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Abstract: In this paper we study the close approach between a planet and a particle. It is assumed 

that the dynamical system is given by two main bodies that are in circular orbits around their 

center of mass and the particle that is moving under the gravitational attraction of the two 

primaries. This method has been under study for a long time by several authors (Prado, 2001), 

where the dynamical system given by the “patched-conics” is used and the motion is assumed to be 

planar. A series of two-body problems is used to generate analytical equations that describe the 

problem. Two solutions are considered for the swing-by (clock-wise and counter-clock-wise orbit), 

to take account the possibility that the particles crosses the line Sun-Planet between the primaries. 

The goal is to study the orbital change (energy, angular momentum, orbital elements) of the 

particle after some maneuvers with the planet Jupiter and to know those values after the close 

approach. Finally, numerical simulations are performed here for Sun-Jupiter system. 

  

Keywords: Swing-by, orbital maneuver, astrodynamics 

  

1 Introduction 

 

In aerospace engineer, the spacecraft trajectories can be controlled by thrusters and several physical 

forces. The determination these trajectories in solar systems considering the gravitational effects is 

performed by several techniques. In this is paper will be used the Swing-By maneuver (gravity-

assist) to analyze missions involving celestial bodies and spacecraft (particle) or celestial bodies and 

a cloud of particles. The maneuver uses a close approach with a celestial body to modify the energy, 

angular momentum and velocity of the spacecraft with respect to the Sun. The dynamical system 

given by the “patched-conics” is used and the motion is assumed to be planar. In literature shows 

several applications of the swing-by technique: the study of the atmospheric effect in swing-by 

trajectory [2]; classification of trajectories making a swing-by with the Moon [6], the design 

missions with multiple lunar swing-bys [4]; considering the possibility to apply an impulse during 

the passage by the periapsis [7]; the study numerical of the swing-by in three dimensions [5]. The 

study close approach considering a planet and a cloud of particles [8]. 

 

It is know that, when in neighborhoods of a planet, a spacecraft in a Sun orbit experiences 

perturbations which depend on the relative velocity between the spacecraft and the planet and the 

distance separating the two at point of close approach. If only the gravitational field of the planet 

affected the motion of the spacecraft, the vehicle would make is approach along a hyperbolic path.  

In paper [1] show that, in the discussion of planetary approach, solar gravity may be ignored with 

the assurance that its effect would not modify the results significantly.    

 

In this paper the maneuver is performed around the Sun-Jupiter system where will be studied the 

motion of the spacecraft near the close encounter with the planet. The spacecraft leaves the point A, 

passes by the point P (Fig.1) and goes to the point B. Theses points are chosen in a such way that 

the influence of the Sun at those two points can be neglected and, consequently, the energy can be 

assumed to remain constant after B and before A. Thus a series of two-body problems is used to 

generate analytical equations that describe the problem. In particular, the energy and the angular 
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momentum of the spacecraft before and after close encounter are calculated, to detect the changes in 

the trajectory during the close approach. 

 

Finally some numerical simulations are performed with several initial conditions. Two solutions are 

considered for the swing-by: when the maneuver is performed behind the planet (solution 1) and 

when the maneuver is performed in front the planet (solution 2. The goal is to study the orbital 

change (energy, angular momentum, orbital elements) of the particle after some maneuvers whit the 

planet desired and to know those values after the close approach in order to decrease the fuel 

expense in space missions.  

 

2. The swing-by in two dimensions and mathematical model 

  

The baseline of the patched conic approximation is that in any space domain the trajectory of a 

spacecraft is determined by only on gravitational field, namely that which dominates. The patched 

conic theory, it is assumed that the dynamical system is given by two main bodies that are in 

circular orbits around their center of mass and the particle that is moving under the gravitational 

attraction of the two primaries. So, in this approach, this problem can be studied assuming a system 

formed by three bodies: the Sun as the main massive primary (M1), a planet as secondary mass 

(M2), that is orbiting the M1 body, and a particle with infinitesimal mass (M3) that remains orbiting 

the primary and makes a close approach with the M2. When M3 into in the influence sphere of M2, 

the orbital motion of the M3 around of M1 was being modify. The Figure 1 explains the geometry 

involved in the close approach. The dynamical system given by the “patched-conics” is used and 

the motion is assumed to be planar where this method has been under study in [8].  

  

 
Figure 1. Swing-by variables 

  

In Fig. 1 a set of variables is used here to identify one swing-by trajectory [8]:     (velocity of M3 

with respect to M1),    
         

  (velocity of M3 with respect to M2, before and after the maneuver in 

the referential frame),             (velocity of M3 with respect to M1, before and after the maneuver 

in referential frame), δ (half angle curvature), rap (the distance from the spacecraft to the center of 

M2 at the closest approach moment) and ψ (angle of approach). 

 

The velocity and orbital elements of the M3 body are changed when it has a close approach with M2. 

The orbital elements and energy before encounter whit the planet are obtained from the equations: 

 

  
     

 
 (1) 

    
  

 
 (2) 

   
  

  
 (3) 

             (4) 

rap 
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which a = semi-major axis, e = eccentricity, E=energy,   =Gms=1,33.10
11

km
3
/s

2
. 

It is possible to determine the velocity of the particle with respect to the Sun in the moment of the 

crossing with the planet’s orbit and the true anomaly of that point: 

         
 

   
 

 

 
  (5) 

        
 

 
 
       

   
     (6) 

The parameter rsp is distance between the Sun to the planet. The Eq. 6, given us two solutions (θA 

and θB). The next procedure, it is calculate the angle between the inertial velocity of the particle and 

the velocity of the planet: 

         
     

        
   (7) 

and the magnitude of particle velocity with respect to the planet in the moment that the approach 

starts,  

      
    

            (8) 

This is paper are consider two solutions: assuming a close approach behind the planet (rotation of 

the velocity vector in counter-clock-wise sense- ψ1) and close approach in front of planet (clock-

wise sense- ψ2) for the spacecraft around the Sun (Fig. 2). These two values are obtained from: 

             
(9) 

            

 

 

 

 

 

 

 

 

Figure 2. Possible rotation of the velocity vector 

 

where  

         
  

    
    

  

       
  

(10) 

        
 

  
     

  

  

  

A 

B 

   
  

M2 
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    is gravitational constant of the planet. The next step is to determine the variations in energy and 

angular momentum from the equations [3]:   

  

                      (11) 

                          (12) 

   
  

 
 (13) 

Where ω is the angular velocity between the primary bodies, δ it the angle of deflection and E-, 

E+ are the energy before and after maneuver. Through variation in the energy and angular 

momentum, the orbits are classified in [6]: elliptic direct (negative energy and positive angular 

momentum), elliptic retrograde (negative energy and angular momentum), hyperbolic direct 

(positive energy and angular momentum) and hyperbolic retrograde (positive energy and negative 

angular momentum).  

 

Finally, to obtain the semi-major axis and the eccentricity after the swing-by, it is possible to use 

the equations 

   
 

  
 (14) 

     
  

   
 (15) 

3. Numerical results and simulation procedure 

In this study some simulations will be performed to analyze the orbital variation of spacecraft 

subject a close approach with Jupiter under “patched conics” model, where the physical elements of 

planets can be seen in Tab 1. The patched conic model was implemented in software Fortran which 

the energy, angular momentum and orbital elements have been analyzed for several maneuvers. The 

simulations are completed when the variation energy and angular momentum (Eq. 12) are positive. 

 

Table 1- Physical elements of Planets 

Planet Equatorial 

Radius 

(km) 

Average 

distance to Sun 

(10
6
 km) 

Orbital 

velocity 

(km/s) 

=Gm 

(10
6
 

km
3
/s

2
) 

Jupiter 71370 778 13.1 126.0
 

Saturn 60400 1426 9.7 37.95 

sol =1.33 x 10
11

 km
3
/s

2
 

 

All simulations were being performed with following characteristics: 

i) The close approach will be at point A (Fig. 1); 

ii) The Sun does not affect the motion of the particle; 

iii)  Will be considered counter-clock-wise orbit and true anomaly θA (Eq. 6); 

iv) The energy can be assumed to remain constant after B and before A; 

v) The energy and angular momentum will be analyzed after each maneuver for several 

maneuvers.  
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vi) The solution 1 will be performed for the first maneuver behind the planet considering    

angle of approach and solution 2 for the first maneuver performed in front the planet 

considering    angle of approach. 

 

The initial conditions can be seen in Tab. 2 , where it is composed by: ra (apoapsis distance), rp 

(periapsis distance), a (semi-major axis), e (eccentricity), v (velocity), E (energy) and C (angular 

momentum) are obtained from the initial orbit of the spacecraft around the Sun. The rap is the 

distance of the close approach between particle and planet. With the numerical algorithm available, 

the given initial conditions are changed in any desired range and the number of maneuver and their 

respective effects of the close approach in the orbit of the spacecraft are studied. The numerical 

results will be performed in the point A (see Fig. 1) with rotation of the velocity vector in counter-

clock-wise sense (solution ψ1) and clock-wise sense (solution ψ2). 

 

3.1. Sun-Jupiter System 

 

Three simulations are performed for Sun-Jupiter System where the initial conditions can be seen in 

Tab. 2. All plots has the first column that was considered the angle of approach ψ1 (solution 1) and 

second column that was considered the angle of approach ψ2 (solution 2). 

 

Table 2- Initial conditions: Sun-Jupiter System 

Simulations 

ra 

(10
8
 

km) 

rp 

(10
8
 

km) 

rap 

(Jupiter´s 

radius) 

a 

(10
8 

km) 

e 
E 

(km
2
/s

2
) 

C 

(10
9
- 

km
2
/s) 

v 

(km/s) 

1ª  10
 

3.5 1.5 6.75 0.4814 -98.51 8.3 12.03 

2ª  10 3.5 30.0 6.75 0.4814 -98.51 8.3 12.03 

3ª  10 6.5 1.5 8.25 0.2121 -80.61 10.2 13.44 

 

The Fig. 3 show the number of the maneuvers for periapsis distance (rp) considering ra = 10
9 

km and 

the angle of approach (ψ1) in elliptic orbit around the Sun. This distance has an effect in the results 

obtained by maneuvers where some simulations were performed to study this problem. Those 

results allow to analyze the increased in the number of maneuvers for range 3.10
9
 km ≤ rp ≤ 7.10

9
 

km. This is range implies in regions with 0.1764 ≤ e ≤ 0.5385 and  6.5x10
8
 km ≤  a ≤ 85x10

8
 km. It 

is possible because increasing the semi-major axis also increase the magnitude of velocity of the 

particle with respect to the Sun. This change also increase the magnitude of the velocity of the 

particle with respect to the Jupiter. Thus with Eq.12 is possible to calculate energy variation. This 

information is essential to analyze the orbital characteristics of the particle before swing-by and the 

strong influence of rp in each mission. Some of these characteristics will be studied with detail in 

this paper.       

 

In the Fig. 4, the maneuvers performed for 1 < rp< 4 can be analyzed with more details.   

  
Figure 3. Maneuvers performed for periapsis 

distance (rp), ra = 10
9 

km and angle approach 

(ψ1) in elliptic orbit around the Sun. 

Figure 4. Zoom of Figure 1 for 

1<rp<4 
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Figures 5 and 6 shows the evolution of the amplitude of energy, angular momentum, semi-major 

axis, eccentricity and velocity. The results shows two characteristics: maneuver performed behind 

Jupiter (solution 1) and maneuver performed in front of Jupiter (solution 2). The energy variation 

for these solutions is enough to increase the orbital elements of the particle where the orbital motion 

around the Sun is modify. The moment that the particle escapes of orbit can be easily seen from in 

Fig. 6, in the plot of semi-major axis. The change of energy and angular momentum causes the 

existence of hyperbolic orbits (ΔE > 0 and ΔC > 0) and semi-major axis variation leads to 

eccentricity reaches a maximum value.  

  
Energy vs maneuver for ψ1. Energy vs maneuver for ψ2. 

  
Angular momentum vs maneuver for ψ1. Angular momentum vs maneuver for ψ2. 

 

Figure 5. Energy and angular momentum of the spacecraft after the swing-bys for ra = 10
9
 

km, rp = 3.5x10
8 

km, rap=1.5 Rj, considering solution 1 (ψ1) and solution 2 (ψ2). 

 

  
Semi-major axis vs maneuver for ψ1. Semi-major axis vs maneuver for ψ2. 

  
Eccentricity vs maneuver for ψ1. Eccentricity vs maneuver for ψ2. 
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Velocity vs maneuver for ψ1. Velocity vs maneuver for ψ2. 

Figure 6. Semi-major axis, eccentricity and velocity of the spacecraft after the swing-bys 

for ra = 10
9
 km, rp = 3.5x10

8 
km, rap = 1.5 Rj, considering solution 1 (ψ1) and solution 2 

(ψ2). 
 

In Fig. 7 we can see two regions where occurs several maneuvers due to the energy gain and energy 

loss. In neighborhoods -100 km
2
/s

2
 (for angle ψ1) and -97.5 km

2
/s

2
 (for angle ψ2) happen maneuvers 

with energy loss. Already in neighborhoods -2 km
2
/s

2
 (ψ1) and -75 km

2
/s

2
 (ψ2) happen maneuvers 

with energy gain. For those cases when the ψ1 (angle of approach) is around 405 degree (45 degree) 

causes the existence of parabolic orbit because angular momentum is positive and eccentricity equal 

to 1.0. 

  
Figure 7. Energy variation due to the angle of approach of the spacecraft orbits after several 

swing-bys for ra=10
9
 km, rp=3.5x 10

8 
km, rap=1.5 Rj. 

 

  
Energy vs maneuver for ψ1. Energy vs maneuver for ψ2. 

  
Angular momentum VS maneuver for ψ1. Angular momentum VS maneuver for ψ2. 

 

Figure 8 –Energy and angular momentum of the spacecraft orbits after the swing-bys for 

ra=10
9
 km, rp=3.5x10

8 
km, rap = 30 Rj, considering solution 1 (ψ1) and solution 2 (ψ2). 
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The second simulation was performed considering the distance of close approach, rap = 30 Rj 

(radius of Jupiter). These results can be seen in Fig. 8 and Fig. 9 where they show that there are a 

strong dependence with rap and initial conditions. In Fig. 8 for solution 1 is visible the fast orbital 

change after the first swing-by maneuver. This large change can be seen in all plots for solution 

1(Fig. 9). In general, most of the cases, it is indicates a passage behind the Jupiter that increases the 

energy of spacecraft. In this case we can see that spacecraft was maneuvered to orbit with high 

eccentricity (approximately e = 1) with ΔE > 0 and ΔC > 0. Another property shown by this figure 

is that the velocity has small change compared with energy variation where this new configuration 

of orbit allows up to 200 maneuvers. 

Already the solution 2 (Fig. 8 and Fig. 9), where the first maneuver occur in front of Jupiter; we can 

see the energy loss. When the close approach occur in behind of Jupiter, it acquire energy but ΔE 

decrease at the long time. It is expected because for solution 2, the angle of approach (ψ2) decreases 

after swing-by maneuver, consequently occur a decrease in energy. This study is made to show the 

evolution of the amplitudes and the strong influence with the angle of approach where the fuel 

consumption decreases with this variable. Similar results can be seen in Fig. 10 with respect to the 

angle of approach. 

  
Semi-major axis vs maneuver for ψ1. Semi-major axis vs maneuver for ψ2. 

  
Eccentricity vs maneuver for ψ1. Eccentricity vs maneuver for ψ2. 

  
Velocity vs maneuver for ψ1. Velocity vs maneuver for ψ2. 

 

Figure 9 – Semi-major axis, eccentricity and velocity of the spacecraft after the swing-bys for 

ra=10
9
 km, rp=3.5x10

8 
km, rap=30 Rj, considering solution 1(ψ1) and solution 2 (ψ2). 
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Figure 10- Energy variation due to the angle of approach of the spacecraft orbits after 

several swing-bys for ra=10
9
 km, rp=3.5x10

8 
km, rap=30 Rj, considering solution 1 (ψ1) and 

solution 2 (ψ2). 

 

From analyzes of the Fig. 11 and Fig. 12, we can see a difference in the behavior between both 

solutions. The results show a small influence on the velocity amplitude and that the angle of 

approach has a strong influence in the energy gain. For solution 1, in most of the cases the 

amplitude of the energy and orbital elements has a small increase with the maneuvers. This effect 

can be easily seen in the Fig. 13 due at the angle of approach variation.  For all results in solution 2 

the amplitudes remained approximately constant which this keeps the spacecraft in elliptic orbit 

after the swing-by maneuver. We can to conclude that a large modify in orbital characteristic occur 

due change of rap. 

 

  
Energy vs maneuver for ψ1. Energy vs maneuver for ψ2. 

  
Angular momentum vs maneuver for ψ1. Angular momentum vs maneuver for ψ2. 

  

Figure 11 –Energy and angular momentum of the spacecraft after the swing-bys for ra=10
9
 

km, rp=6.5x10
8 

km, rap =1.5 Rj, considering solution 1(ψ1) and solution 2(ψ2). 

 

300 320 340 360 380 400 420

-120

-100

-80

-60

-40

-20

0

E
 ( 

km
2  / 

s2  )

angle of approach 

 (deg)

350 355 360 365 370

-100

-95

-90

-85

-80

-75

-70

E
 ( 

km
2  / 

s2  )

angle of approach 

 (deg)

0 20 40 60 80 100
-86

-84

-82

-80

-78

-76

-74

-72

-70

-68

maneuver

E
 ( 

km
2  / 

s2  )

0 10 20 30 40 50 60 70 80 90 100
-92

-90

-88

-86

-84

-82

-80

maneuver

E
 ( 

km
2  / 

s2  )

0 20 40 60 80 100
0.98

1

1.02

1.04

1.06

1.08

1.1
x 10

10

maneuver

C
 (k

m
2  / 

s 
)

0 10 20 30 40 50 60 70 80 90 100
9.6

9.7

9.8

9.9

10

10.1

10.2

10.3
x 10

9

maneuver

C
 (k

m
2  / 

s)



10 
 

  
Semi-major axis vs maneuver for ψ1. Semi-major axis vs maneuver for ψ2. 

  
Eccentricity vs maneuver for ψ1. Eccentricity vs maneuver for ψ2. 

  
Velocity vs maneuver for ψ1. Velocity vs maneuver for ψ2. 

Figure 12 – Semi-major axis, eccentricity and velocity of the spacecraft after the swing-bys 

for ra=10
9
 km, rp=6.5x10

8 
km, rap =1.5 Rj, considering solution 1 (ψ1) and solution 2 (ψ2). 

 

The Fig. 13 has possible two regions: energy loss around the -90 km
2
/s

2
 (353 degree) and energy 

gain around -81 km
2
/s

2
 (6 degree) for the angle of approach ψ2.  Already considering the ψ1 angle 

of approach we can see the energy variation.  

 

Based in Fig. 14, we can have an overview to analyze the orbital variation for all simulations in 

Sun-Jupiter system. The simulation 3 has a large difference between the two solutions. It is 

possible due to the energy gain after swing-by maneuver for solution 1. All the results for solution 

2, the orbital characteristic seen in Fig. 13 shows a small variation in orbital elements. These 

results are critical to determine the appropriate maneuver or to determine energy necessary for 

maneuvers more economical.   

  
Figure 13- Energy variation due to the angle of approach of the spacecraft orbits after 

several swing-bys for ra=10
9
 km, rp=6.5x10

8 
km, rap =1.5 Rj, considering solution 1 (ψ1) and 

solution 2 (ψ2). 
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Simulation 1 for solution 1 (ψ1) Simulation 1 for solution 2 (ψ2) 

  
Simulation 2 for solution 1 (ψ1) Simulation 2 for solution 2 (ψ2) 

  
Simulation 3 for solution 1 (ψ1) Simulation 3 for solution 2 (ψ2) 

 

Figure 14- Eccentricity VS Semi-major axis for solution 1(ψ1) and solution 2(ψ2). 
 

The magnitude of semi-major axis, eccentricity and energy are showed in Tab. 3. It is possible to 

analyze in more detail the maximum value of amplitude in the orbital characteristic of spacecraft 

after swing-by maneuver. The Tab. 3 show a great variation for all simulations performed 

considering the ψ1 and ψ2 angle of approach. Based in the initial condition (Tab. 2) we can see that 

Δv has a minimum value of variation for all simulations performed.  

 

Table 3-The maximum value of amplitude: energy, momentum, semi-major 

axis, eccentricity and velocity after the maneuver (Sun-Jupiter System) 

 Maximum variation after the maneuver 

Solution 1 (ψ1) 

simulation ∆a 

(10
8 

km) 
∆e 

∆E 

(km
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/s

2
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1ª 5,25 0,5186 102 0,57 0,07 

2ª 7,7 0,4686 93,51 0,55 0,01 

3ª 1,9 0,0520 17 0,11 0,027 

Solution 2 (ψ2) 

1ª 2,7 0,0314 21 0,15 0,020 

2ª 1,75 0,2286 46,49 0,01 0,006 

3ª 0,9 0,0050 9,84 0,60 0,016 
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4. Conclusions  

 

This study is made to show the evolution of the amplitudes, the strong influence with the angle of 

approach and of choice of periapsis position. A method to calculate the variations in semi-major 

axis, velocity, energy and angular momentum for the Swing-By is developed based in the "patched-

conic" approximation. Three numerical simulations are calculated for the Sun-Jupiter system 

considering several initial conditions. A set of analytical equations is used to describe the swing-by 

in two dimensions and to evaluate the variation in the orbital elements of the orbit of a spacecraft 

that is passing by the planet. Then, it is possible to compare analytically two solutions to make an 

orbital maneuver considering two angle approach ψ1 and ψ2. The results showed that the maneuvers 

performed for ψ1 have a great energy gain and in most of the cases the spacecraft escapes. For 

maneuvers performed for solution 2 where the first close approach happens in front the planet, the 

spacecraft remains indefinitely for a long time in elliptic orbit due energy loss. The choices of 

periapsis show a strong influence in the maneuver that can be chosen to obtain low fuel 

consumption. In Sun-Jupiter system the cases where the spacecraft has escaped the results shown 

that the vector velocity was doubled compared to initial velocity and the variation of ψ leads to 

great energy variation.  
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