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Performance of pinning-controlled synchronization
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In this work we address the problem of controlling a complex network toward a synchronous evolution by
using the pinning-control strategy. In considering this control approach, we investigate the effect of the number
of pinned nodes and how the strategy performance behaves in accordance with the type of nodes that are chosen
to be controlled. The roles of the control and coupling gains are also discussed.
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I. INTRODUCTION

Ordered collective motion is a phenomenon commonly
observed in nature. One can find it in large populations
of interconnected oscillators in physics (e.g., in arrays of
superconducting Jesephson junctions [1]), biology (e.g., in
neurons in the brain [2]), and chemistry (e.g., in arrays
of electrochemical oscillators [3]). Also, ordered collective
motion can be found in large populations of live organisms
such as flocks of birds or schools of fish. The common
feature in all of these cases is the scenario in which agents
interact with each other by some sort of coupling so that
the convergence to the organized behavior emerges from
arbitrary, different initial conditions; moreover, this process
is robust to small differences among individuals. Furthermore,
the collective motion behaves as a single, virtual monolithic
individual, so that the entire set can have its dynamics changed
(e.g., changing its trajectory without losing the ordered
characteristic) by acting on the dynamics of the constitutive
elements. This paper is related to this last stated feature. As
such, we aim to understand how it is possible to change with
efficacy this ordered monolithic behavior by acting on the
individual dynamics of the constitutive elements.

Recent works have shown that the scenario of collective
motion can be reproduced in a set of identical (or almost
identical) low-dimensional nonlinear oscillators coupled to
each other through well-defined links [3–5]. This model can be
described by a network with fixed topology in which the nodes
are the oscillators and the coupling links are the edges [4].
As such, according to the way the individuals are coupled to
each other, the resulting network is classified as a hierarchical,
random, small-world, or scale-free network [5]. In this model,
an ordered collective behavior is represented by the situation
in which the oscillators are synchronized [6]. Several works
consider this scenario to understand how ordered collective
motion appears or to develop control strategies that can be
applied to drive the network dynamics to ordered states.

In this regard, researchers using a network model are
investigating how it is possible to change collective behaviors
based on the action imposed over the dynamics of its individual
elements (oscillators) [7]. In a limit situation, the collective
dynamics can be properly changed if the control action is
applied to all elements of the set. However, a more efficient and
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realistic approach would be to take advantage of the robustness
presented in the synchronization behavior to act just on some
judiciously chosen elements of the network. Based on that, the
elements in which the control strategy is not applied could end
up changing their dynamics to preserve the synchronized state
of the network. The main idea consists of controlling just a
fraction of the network nodes by using some local feedback
control applied to them. This approach is known as pinning
control, which was discussed by Grigoriev et al. [7]. This
control approach is illustrated in Fig. 1.

In this work we aim to determine guidelines for proper
control, with efficacy, of the synchronized state of a network
of chaotic oscillators using the pinning-control strategy. In
this context, efficacy means that the desired changes of the
synchronized behavior are to be accomplished by imposing
the feedback control over a reduced number of nodes. The
key point here is to find the more appropriate nodes over
which the control action must be applied. They must be
properly chosen to allow us to take advantage of the stability
of the synchronized state. It is this stability that allows us to
control just a reduced number of nodes in order to change the
system dynamics while the network synchronization is kept
throughout the changing process. As such, these guidelines
might be dependent on the network topology and also on the
degree of the nodes that are chosen to receive the action of the
feedback control. These dependencies are also investigated
and reported here. Actually, those issues can be associated
with a network characteristic entitled pinning controllability,
which was previously discussed in [8–11] but only considering
statistical limits. However, here instead we have taken into
account a finite population of individuals (oscillators) and have
used intensive numerical simulations to achieve our results.
The results are subsequently analyzed in the context of a
mathematical model that allows us to explain them. Our main
findings are the following: (1) Increasing the control gain q

and/or the set of controlled individual nodes does not always
guarantee meaningful improvement of the synchronization
performance. (2) High degree nodes are a good choice for
pinning in order to improve synchronization performance. In
addition, we compare these results with the ones presented in
previously mentioned works [10,11].

The paper is organized as follows: in Sec. II the general
analytical result is presented, in Sec. III the numerical analysis
on pinning synchronization performance is presented, and
finally in Sec. IV conclusions are given based on the results
obtained in this work.
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FIG. 1. (Color online) Pinning-control network synchronization
strategy schematic in which a reference node acts on a small set of
individuals of the complex network.

II. COLLECTIVE SYSTEM MODEL
AND ANALYTICAL ANALYSIS

Let us consider a complex undirected network of identical
nonlinear oscillators defined as follows:

ẋi(t) = f[xi(t),t] − σ
∑
j∈Ni

[xi(t) − xj (t)], i = 1, . . . ,N,

(1)

in which i = 1, . . . ,N ; xi(t) = [xi1(t), . . . ,xin(t)]T ∈ Rn is
the state vector of the ith node of the network, and f : Rn ×
R+ → Rn is a smooth nonlinear vector field. The parameter
σ is a unique global coupling strength among nodes assumed
to be constant and time invariant. Ni is the set of neighbors of
node i, that is, the set of nodes connected to node i. The set
of all network connections is given by E , and defined by the
Laplacian matrix L = [lij ] as follows:

lij =

⎧⎪⎨
⎪⎩

−1 if (i,j ) ∈ E,

−∑
k∈Ni

lik if i = j,

0 otherwise,

(2)

with lij = lj i , since only undirected networks are considered.
Given the node dynamics, it can be shown that for a network

with diffusive coupling, in which all nodes’ states are coupled
as in Eq. (1), there is a critical value of σ above which
the network synchronizes [12].1 The problem of finding this
critical value of σ is termed the synchronizability problem, and
has been solved for linear (diffusive) coupling mainly by using
the so-called master stability function approach (introduced
in [13]). However, if one wants to synchronize the network
onto a common synchronized state given by some external
reference, say xs(t), a strategy other than only adjusting σ

needs to be taken into account.

1A complex network with diffusive coupling, where all nodes
states are coupled, has an unbounded synchronization region and
consequently the synchronizability of the network is characterized
by the eigenvalue of the Laplacian matrix with the lowest nonzero
real part [12].

Given a complex network represented by Eq. (1), the
application of pinning control results in the following:

ẋi(t) = f[xi(t),t] − σ
∑
j∈Ni

[xi(t) − xj (t)] − δiqi[xi(t) − xs(t)],

(3)
i = 1, . . . ,N.

Here, the function δi is defined by

δi =
{

1 for i = 1, . . . ,Npin,

0 for i = (Npin + 1), . . . ,N,
(4)

in which parameter Npin is the number of pinned nodes, and
qi is the control gain associated to node i. Without loss of
generality, the first Npin nodes are chosen as the nodes of the
network to be pinned. The state vector xs[t0,x(0),t] ∈ Rn, with
x(0) ∈ Rn, is the reference solution, which is assumed to be
such that ẋs(t) = f[xs(t),t] starts from initial conditions that
lead to an equilibrium point, a periodic orbit, or a chaotic
trajectory.

A more convenient formalism can be introduced. Let us
consider a N -dimensional Laplacian-like matrix � = [�ij ]
defined as

�ij =

⎧⎪⎨
⎪⎩

−σij if (i,j ) ∈ E,∑
k∈Ni

σik if i = j,

0 otherwise.

(5)

For this work, it is assumed σij = σji = σ , which is constant
for any connection.

Define a (N + 1)-dimensional extended matrix �E as

�E =

⎡
⎢⎣

0

�
...

0 · · · 0

⎤
⎥⎦ .

Notice that this extended matrix is also a Laplacian-like matrix.
Also, define the pinning matrix as

�pin =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 0 · · · · · · · · · · · · 0 −q1

0 q2 0 · · · · · · · · · 0 −q2

0 0
. . . 0 · · · · · · 0

...

0 0 0 qNpin 0 · · · 0 −qNpin

0 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a (N + 1)-dimensional Laplacian-like matrix.
Now, omitting the explicit dependence on time t for the

sake of brevity, the governing equations of the pinned network
(3) can be recast as

Ẋ = F (X) − HEX − HpinX,X(0) = X0, (6)

in which X = [xT
1 , . . . ,xT

N ,xT
s ]T ; F (X) = [f(x1)T , . . . ,

f(xN )T ,f(xs)T ]T ; HE = �E ⊗ In [(N + 1) × n-dimensional
matrix]; and Hpin = �pin ⊗ In [(N + 1) × n-dimensional
matrix], with ⊗ being the Kronecker product.
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FIG. 2. qi effect: the average synchronization time for different
values of control gain q1 in a random network with coupling strength
σ = 10.

Notice that Eq. (6) can still be written as

Ẋ = F (X) + GX,X(0) = X0, (7)

in which M = −�E − �pin, and G = M ⊗ In [(N + 1) × n-
dimensional matrix]. One can then rewrite Eq. (3) in terms of
M coefficients to get the final controlled network equation:

ẋi = f(xi) −
N+1∑
j=1

Mij xj , i = 1, . . . ,N + 1, (8)

in which Mij is the element ij of matrix M .
Matrix M is not always diagonalizable. However, even for

this case, the master stability function, which is represented
by the variational equations

η̇h(t) = (Df − λhIn)ηh(t), (9)

is applicable [12], in which Df is the Jacobian matrix of f,
λh is the hth eigenvalue of matrix M , ηh represents the hth
decoupled node dynamics transverse to the synchronization
manifold, and h = 1, . . . ,N .

In order to quantify the convergence rate to a synchronized
state, consider the quantities Wh(t) = ||ηh||2 (a measure of ηh

boundedness) associated to λh. Following the steps in [14],
one can get

Ẇh(t) = [ζh(t) − 2λh]Wh(t), (10)

in which ζh(t) = ηh(t)T (Df+DfT )ηh(t)
ηh(t)T ηh(t) .

Considering ||Df|| � ||ηh||, with h = 1, . . . ,N , one can take
Df + DfT as the fluctuation of ηT

h ηh. The solution for Eq. (10)

is approximately given by Wh(t) = Wh(0)e[
∫ t

0 ζh(t)−2λht]. As
such, one concludes that the exponential convergence rate for
approaching the synchronized state along the eigenvector eh

associated to the eigenvalue λh is given by μh = − dlnWh(t)
dt

=
2λh. Therefore, as the convergence speed is restrained by
the slowest mode, the convergence rate of the synchronizing
process is given by

μ = min
h �=1

(2λh) = 2λmin, (11)

in which λmin is the second lowest eigenvalue of matrix M ,
which is in accordance with the results in [15] (the first lowest
eigenvalue is always the zero one).
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FIG. 3. qi effect: the average synchronization time for different
values of control gain q1 in a small-world network with coupling
strength σ = 10.

From Eq. (11), one can conclude that the convergence rate
is directly related to network topology, the coupling strength
σ , and the control gains qi . The consequent conclusion is the
following: The higher the value of the coupling strength σ , the
higher the convergence rate (by setting qi = σ q̃i∀i, it results
in μ = 2σ λ̃min, in which λ̃min = λmin/σ ). However, it is not
so clear how the control gains qi and the number of pinned
nodes Npin influence the convergence rate. Let us address these
issues next.

III. NUMERICAL RESULTS

In this section, numerical simulations are used to deter-
mine the following characteristics regarding pinning-control
strategy in networks: (1) the dependence of the convergence
rate with the control gains qi , (2) the dependence of the
convergence rate with the number of pinned nodes Npin, and
(3) the relation between the type of node (high degree, low
degree, high cluster coefficient, etc.) to be pinned and the
synchronization achievement performance.
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FIG. 4. qi effect: the average synchronization time for different
values of control gain q1 in a scale-free network with coupling strength
σ = 10.
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FIG. 5. (Color online) The variation of the λmin(M) value vs
control gain q1 in a scale-free network.

Consider a controlled network represented by Eq. (3) with
300 identical Chen’s oscillators [16] (a variation of Lorenz’s
system) defined as follows:

ẋi =
⎛
⎝−c1 c1 0

−c2 c3 0

0 0 −c4

⎞
⎠

⎛
⎝ xi1

xi2

xi3

⎞
⎠ +

⎛
⎝ 0

−xi1xi3

xi1xi2

⎞
⎠ , (12)

in which i = 1, . . . ,300, c1 = 35, c2 = 7, c3 = 28, and
c4 = 3. For these parameters, Chen’s system presents chaotic
behavior [16]. Initial conditions are randomly chosen for a
normal distribution with unitary standard variation, with x1, x2,
and x3 mean values equal to

√
63,

√
63, and 21, respectively

[16].
In order to check the results, simulations are also carried

out using the Rössler oscillator defined as follows:

ẋi =
⎛
⎝0 −1 −1

1 d1 0

0 0 −d2

⎞
⎠

⎛
⎝ xi1

xi2

xi3

⎞
⎠ +

⎛
⎝ 0

0

d3 + xi1xi3

⎞
⎠ , (13)

in which d1 = 0.432, d2 = 4, d3 = 2; these are values
for which the Rössler oscillator presents chaotic behavior
[17]. Initial conditions are randomly chosen for a normal
distribution with unitary standard variation, with x1, x2, and
x3 mean values equal to

√
63,

√
63, and 21, respectively,

and with the reference initial condition set to the fixed point
xs(0) = (0,0,d3).

In the numerical experiments, three different network types
are analyzed: scale-free, small-world, and random networks.
The scale-free network topology was generated using the
Albert and the Barabàsi [18,19] method with five initial nodes;
the small-world network topology was created according
to the Watts-Strogatz [19] method with rewiring probabil-
ity psw = 0.5 and starting degree k0 = 6; and the random
network topology was randomly generated with an initial
wiring probability pr0 = 0.042. Both scale-free and small-
world topologies present an average node degree 〈k〉 = 8.0,
while the average node degree for the random topology is
〈k〉 = 8.08, which is very close to the first ones. In each
simulation, only the initial conditions are changed—network
topology is kept fixed.
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FIG. 6. qi effect with σ = 20: the average synchronization time
for different values of control gain q1 in a random network with
coupling strength σ = 20.

Finally, let us define now the pinning-control cost by

C = σ

Npin∑
i=1

qi, (14)

in which qi is the control gain associated to node i, σ is the
network coupling strength, and Npin is the number of pinned
nodes.

A. Control gain qi effect

First, the effect of increasing control gain value qi on the
synchronization time2 of the complex network is analyzed.
As the stop criteria, the synchronized state is considered
to be achieved when 1

N+1

∑N+1
i=1 ||xi − xs||2 < ε = 0.001. In

every case, the coupling strength is set to σ = 10, which is a
value that guarantees network synchronability.3 The number
of pinned nodes is set as Npin = 1, while the control action is
applied to the hub4 of each network. Without loss of generality,
since the Laplacian matrix can always be rearranged, the hub
is set to be node 1.

Figures 2, 3, and 4 show the average5 synchronization time
over 50 simulation realizations for different values of control
gain q1, for the random, small-world, and scale-free networks
of Chen’s oscillators, respectively. Observe that for all the
analyzed networks, the average synchronization time has a

2Synchronization time can be defined as the time interval from the
instant in which the control is on until the instant that we can consider
all the nodes of the system are synchronized.

3The value of σ that guarantees synchronizability can be estimated
by applying a method proposed in [16]; estimating the value of σ

for the three different topologies gives, in the worst case (random
topology), σ = 77.68. The estimated value is too conservative, since
simulations show that on average over 50 simulation realizations,
σAV = 2.03 guarantees synchronizability of the networks used in our
simulations.

4Hub: the hub node of a network is the highest degree node of a
network.

5In this work, the average corresponds to the mean value over the
50 simulation realizations.
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FIG. 7. qi effect with σ = 20: the average synchronization time
for different values of control gain q1 in a small-world network with
coupling strength σ = 20.
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FIG. 8. qi effect with σ = 20: the average synchronization time
for different values of control gain q1 in a scale-free network with
coupling strength σ = 20.
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FIG. 9. qi effect with σ = 20 in Rössler network: the average
synchronization time for different values of control gain q1 in a
scale-free network of Rössler oscillators with coupling strength
σ = 20.
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FIG. 10. Npin effect: the average synchronization time for differ-
ent number of pinned nodes Npin in a random network with coupling
strength σ = 10 and control gain q1 = 10.

meaningful reduction as q1 is varied from q1 = 10 to q1 = 20;
however, when q1 is varied from q1 = 20 to q1 = 40, and so
on, no meaningful reduction of the average synchronization
time is verified.

Based on these results, it is possible to make the following
conjecture: The increase in q1 significantly reduces the
synchronization time up to a limit. Beyond this limit, increases
in the value of q1 may not have any further meaningful effect
in synchronization performance. Notice that this observed
behavior is in accordance with results obtained in [11], in
which it is shown that limqi→∞λmin(M) = c, in which c is a
constant for a given bounded number of pinned nodes Npin.
Figure 5 supports this characteristic by showing how λmin(M)
[see Eq. (9)] varies with the control gain q1 for a scale-free
network. Notice that the parameter λmin converges to a constant
value, regardless of how high the q1 value is. Additionally, the
results suggest that this behavior for λmin(M) × q1 is the same
for all network topologies. Furthermore, the synchronization
time is inversely related to σ [see Eq. (11)]. This means that
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FIG. 11. Npin effect: the average synchronization time for dif-
ferent number of pinned nodes Npin in a small-world network with
coupling strength σ = 10 and control gain q1 = 10.
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FIG. 12. Npin effect: the average synchronization time for differ-
ent number of pinned nodes Npin in a scale-free network with coupling
strength σ = 10 and control gain q1 = 10.

there might exist a nontrivial relationship between an optimum
value qi = q∗

i ,6 and the value of σ .
One can make the last conclusion assuming that in the

analysis, ζh(t) in Eq. (10) is regarded just as a perturbation.
As such, its contribution (which also depends on the initial
conditions) to the synchronization time was not quantified.

In order to have some perspective of such relation-
ship, the simulations are repeated, but now setting σ = 20.
Figures 6, 7, and 8 show the average synchronization time over
50 simulation realizations for different values of the control
gain q1 for random, small-world, and scale-free networks,
respectively.

Figure 9 shows the average synchronization time over 50
simulation realizations for different values of the control gain
q1 in a scale-free network of Rössler oscillators. Notice that,
qualitatively, the results are equivalent to those obtained for
Chen’s oscillators.

By comparing these results with the previous ones (for
σ = 10), one can assess that increasing σ implies decreasing
the synchronization time. As such, by increasing σ , the same
synchronization time can be achieved, but with a smaller value
for the gain q1. Notice that this numerical behavior is in
accordance with the theoretical conclusion presented in Sec. II
that states that the network synchronization time is inversely
proportional to σλmin(M) [see Eq. (9)].

B. Pinned nodes Npin effect

Reference [11] shows that for the limit case where Npin →
N , in which N is the number of nodes of the network, the
value of lim qi→∞

Npin→N
λmin(M) = c increases. This means that the

pinning synchronization performance increases. In practice,
however, one is able to pin just a bounded number of nodes.
In this section, the effect of increasing the number of pinned
nodes on the synchronization time is analyzed. For the entire
analysis, the parameter values are σ = 10, q1 = 10. The stop
criteria is the same one previously defined in Sec. III A.

6This value of qi is the one that minimizes both synchronization time
and pinning cost, i.e., the qi value such that (limqi→q∗

i
λmin(m) 
 c).
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FIG. 13. Npin effect in Rössler network: the average synchroniza-
tion time for different number of pinned nodes Npin in a small-world
network of Rössler oscillators with coupling strength σ = 10 and
control gain q1 = 10.

The pinned nodes used are the higher degree nodes in each
network.

Figures 10, 11, and 12 show the average synchronization
time over 50 simulation realizations for different numbers of
pinned nodes Npin for random, small-world, and scale-free
networks, respectively. Note that for all of these cases, the
average synchronization time decreases when Npin is varied
from Npin = 1 to Npin = 5. Now, when varying Npin from
Npin = 5 to Npin = 10, and so on, no meaningful reduction
in the average synchronization time occurs. This suggests that
there is a critical value for the number of pinned nodes N∗

pin that
minimizes both synchronization time and pinning cost, i.e.,
the Npin value such that lim qi→∞

Npin→N∗
pin

λmin(M) 
 c. This critical

number might be somehow related to the coupling strength σ

and the control gain qi .
Figure 13 shows the average synchronization time over 50

simulation realizations for different numbers of pinned nodes
Npin in a small-world network of Rössler oscillators. Notice
that, qualitatively, these results are equivalent to the one with
a network of Chen’s oscillators.
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FIG. 14. Node type effect: the average synchronization time for
different types of nodes in a random network with q1 = σ = 10.
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FIG. 15. Node type effect: the average synchronization time for
different types of nodes in a small-world network with q1 = σ = 10.

C. Type of node effect

In Ref. [11], it is shown that for a scale-free network, the
pinning synchronization time decreases whenever the nodes
to be pinned are changed toward low degree nodes. However,
this result was stated for the limit case in which Npin → N and
qi → ∞. In this section, this effect is investigated for bounded
values of Npin and qi , and considering random, small-world,
and scale-free networks.

The synchronization performance is evaluated based on the
average synchronization time of the network for four different
types of nodes: (1) hub (labeled HUB in figures), (2) the highest
degree node connected to the hub (HUB NHD), (3) a node
with l < lav , i.e., a node for which the shortest path length is
lower than the average shortest path length [5] of the network
(SPL<ASPL), and (4) the highest degree node among the
nodes with a higher clustering coefficient [5] (HCC). The stop
criteria is the same one defined in Sec. III A. The results can
be seen in Figs. 14, 15, and 16, corresponding to random,
small-world, and scale-free networks, respectively. The values
of parameters q1 and σ are q1 = σ = 10, and there is only one
pinned node.

For random and scale-free networks, the shortest average
synchronization time is obtained by pinning the highest degree
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FIG. 16. Node type effect: the average synchronization time for
different types of nodes in a scale-free network with q1 = σ = 10.
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FIG. 17. (Color online) Npin effect: the average synchronization
time for different number of pinned nodes Npin in a random network
with constant pinning-control cost.

node among the nodes with the higher clustering coefficient.
For the random network, the degree of the node with the highest
clustering coefficient is close to the hub degree. For the scale-
free network, however, the highest clustering coefficient node
coincides with the network hub.

For the small-world network, the shortest average synchro-
nization time is obtained by pinning the highest degree node
connected to the hub, and in second place, by pinning the hub
itself.

As such, this investigation suggests that higher degree
nodes are a good choice for being pinned because the number
of connections among these nodes and the other nodes is
higher than in the case where the other types of nodes were
considered. Nevertheless, Ref. [10] shows that for regular
networks of a few nodes, a better synchronization performance
with low pinning cost can be obtained by pinning a high
number of nodes adjacent to the hub. In the next section,
we investigate the pinning synchronization performance when
nodes adjacent to the hub are pinned.
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FIG. 18. (Color online) Npin effect: the average synchronization
time for different number of pinned nodes Npin in a small-world
network with constant pinning-control cost.
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FIG. 19. (Color online) Npin effect: the average synchronization
time for different number of pinned nodes Npin in a scale-free network
with constant pinning-control cost.

D. Pinning hub neighbors

In this section, the pinning synchronization performance in
the case where lower degree nodes adjacent to the hub (labeled
LDN HN in figures) are pinned is investigated. The pinning
synchronization performance when lower degree nodes of the
network are pinned (LDN) is also investigated.

First, one node adjacent to the hub is pinned and subse-
quently the number of the pinned nodes Npin is increased. This
is performed by keeping constant the pinning-control cost C

[see Eq. (14)] so that qi = q/Npin, where i = 1, . . . ,Npin (for
a fixed value of q). The coupling strength is set to σ = 10 and
the control gain to q = 10.

Figures 17, 18, and 19 show the average synchronization
time over 50 simulation realizations for different numbers of
pinned nodes Npin for the random, small-world, and scale-free
networks, respectively.

By comparing the results presented in this section with
those from the previous one, the conclusion is reached that
in the case of scale-free networks, it is better to apply the

pinning control to higher degree nodes instead of pinning lower
degree nodes adjacent to them. In the case of random and
small-world networks, and considering that we are keeping a
constant pinning-control cost, our results indicate that pinning
lower degree nodes adjacent to the hub (or even pinning lower
degree nodes of the network) could lead to a better performance
than pinning the network hub. One might expect, however, that
when Npin � 1 and even keeping a constant control cost, nodes
adjacent to higher degree nodes would be a good choice to be
pinned.

IV. CONCLUSION

In this work, we investigated the effect of the network
coupling strength σ , the control gain qi , the number of pinned
nodes Npin, and the type of the pinned node on the performance
of pinning synchronization control.

The results indicate that increasing the control gain qi

and/or the number of pinned nodes Npin does not guarantee a
meaningful reduction of the synchronization time. The reason
for this is that the nodes’ dynamics also contributes to the
final synchronization time. The results allow us to conjecture
that there may exist an optimum set of values qi and Npin

that guarantees an optimum synchronization performance with
minimum pinning-control cost. Moreover, we also assess that
this set of values qi and Npin is related to the coupling strength
σ and the network topology.

The relation between node type and pinning synchroniza-
tion performance is also investigated. It was observed that
in most cases, high degree nodes are a good choice for
being pinned. However, when Npin � 1, nodes adjacent to
the highest degree node are also a good choice to be pinned,
independently of the network topology.
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