.04 1.7
0.001 1.5 . . . 3.96 ± 0.04 3.71 ± 0.03 1.33
0.001 1.6 . . . 3.91 ± 0.04 3.65 ± 0.03 1.25
0.001 1.7 . . . 3.86 ± 0.05 3.62 ± 0.05 2.07
0.001 1.8 . . . 3.81 ± 0.04 3.57 ± 0.03 1.49
0.001 1.9 . . . 3.94 ± 0.02 3.69 ± 0.01 1.19
0.002 1.0 . . . 3.94 ± 0.04 3.71 ± 0.03 1.78
0.002 1.1 . . . 3.87 ± 0.05 3.63 ± 0.04 1.18
0.002 1.2 . . . 3.93 ± 0.04 3.69 ± 0.05 1.61
0.002 1.3 . . . 3.87 ± 0.02 3.63 ± 0.03 2.17
0.002 1.4 . . . 3.83 ± 0.04 3.58 ± 0.03 1.43
0.002 1.5 . . . 3.9 ± 0.04 3.66 ± 0.03 1.4
0.002 1.6 . . . 3.95 ± 0.04 3.7 ± 0.03 1.36
0.002 1.7 . . . 3.79 ± 0.04 3.55 ± 0.04 1.41
0.002 1.8 . . . 3.84 ± 0.04 3.59 ± 0.03 1.57
0.002 1.9 . . . 3.89 ± 0.04 3.65 ± 0.05 1.57
0.003 1.0 . . . 3.81 ± 0.04 3.56 ± 0.04 1.49
0.003 1.1 . . . 3.9 ± 0.04 3.65 ± 0.05 1.22
0.003 1.2 . . . 3.94 ± 0.04 3.69 ± 0.03 1.51
0.003 1.3 . . . 3.84 ± 0.04 3.6 ± 0.03 1.62
0.003 1.4 . . . 3.86 ± 0.01 3.61 ± 0.01 1.53
0.003 1.5 . . . 3.97 ± 0.04 3.72 ± 0.03 1.29
0.003 1.6 . . . 3.81 ± 0.04 3.57 ± 0.04 1.89
0.003 1.7 . . . 3.8 ± 0.04 3.55 ± 0.05 2.03
0.003 1.8 . . . 3.81 ± 0.05 3.57 ± 0.04 1.49
0.003 1.9 . . . 3.86 ± 0.04 3.61 ± 0.05 1.56
0.004 1.0 . . . 3.86 ± 0.04 3.62 ± 0.05 1.59
0.004 1.1 . . . 3.81 ± 0.04 3.56 ± 0.05 1.47
0.004 1.2 . . . 3.79 ± 0.04 3.55 ± 0.04 1.35
0.004 1.3 . . . 3.87 ± 0.04 3.62 ± 0.03 1.65
0.004 1.4 . . . 3.85 ± 0.04 3.6 ± 0.05 1.42
0.004 1.5 . . . 3.97 ± 0.04 3.73 ± 0.03 1.24
0.004 1.6 . . . 3.87 ± 0.05 3.63 ± 0.05 1.35
0.004 1.7 . . . 3.82 ± 0.04 3.57 ± 0.04 1.38
0.004 1.8 . . . 3.91 ± 0.04 3.66 ± 0.03 1.04
0.004 1.9 . . . 3.9 ± 0.02 3.65 ± 0.01 1.33
0.005 1.0 . . . 3.81 ± 0.01 3.56 ± 0.03 1.51
0.005 1.1 . . . 3.86 ± 0.04 3.61 ± 0.03 1.53
0.005 1.2 . . . 3.85 ± 0.04 3.6 ± 0.05 1.61
0.005 1.3 . . . 3.8 ± 0.04 3.55 ± 0.04 1.41
0.005 1.4 . . . 3.83 ± 0.04 3.58 ± 0.03 1.71
0.005 1.5 . . . 3.87 ± 0.04 3.63 ± 0.05 1.25
0.005 1.6 . . . 3.81 ± 0.04 3.57 ± 0.03 1.14
0.005 1.7 . . . 3.89 ± 0.04 3.65 ± 0.05 1.16
0.005 1.8 . . . 3.96 ± 0.04 3.69 ± 0.05 1.84
0.005 1.9 . . . 3.88 ± 0.04 3.64 ± 0.05 1.56
0.006 1.0 . . . 3.9 ± 0.05 3.66 ± 0.04 1.56
0.006 1.1 . . . 3.78 ± 0.01 3.54 ± 0.03 1.47
0.006 1.2 . . . 3.84 ± 0.04 3.61 ± 0.03 1.13
0.006 1.3 . . . 3.88 ± 0.05 3.63 ± 0.05 1.48
0.006 1.4 . . . 3.83 ± 0.01 3.59 ± 0.01 2.

0.006 1.5 . . . 3.86 ± 0.04 3.61 ± 0.05 1.62
0.006 1.6 . . . 3.71 ± 0.04 3.47 ± 0.04 2.34
0.006 1.7 . . . 3.86 ± 0.02 3.61 ± 0.03 1.62
0.006 1.8 . . . 3.92 ± 0.05 3.67 ± 0.05 1.34
0.006 1.9 . . . 3.91 ± 0.02 3.66 ± 0.01 1.25
0.007 1.0 . . . 3.85 ± 0.05 3.6 ± 0.04 1.53
0.007 1.1 . . . 3.9 ± 0.04 3.64 ± 0.05 2.08
0.007 1.2 . . . 3.84 ± 0.01 3.6 ± 0.03 1.13
0.007 1.3 . . . 3.82 ± 0.04 3.57 ± 0.03 1.51
0.007 1.4 . . . 3.89 ± 0.02 3.64 ± 0.001 1.43
0.007 1.5 . . . 3.81 ± 0.01 3.56 ± 0.01 2.11
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Table 1
(Continued)

A γ α β χ2/ν

0.007 1.6 . . . 3.84 ± 0.05 3.59 ± 0.05 1.53
0.007 1.7 . . . 3.77 ± 0.01 3.52 ± 0.001 1.29
0.007 1.8 . . . 3.75 ± 0.04 3.5 ± 0.04 1.91
0.007 1.9 . . . 3.86 ± 0.05 3.61 ± 0.04 1.52
0.008 1.0 . . . 3.86 ± 0.04 3.61 ± 0.05 1.89
0.008 1.1 . . . 3.87 ± 0.04 3.62 ± 0.05 1.53
0.008 1.2 . . . 3.92 ± 0.05 3.68 ± 0.05 1.67
0.008 1.3 . . . 3.82 ± 0.04 3.57 ± 0.03 1.32
0.008 1.4 . . . 3.83 ± 0.04 3.59 ± 0.03 1.66
0.008 1.5 . . . 3.99 ± 0.04 3.73 ± 0.03 1.67
0.008 1.6 . . . 3.86 ± 0.02 3.61 ± 0.03 1.46
0.008 1.7 . . . 3.88 ± 0.05 3.63 ± 0.05 1.52
0.008 1.8 . . . 3.88 ± 0.05 3.62 ± 0.05 1.39
0.008 1.9 . . . 3.86 ± 0.04 3.6 ± 0.03 1.34
0.009 1.0 . . . 3.9 ± 0.02 3.66 ± 0.03 1.25
0.009 1.1 . . . 3.96 ± 0.05 3.7 ± 0.05 1.48
0.009 1.2 . . . 3.96 ± 0.04 3.71 ± 0.05 1.51
0.009 1.3 . . . 3.78 ± 0.05 3.53 ± 0.04 2.21
0.009 1.4 . . . 3.91 ± 0.04 3.65 ± 0.05 1.47
0.009 1.5 . . . 3.86 ± 0.04 3.63 ± 0.05 1.32
0.009 1.6 . . . 3.93 ± 0.02 3.67 ± 0.01 1.21
0.009 1.7 . . . 3.84 ± 0.04 3.59 ± 0.04 1.3
0.009 1.8 . . . 3.85 ± 0.04 3.6 ± 0.03 1.65
0.009 1.9 . . . 3.95 ± 0.05 3.69 ± 0.04 1.44
0.01 1.0 . . . 3.9 ± 0.02 3.65 ± 0.03 1.71
0.01 1.1 . . . 3.93 ± 0.04 3.69 ± 0.03 1.34
0.01 1.2 . . . 3.93 ± 0.04 3.68 ± 0.05 1.5
0.01 1.3 . . . 3.83 ± 0.05 3.58 ± 0.04 1.74
0.01 1.4 . . . 3.94 ± 0.05 3.69 ± 0.05 1.37
0.01 1.5 . . . 3.8 ± 0.04 3.56 ± 0.04 1.3
0.01 1.6 . . . 3.88 ± 0.02 3.63 ± 0.03 1.26
0.01 1.7 . . . 3.82 ± 0.05 3.57 ± 0.04 1.82
0.01 1.8 . . . 3.88 ± 0.02 3.62 ± 0.03 1.52
0.01 1.9 . . . 3.82 ± 0.01 3.56 ± 0.03 1.49
0.02 1.0 . . . 3.93 ± 0.04 3.68 ± 0.05 1.97
0.02 1.1 . . . 3.84 ± 0.01 3.6 ± 0.01 1.96
0.02 1.2 . . . 3.88 ± 0.04 3.63 ± 0.03 1.2
0.02 1.3 . . . 3.92 ± 0.04 3.67 ± 0.03 1.4
0.02 1.4 . . . 3.91 ± 0.05 3.66 ± 0.05 1.51
0.02 1.5 . . . 3.75 ± 0.01 3.5 ± 0.01 1.72
0.02 1.6 . . . 3.79 ± 0.04 3.55 ± 0.03 1.2
0.02 1.7 . . . 3.94 ± 0.04 3.68 ± 0.05 1.35
0.02 1.8 . . . 3.93 ± 0.04 3.67 ± 0.03 1.31
0.02 1.9 . . . 3.88 ± 0.04 3.62 ± 0.03 1.09
0.03 1.0 . . . 3.74 ± 0.01 3.49 ± 0.03 1.85
0.03 1.1 . . . 3.88 ± 0.05 3.63 ± 0.05 1.61
0.03 1.2 . . . 3.91 ± 0.02 3.66 ± 0.03 1.66
0.03 1.3 . . . 3.89 ± 0.05 3.65 ± 0.04 1.91
0.03 1.4 . . . 3.89 ± 0.02 3.63 ± 0.03 1.55
0.03 1.5 . . . 3.78 ± 0.01 3.54 ± 0.03 1.22
0.03 1.6 . . . 3.79 ± 0.04 3.54 ± 0.04 1.48
0.03 1.7 . . . 3.82 ± 0.04 3.57 ± 0.03 1.52
0.03 1.8 . . . 3.85 ± 0.02 3.59 ± 0.01 0.998
0.03 1.9 . . . 3.86 ± 0.04 3.6 ± 0.05 1.08
0.04 1.0 . . . 3.91 ± 0.05 3.66 ± 0.05 1.53
0.04 1.1 . . . 3.89 ± 0.04 3.65 ± 0.05 1.6
0.04 1.2 . . . 3.92 ± 0.04 3.66 ± 0.05 1.73
0.04 1.3 . . . 3.8 ± 0.01 3.56 ± 0.03 1.68
0.04 1.4 . . . 3.93 ± 0.04 3.68 ± 0.03 1.03
0.04 1.5 . . . 3.97 ± 0.04 3.71 ± 0.03 1.22
0.04 1.6 . . . 3.86 ± 0.02 3.61 ± 0.01 1.39
0.04 1.7 . . . 3.83 ± 0.01 3.57 ± 0.03 1.23
0.04 1.8 . . . 3.77 ± 0.04 3.51 ± 0.03 1.18
0.04 1.9 . . . 3.81 ± 0.04 3.54 ± 0.03 1.32
0.05 1.0 . . . 3.87 ± 0.04 3.63 ± 0.05 0.971
0.05 1.1 . . . 3.85 ± 0.01 3.6 ± 0.03 1.33

Table 1
(Continued)

A γ α β χ2/ν

0.05 1.2 . . . 3.8 ± 0.04 3.55 ± 0.03 1.18
0.05 1.3 . . . 3.88 ± 0.04 3.63 ± 0.03 1.39
0.05 1.4 . . . 3.9 ± 0.04 3.64 ± 0.03 1.29
0.05 1.5 . . . 3.96 ± 0.04 3.69 ± 0.05 1.27
0.05 1.6 . . . 3.85 ± 0.04 3.59 ± 0.05 1.42
0.05 1.7 . . . 3.89 ± 0.05 3.62 ± 0.05 1.19
0.05 1.8 . . . 3.77 ± 0.04 3.5 ± 0.04 1.27
0.05 1.9 . . . 3.72 ± 0.01 3.45 ± 0.01 1.45
0.06 1.0 . . . 3.88 ± 0.04 3.62 ± 0.05 1.36
0.06 1.1 . . . 3.86 ± 0.04 3.61 ± 0.03 1.62
0.06 1.2 . . . 3.8 ± 0.04 3.55 ± 0.03 1.37
0.06 1.3 . . . 3.91 ± 0.02 3.66 ± 0.03 1.72
0.06 1.4 . . . 3.86 ± 0.04 3.6 ± 0.03 1.19
0.06 1.5 . . . 3.77 ± 0.04 3.52 ± 0.04 1.6
0.06 1.6 . . . 3.88 ± 0.04 3.61 ± 0.03 1.31
0.06 1.7 . . . 3.73 ± 0.04 3.46 ± 0.03 1.52
0.06 1.8 . . . 3.76 ± 0.01 3.49 ± 0.03 1.14
0.06 1.9 . . . 3.82 ± 0.04 3.55 ± 0.05 1.29
0.07 1.0 . . . 3.85 ± 0.04 3.61 ± 0.03 1.58
0.07 1.1 . . . 3.74 ± 0.01 3.5 ± 0.01 1.28
0.07 1.2 . . . 3.87 ± 0.02 3.62 ± 0.03 1.67
0.07 1.3 . . . 3.87 ± 0.04 3.61 ± 0.03 1.47
0.07 1.4 . . . 3.86 ± 0.05 3.6 ± 0.05 1.8
0.07 1.5 . . . 3.91 ± 0.05 3.65 ± 0.05 1.34
0.07 1.6 . . . 3.78 ± 0.04 3.53 ± 0.03 1.36
0.07 1.7 . . . 3.8 ± 0.04 3.54 ± 0.04 1.49
0.07 1.8 . . . 3.78 ± 0.01 3.5 ± 0.03 1.72
0.07 1.9 . . . 3.87 ± 0.02 3.59 ± 0.01 1.01
0.08 1.0 . . . 3.86 ± 0.04 3.6 ± 0.03 1.42
0.08 1.1 . . . 3.9 ± 0.05 3.64 ± 0.04 1.28
0.08 1.2 . . . 3.88 ± 0.04 3.62 ± 0.03 1.03
0.08 1.3 . . . 3.89 ± 0.05 3.63 ± 0.05 1.47
0.08 1.4 . . . 3.79 ± 0.04 3.54 ± 0.04 1.53
0.08 1.5 . . . 3.79 ± 0.05 3.53 ± 0.04 1.94
0.08 1.6 . . . 3.9 ± 0.04 3.64 ± 0.03 1.29
0.08 1.7 . . . 3.76 ± 0.04 3.5 ± 0.04 1.54
0.08 1.8 . . . 3.7 ± 0.04 3.42 ± 0.04 1.98
0.08 1.9 . . . 3.92 ± 0.05 3.63 ± 0.04 1.15
0.09 1.0 . . . 3.87 ± 0.02 3.61 ± 0.03 1.34
0.09 1.1 . . . 3.92 ± 0.05 3.67 ± 0.05 1.44
0.09 1.2 . . . 3.97 ± 0.04 3.71 ± 0.05 0.92
0.09 1.3 . . . 3.84 ± 0.05 3.59 ± 0.05 1.63
0.09 1.4 . . . 3.94 ± 0.04 3.67 ± 0.05 1.87
0.09 1.5 . . . 3.75 ± 0.04 3.49 ± 0.04 1.57
0.09 1.6 . . . 3.95 ± 0.04 3.67 ± 0.03 1.44
0.09 1.7 . . . 3.79 ± 0.04 3.53 ± 0.05 1.38
0.09 1.8 . . . 3.92 ± 0.02 3.63 ± 0.03 1.41
0.09 1.9 . . . 3.86 ± 0.02 3.58 ± 0.03 0.993
0.1 1.0 . . . 3.87 ± 0.04 3.62 ± 0.05 1.76
0.1 1.1 . . . 3.91 ± 0.02 3.66 ± 0.03 1.75
0.1 1.2 . . . 3.93 ± 0.04 3.69 ± 0.05 1.42
0.1 1.3 . . . 3.85 ± 0.04 3.6 ± 0.05 1.18
0.1 1.4 . . . 3.86 ± 0.04 3.6 ± 0.03 1.47
0.1 1.5 . . . 3.88 ± 0.02 3.62 ± 0.03 1.25
0.1 1.6 . . . 3.85 ± 0.04 3.57 ± 0.03 1.47
0.1 1.7 . . . 3.8 ± 0.04 3.53 ± 0.04 1.68
0.1 1.8 . . . 3.74 ± 0.04 3.46 ± 0.03 1.38
0.1 1.9 . . . 3.76 ± 0.05 3.49 ± 0.04 1.55

Poisson particular case. We generate simulated fields spanning
a wide range of the parameter space (A, γ ) around the measured
values reported in the literature. These simulated fields are used
to characterize the VT cell areas distribution.

Although aimed at application in our cluster finder algorithm,
this study allows us to investigate the connection between this
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Figure 4. Cumulative cluster abundance as a function of mass in the redshift
range 0.9 < z < 1.1. The black (dotted) line shows the counts in the truth table;
the red solid (solid) line shows the results of the VT catalog, taking σz = 0.015;
the blue (dashed) line shows the values predicted for a ΛCDM cosmology.

(A color version of this figure is available in the online journal.)

VT property and the statistical process of the generator set of
points. This topic has been extensively discussed (see Okabe
2000 for a review). For the Poisson case, simulations have
been used to support the so-called Kiang’s conjecture that
the distribution of standardized cell sizes (size/mean size) in
n-dimensional space is given by

p(x) = βα

Γ(α)
xα−1 exp−βx (A2)

with α = β = 2n. This has been rigorously shown for n = 1
and studied in simulations up to n = 3. Here we extend this
conjecture to the case where the two-point correlation function
of the field is given by a power law. We focus on n = 2. Our
results indicate that Equation (A2) still holds, but the parameters

α and β are modified. The relation α = 0.26 + β is found to be
valid within the parameters space explored.

In the following sections, we describe the simulations and
the modeling of the area distribution. We discuss our results in
comparison to the well-studied Poisson case and provide the
relevant quantities in Table 1.

A.1. Point Field Simulation

To generate the simulated fields with two-point correlation
function given by Equation (A1), we implement the simulated
annealing method as proposed by Rintoul & Torquato (1997).
This method is generally used to find the state of minimum
“energy” of a given system by sampling the different states
weighted by the probability of occurrence of that state. Here we
take Equation (A1) as our “reference” state, and the state of the
“system” is denoted as ws(θ ). We consider logarithmic bins in
θ , and define the energy of the system as

E =
∑

i

(ws(θi) − w(θi))
2, (A3)

where the sum is over all bins. We use 10 bins in the interval
0.01 < θi < 2. This definition of energy is convenient because
it ensures that E decreases when the difference between any two
bins decreases.

The initial state is a Poisson state. To evolve the system toward
w(θ ), we chose a particle and move it to a random position in the
field. We compute the energy E′ of this new configuration and
obtain ΔE = E′ − E. The move is accepted with probability

p(ΔE) =
{

1 ΔE � 0
exp(−ΔE/kT ) ΔE > 0 (A4)

where kT is the “temperature” of the system. This is chosen
to allow the system to evolve as quickly as possible to the
minimum state, without getting trapped in local minima. The
initial temperature is set to 1. We attempt to move all the particles
sequentially and, after a complete round over all the N particles
of the system, its temperature is cooled by a factor of two. The
system converges about 30% faster with this cooling schedule.

In Figure 5 we show one example, where A = 0.005 and
γ = 1.7. This combination of parameters corresponds to typical
values measured, for instance, on SDSS data up to magnitude
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Figure 5. Left plot shows the initial (Poisson) state of a system meant to evolve toward a configuration with A = 0.005 and γ = 1.7. The final state is the one in the
central plot. The right plot is the evolution of the energy of the system (normalized by its initial energy) as a function of the iteration number normalized by the total
number of particles in the system. Under this normalization, nit /N = 1, 2, 3... refers to complete rounds over all particles in the field. This simulation was performed
in a box of 3 × 3 deg2 containing 1.6 × 104 particles. Just a 1 × 1 deg2 portion of the field is shown.
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Figure 6. Voronoi diagram corresponding to the two fields shown in Figure 5. The initial and final states are on the left and right panels, respectively.
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Figure 7. Left: best-fit model for the distribution of normalized VT cell areas featured in Figure 6. The curve for the Poisson case is also shown for comparison (dashed
line). Right: fractional residuals of the fit.
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(A color version of this figure is available in the online journal.)
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limit r ′ = 21.5 (Connolly et al. 2002). The initial system is on
the left, the field in the middle is the final state, after 10 rounds
over all particles. The plot on the right shows the evolution of the
energy of the system. The difference between the initial and final
states is not noticeable by eye and a statistical method must be
used to actually measure the two-point correlation function and
compute ΔE at each iteration. We use a fast Fourier transform
code (Szapudi et al. 2005) to accomplish this. Using this method
we have generated 190 fields of 3×3 deg2 and 1.6×104 particles.

A.2. Gamma Model for the VT Cell Distribution

We apply the VT code on each of the simulated fields, obtain
the distribution of cell normalized cell areas, and find the best-fit
Gamma model (Equation (A2)). Figure 6 shows as an example
the VT diagram for the same system featured above. The left
and right diagrams correspond to the initial and final states of
the system, respectively.

The result of the fit is shown in Figure 7, again for the case
A = 0.005 and γ = 1.7. For comparison we show as well
the traditional Kiang formula (dashed line). The results are
α = 3.89 ± 0.04 and β = 3.65 ± 0.05. Kiang’s formula is
more than 5σ away from the best fit.

The results for the ensemble of simulated fields studied are
shown in Figure 8. The values of α and β fall in the range
3.5 < α < 3.9 and 3.5 < β < 3.8. The mean error in both
is 0.04. There is a noticeable correlation between these two
parameters. The difference α −β is shown to be 0.26 ± 0.02 all
over the parameter space explored. The model parameters for
the values of A and γ considered are presented in Table 1.
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