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Abstract: This paper studies orbital maneuvers for a spacecraft that has the goal of performing station keeping in 

its orbit. This type of maneuver is necessary in order to compensate the effects of perturbations in the orbit of a 

spacecraft that needs to stay in a specific orbit to be able to perform its mission. It will use a low thrust to 

achieve this task. To do this, it is also important to find solutions that minimize the fuel consumption, since fuel 

will also be required for other tasks of the mission. To solve this problem, the present research uses a hybrid 

optimal control approach to numerically approach the problem, where the question of the accuracy of the 

satisfaction of the constraints is considered. The spacecraft is assumed to have its motion controlled by the 

gravity field of the Earth and the forces delivered by the thrusts. These thrusts have fixed magnitude and operates 

in an on-off mode. Numerical results are presented.  
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1 Introduction 
 

The main idea explored in the present paper is to 

study the orbital maneuvers required by a spacecraft 

that needs to perform a station keeping maneuver in 

order to remain with its orbital elements inside a 

region where it can achieve the goals of the mission. 

It is assumed that the orbit of the satellite is given, as 

well as a nominal orbit for this satellite that allows it 

to be useful for the planned activities. Then, it is 

necessary to maneuver this satellite from its current 

position to the nominal specified orbit. 

The control available to perform this maneuver is 

the application of a low thrust to the satellite and the 

objective is to perform this maneuver with minimum 

fuel consumption. An optimal approach will be used, 

to allow the maximum possible savings. There is no 

time restriction involved here and the spacecraft can 

leave from any point in the initial orbit. In the present 

paper, the stochastic version of the projection of the 

gradient method is used. This version allows us to 

include the fact that the constraints do not need to be 

exactly satisfied (see reference [1] and [2]). This is 

done to realistically treat the numerical inaccuracies 

and/or flexibility in terms of tolerance in mission 

requirements, leading to situations where the final 

state is constrained to lie inside a given region, 

instead of having an exact value.  

 

2 Review of Orbital Maneuvers 
 

One of the most important works done in this fied is 

the one made by Hohmann [3]. He solved the 

problem of minimum V transfers between two 

circular coplanar orbits. The Hohmann transfer 

would be generalized to the elliptic case (transfer 

between two coaxial elliptic orbits) by Marchal [4]. 

Smith [5] shows results for some other special cases, 

like coaxial and quasi-coaxial elliptic orbits, circular-

elliptic orbits, two quasi-circular orbits. A numerical 

scheme to solve the transfer between two generic 

coplanar elliptic orbits is presented by Bender [6].  

Another line of research studies the effects of the 

finite thrust, like the one used in the present paper, in 

the results obtained from the impulsive model. Zee 

[7] obtained analytical expressions for the extra fuel 

consumed to reach the same transfer and for the 

errors in the orbital elements and energy for a 

nominal maneuver (a real maneuver that uses the 

impulses calculated with the impulsive model). 

 Later, the literature studied the problem of a 

two-impulse transfer where the magnitude of the two 

impulses are fixed, like in Jin and Melton [8]; 

Jezewski and Mittleman [9].  

 The three-impulse concept was introduced in 

the literature by Hoelker and Silber [10] and 

Sthernfeld [11]. They showed that a bi-elliptical 

transfer between two circular orbits has a lower V 

than the Hohmann transfer, for some combinations of 

initial and final orbits. After that, Ting [12] showed 

that the use of more than three impulses does not 

lower the V, for impulsive maneuvers. Roth [13] 

obtained the minimum V solution for a bi-elliptical 

transfer between two inclined orbits. Following the 

idea of more than two impulses, we have the work 

done by Prussing [14] that admits two or three 
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impulses; Prussing [15] that admits four impulses; 

Eckel [16] that admits N impulses. 

 Some other researchers worked on methods 

where the number of impulses is a free parameter, 

and not a value fixed in advance. It is the case of the 

papers made by Lion and Handelsman [17], Jezewski 

and Rosendaal [18], Gross and Prussing [19], Eckel 

[20] and Prussing and Chiu [21]. Most of the 

research done in this particular case is based on the 

"Primer-Vector" theory developed by Lawden [22], 

[23]. 

 Another features that was introduced in the 

orbital maneuvers are the concepts of swing-by and 

gravitational capture. Those techniques use 

perturbations of a third body to increase or decrease 

the energy of the spacecraft. References [24] to [30] 

describe this problem in more details. 

 

3 Definition of the Problem 

 
The basic problem discussed in this paper is the 

problem of orbit transfer maneuvers. The objective of 

this problem is to modify the orbit of a given 

spacecraft by a small amount, that is compatible with 

the orbital corrections required by a spacecraft that 

needs to return to the nominal orbit that was affected 

by the perturbations [31, 32]. So, an initial and a final 

orbit around the Earth are completely specified. The 

problem is to find how to transfer the spacecraft 

between those two orbits in such way that the fuel 

consumed is minimum. There is no time restriction 

involved here and the spacecraft can leave and arrive 

at any point in the given initial and final orbits. The 

maneuver is performed with the use of an engine that 

is able to deliver a thrust with constant magnitude and 

variable direction. The mechanism, time and fuel 

consumption to change the direction of the thrust is 

not considered in this paper. 

 

4 Model Used 
 

The spacecraft is supposed to be in Keplerian 

motion controlled only by the thrusts, whenever they 

are active. This means that there are two types of 

motion: 

 

i) A Keplerian orbit that is an orbit obtained by 

assuming that the Earth's gravity (assumed to be a 

point of mass) is the only force acting on the 

spacecraft. This motion occurs when the thrusts are 

not firing; 

ii) The motion governed by two forces: the Earth's 

gravity field (also assumed to be a point of mass) and 

the force delivered by the thrusts. This motion occurs 

during the time that the thrusts are firing. 

The thrusts are assumed to have the following 

characteristics: 

i) Fixed magnitude: The force generated by them is 

always of constant magnitude during the maneuver. 

The value of this constant is a free parameter (an input 

for the algorithm developed here) that can be high or 

low; 

ii) Constant Ejection Velocity: Meaning that the 

velocity of the gases ejected from the thrusts is 

constant; 

iii) Free angular motion: This means that the direction 

of the force given by the thrusts can be modified 

during the transfer. This direction can be specified by 

the angles u1 and u2, called pitch (the angle between 

the direction of the thrust and the perpendicular to the 

line Earth-spacecraft) and yaw (the angle with respect 

to the orbital plane); 

iv) Operation in on-off mode: It means that 

intermediate states are not allowed. The thrusts are 

either at zero or maximum level all the time. 

Several numbers of "thrusting arcs" (arcs with 

the thrusts active) are tested for each maneuver. 

Instead of time, the "range angle" (the angle between 

the radius vector of the spacecraft and an arbitrary 

reference line in the orbital plane) is used as the 

independent variable, as used by Biggs [33], [34]. 

 

5 Optimal Control Formulation 
 

The minimum fuel spacecraft maneuver can 

be treated as a typical optimal control problem, 

formulated as follows: 

 

Objective Function: Let Mf, the final mass of the 

vehicle, to be maximized with respect to the control 

u(.); 

 

      Subject to:       

 

              x  = f(x,u,s);    (1) 

 Ce(x,u,s) = Ee;    (2) 

 Cd(x,u,s)  Ed;    (3) 

 h(x(tf),tf) = Eh, t0 and x(t0) given (4) 

 

where x is the state vector, f(.) is the right hand side 

of equations of motion, as in Biggs [34] and Prado 

and Rios-Neto [35]; s is the independent variable (s0 

 s  sf), Ce(.) and Cd(.) are the algebraic dynamic 

constraints on state and control of dimensions me and 

md; h(.) are the boundary constraints of dimension 

mh; and Ee, Ed, Eh error vectors satisfying: 
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|Eei|  Eei
T, i = 1, 2, 3, ..., me  (5) 

 |Edi|  Edi
T, i = 1, 2, 3, ..., md  (6) 

 |Ehi|  Ehi
T, i = 1, 2, 3, ..., mh  (7) 

 

where the fixed given values Eei
T, Edi

T, Ehi
T, 

characterizes the region around zero within which 

errors are considered tolerable. 

 

6  Mathematical Method 
 

 This approach is based on Optimal Control 

Theory. First order necessary conditions for a local 

minimum are used to obtain the adjoint equations and 

the Pontryagin's Maximum Principle to obtain the 

control angles at each range angle, leading to a "Two 

Point Boundary Value Problem" (TPBVP), where the 

difficulty is to find the initial values of the Lagrange 

multipliers. The treatment given here [34] is the 

hybrid approach of guessing a set of values, 

integrating numerically all the differential equations 

and then searching for a new set of values, based on a 

nonlinear programming algorithm. With this 

approach, the problem is again reduced to parametric 

optimization, as in the suboptimal method, with the 

difference that the angles' parameters are replaced by 

the initial values of the Lagrange multipliers, as 

variables to be optimized. 

 The method showed by Biggs [34] was used, 

where the "adjoint-control" transformation is 

performed and, instead of the initial values of 

Lagrange multipliers,  one guesses  control angles and 

their rates at the beginning of thrusting. With this, it is 

easier to find a good initial guess, and the 

convergence is faster. This hybrid approach has the 

advantage that, since the Lagrange multipliers remain 

constant during the "ballistic arcs", it is necessary to 

guess values of the control angles and its rates only 

for the first "burning arc". This transformation 

reduces very much the number of variables to be 

optimized and, as a consequence, the time of 

convergence. 

 

7 Numerical Method 
  

To solve the nonlinear programming problem, 

the stochastic version of the projection of the gradient 

method (Rios-Neto and Pinto [1]) was used. 

Its general scheme is resumed in what 

follows: 

 Given a value p  of the searched vector of 

parameters p , from an initial guess or from an 

immediately previous iteration, a first order, direct 

search approach is adopted in a typical iteration to 

determine an approximate solution for the increment 

p  in the problem: 

 

   Minimize:      J(p  + p )   (10) 

 

   Subject to:    Ce(p  + p ) =  Ce(p ) + Ee (11) 

            Cd(p  + p ) =  Cd(p ) + Ed (12) 

 

where J(p ) is the objective function; Ce(p ) the 

equality constraints; Cd(p ) the active inequality 

constraints at p ; and 0   < 1, 0   < 1 are chosen 

close enough to one to lead to increments p  of a 

first order of magnitude. 

 Linearized approximations are taken for the 

left hand sides of Equations (11) and (12) together 

with a stochastic interpretation for the errors Ee and 

Ed, resulting in: 

 

   ( - 1)Ce(p ) = (d[Ce(p )]/dp ) p  + Ee (13) 

    ( - 1)Cd(p ) = (d[Cd(p )]/dp ) p  + Ed (14) 

 

where Ed and Ee are now assumed to be zero mean 

uniformly distributed errors, modeled as: 

 

E[EeEeT] = diag [ ei, i = 1,2,...,me] 

E[EdEdT] = diag [ di, i = 1,2,...,md] 

 

where E[.] indicate the expected value of its 

argument. 

 The condition of Equation (10) is 

approximated by the following "a priori information": 

 

 -g. JT(p ) = p  + n   (15) 

 

where g  0 is to be adjusted to guarantee a first order 

of magnitude for the increment, that is, such that p  

is small enough to permit the use of a linearized 

representation of J(p+p ); and n is taken as a zero 

mean uniformly distributed random vector, modelling 

the a priori searching error in the direction of the 

gradient J(p ), with: 

 

E[nnT] = P  

 

as its diagonal covariance matrix. The values of the 

variances in P  are chosen such as to characterize an 

"adequate order of magnitude" for the dispersion of n. 
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The diagonal form adopted is to model the 

assumption that it is not imposed any a priori 

correlation between the errors in the gradient 

components. 

 The simultaneous consideration of conditions 

of Equations (13), (14) and (15) characterize a 

problem of parameter estimation, which in a compact 

notation can be put as follows: 

 

 U  = U + n    (16) 

 Y = MU + V    (17) 

 

where U   -g.JT(p ) is the "a priori information";  

U  p ; 

 Y  [( - 1)CeT(p ) : ( - 1)CdT(p )] is the 

observation vector; 

MT  [(d(Ce(p ))/dp )T : (d(Cd(p ))/dp )T]; VT = 

[EeT : EdT]. 

 

Adopting a criterion of linear, minimum 

variance estimation, the optimal search increment can 

be determined using the classical Gauss-Markov 

estimator, which in Kalman form (e. g. Jazwinski 

[32]) gives: 

 

 U  = U  + K(Y - MU )   (18) 

 P = P  - KMP     (19) 

 K = P MT(MP MT + R)-1  (20) 

 

where P  is defined as before; R  E[VVT] = diag 

[Rk, k = 1,2,...,me+md]; and P has the meaning of 

being the covariance matrix of the errors in the 

components estimates of U, i. e.: 

 

 P = E[(U - U )(U - U )T]  (21) 

 

 To build a numerical algorithm using the 

proposed procedure, the following types of iterations 

are considered: 

 

(i) Initial phase of acquisition of constraints, when 

starting from a feasible point that satisfies the 

inequality constraints, the search is done to capture 

the equality constraints, including those inequality 

constraints that eventually became active along this 

phase; 

(ii) Search of the minimum, when from a point that 

satisfies the constraints in the limits of the tolerable 

errors V in Equation (17), the search is done to take 

the objective function (Equation (10)) to get closer to 

the minimum; this search is conducted relaxing the 

order of magnitude of the error bounds around the 

constraints; 

(iii) Restoration of the constraints, when from a point 

that resulted from a type (ii) iteration, the search is 

done to restore constraints satisfaction, within the 

limits imposed by the error V in Equation (17). 

 Rios-Neto and Pinto [1] suggest how to 

choose good values for the numerical parameters that 

must be different for each type of iteration. 

 

8 - Simulations and Numerical Tests 

 
 To verify the algorithm proposed, two 

maneuvers of station keeping were simulated. These 

results were compared with the ones obtained by the 

deterministic version, without flexibility in 

constraint's satisfaction. Similar problems can be 

found in references [36], [37] and [38]. The first 

maneuver will occur with the data given in Table 1. 

The thrust level is 2.0 N. Table 2 shows the errors 

allowed in the final Keplerian elements of the orbit. 

 

 

Table 1 - Data for Maneuver 1 

Orbits Initial Final 

Semi-major axis  7060.00 7090.00 

Eccentricity 0.03 0.01 

Inclination (degrees) 3.00 3.00 

Ascending Node (degrees) 0.00 Free 

Argument of perigee (degrees) 0.00  Free 

Mean Anomaly (degrees) 0.00 Free 

 

 

Table 2 - Errors Allowed for Final Keplerian 

Elements 

Semi-major axis 1.0 Km  

Eccentricity 0.005 

Inclination 0.001 deg 

 

 

 The choice of the number of "burning arcs" 

was done for several different values for the same 

maneuver, in order to obtain some information about 

the importance of this parameter. 

 The consumptions found are showed in Table 

3, as well as comparisons with deterministic methods, 

that we also simulated for comparison.. 
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Table 3 - Fuel Expenditure Comparisons (kg) 

Approach Stochastic Deterministic 

2 Arcs 0.201 0.203 

3 Arcs 0.200 0.201 

4 Arcs 0.198 0.199 

5 Arcs 0.197 0.198 

6 Arcs 0.196 0.197 

7 Arcs 0.195 0.196 

8 Arcs 0.194 0.196 

 

 

The second maneuver will occur with the data given 

in Table 4. Now, only the inclination is changed. The 

thrust level is again 2.0 N. Table 5 shows the errors 

allowed in the final Keplerian elements of the orbit. 

 

 

Table 4 - Data for Transfer Maneuver 2 

Orbits Initial Final 

Semi-major axis  8000.00 8000.00 

Eccentricity 0.02 0.02 

Inclination (degrees) 3.00 2.50 

Ascending Node (degrees) 0.00 Free 

Argument of perigee (degrees) 0.00  Free 

Mean Anomaly (degrees) 0.00 Free 

 

 

Table 5 - Errors Allowed for Final Keplerian 

Elements 

Semi-major axis 0.50 Km  

Eccentricity 0.005 

Inclination 0.001 deg 

 

 

 The choice of the number of "burning arcs" 

was done for several different values, in the same way 

that was made in the first maneuver. 

 The consumptions found are showed in Table 

6, as well as comparisons with deterministic methods. 

 

 

Table 6 - Fuel Expenditure Comparisons (kg) 

Approach Stochastic Deterministic 

2 Arcs 0.130 0.132 

3 Arcs 0.128 0.130 

4 Arcs 0.127 0.129 

5 Arcs 0.127 0.128 

6 Arcs 0.127 0.128 

7 Arcs 0.127 0.128 

8 Arcs 0.127 0.128 

 

 

 

9 - Conclusions 
 

 Optimal control was explored to generate an 

algorithm to obtain solutions for the problem of 

minimum fuel consumption to make orbital 

maneuvers of a satellite that needs to return to its 

nominal orbit after deviations caused by perturbations 

forces. 

This problem was considered taking into 

account the accuracy tolerance in the constraint's 

satisfaction using the new nonlinear programming 

algorithm proposed by Rios-Neto and Pinto [1]. 

 The results showed that some fuel can be 

saved by exploring tolerable errors allowed for 

constraint's satisfaction. The amount saved is not 

negligible. 

It is also possible to see that the increase of 

the number of burning arcs can decrease the total fuel 

expenditure. This happens because this increase is 

accompanied by an increase of the number of 

variables available for the optimization technique. 

Since the maneuvers have small amplitudes, the 

increasing of the number of arcs has a limit in the 

possible savings and the fuel consumption goes to a 

constant value after the number of arcs reach a certain 

value. 
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