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Abstract: In the present work we show the expressions of the gravitational potential of homogeneous bodies
with non-spherical three-dimensional shapes in order to study the trajectories around these bodies. The
potentials of prolate and oblate ellipsoids with different values of semi-major axis are presented. Their results
are validated with a test using a spherical body in order to guarantee the approximation of any body as a
polyhedral model. With these expressions we study trajectories of a point of mass around the three-
dimensional bodies and the results indicated that the polyhedral form of the object does work very well. As a
final test, we show an orbital maneuver around those bodies, using the polyhedral model for the dynamics. The
results show that the best transfer was similar to the Hohmann transfer.

Keywords: Gravitational potential, non-spherical bodies, polyhedral model, tetrahedra, prolate ellipsoid, oblate
ellipsoid.

1. Introduction
The purpose of the present work is to determine an
analytical form to represent the potential around an
irregular shaped body and to obtain a description of
the possible orbital evolutions of a particle that
travels around a body with those characteristics.

Conventional spherical harmonic
representations of the gravitational potential of such
bodies require expansions of high degree and order,
which are difficult to obtain. The polyhedral method
is well suited to evaluate the gravitational field of an
irregularly shaped body such as asteroids, comet
nucleus, and small planetary satellites. If complete
coverage of the surface can be obtained, a
polyhedral model of the body can be constructed.
Expressions in closed forms are developed for the
gravitational potential and for the acceleration due
to the polyhedron with constant density. Results are
developed in closed forms, instead of an infinite-
series expansion, and involve only elementary
functions (arc-tangent and logarithm).

The technique of the determination of the
gravitational field through polyhedron is studied
starting from the literature that already exist and,
starting from the expressions for the polyhedron, we
developed an algorithm to illustrate the
equipotential surface of a non-spherical body,
whose field is not known yet. The results that will

be shown consist of sets of analytical equations that
give the potential due to the different geometrical
forms.

The polyhedral method is used to study the
gravitational potential of spherical and non-
spherical three-dimensional bodies (a unity radius
sphere, prolate and oblate ellipsoids with different
values of semi-major axis). The dynamics of the
orbit of a test particle around such bodies is studied.
In general, when the particle is far from the sphere,
its position returns to the initial point after a
Keplerian orbital period. On the other hand, when
the particle gets close to its surface, the effect of its
polyhedral form shows short-periodic variations in
the semi major axis and eccentricity of the orbit.
The results showed that the orbits close to ellipsoids
become eccentric and precess due to the effects of
its potential. With these results it is possible to
verify that the polyhedral form of the object does
work very well and this method is efficient to study
trajectories. With the gravitational potential
determined, an orbital evolution around the 3-D
bodies can be done. The test consists on a transfer
from an initial orbit to a final orbit with a minimum
impulsive V . More details about orbital transfers
can be found in references [1] to [7]. These orbits
are discretized in an ensemble of points equally
spaced, generating a group of solution for the
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maneuver and, from this group of solutions, the best
one can be found. The polyhedron expressions are
an approximation to reality, since real bodies are not
polyhedra and contain density irregularities, but
these expressions are a good representation and can
be used to study orbits around such bodies. This
research generates fundamental theoretical
knowledge that can be applied in irregular bodies
with more complex forms, such as asteroids.

2. The Potential of the Polyhedron
The representation of the gravitational potential
around a non-spherical body is made through
polyhedra with constant density, involving two
kinds of terms: logarithm terms due to the edges and
arc tangent terms due to the faces, as discussed
elsewhere [8, 9 and 10].

A polyhedron is a three-dimensional solid body
whose surface consists of a number of planar faces
that meet along the edges. Two faces meet at one
edge and three or more faces and a like number of
edges meet at each vertex [9]. The tetrahedron is the
simplest polyhedron that is constructed by four
triangles forming a triangular-based pyramid.

The method developed by Werner [9] begins by
deriving the potential of a 3D polyhedron. It was
found expressions equivalent to the potential of a
2D polygon and a 1D straight wire. Each face of the
polyhedron gets its own Cartesian coordinate system
with the origin in the field point.

The divergence of the vector field
rˆ 22

1 rr 

with respect to the differential element’s coordinates
is r

1 . This identity allow us to convert the

definition of the potential U based in a volume
integral to a surface integral via the Gauss
Divergence Theorem, provided the density  is
constant:
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where n̂ is the vector normal to the surface.
Initially, we separate the surface integral (Equation
1) into a sum of integrals, one per face:
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The integral  r/dS in Equation (2) express
the potential of a 2D planar region S. Green’s
Theorem is used, an integral   dSr/z 3 appears

and it is defined as f . In equation (2) the potential
of a 2D planar region S can be given by:
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The potential of a planar region can be
evaluated as a line integral around the boundary,
where fn̂ is the face-normal vector and

eee
f

e zˆyˆxˆ kjir  is a vector from the field
point to some fixed point in the plane of the face.
The integral in Equation (3) is considered as the
potential of a 1D straight wire. We adopt the symbol
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for the general edge ‘e’ of face ‘f’.

Werner [9] shows that the definite integral can be
expressed intrinsically in terms of the distances Pi
and Pj of the point field and the edge length which
result is:
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Using Equations (2), (3) and (4) the potential of
a constant-density polyhedron is given by:
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where: G is the gravitational constant;  is the
constant density; re(f) is the vector from the field
point to some fixed point in the edge (face);
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L is the vector from the field point to

some fixed point in the edge (face); TˆˆF fff nn is a
3x3 matrix from each face and
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TA
ijAij ˆˆˆˆE nnnn  is a 3x3 matrix in

terms of the two face-normal and edge-normal
vectors.
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3. Orbital Evolution around a 3-D
Body
In order to test the method of polyhedron potential,
one irregular body (hypothetic asteroid) is created
and divided in a finite number of tetrahedron
through a software called FEMAP. Each tetrahedron
generates a group of 4 vertexes containing the
coordinates x, y, z (see Fig. 1).

Fig. 1 – Examples of a solid divided in tetrahedra.

Equation (5) will be used to determine the
potential of each tetrahedron. Then, the potentials of
all tetrahedra will be added in order to have the total
potential of the hypothetical asteroid or any irregular
shaped body.

The first step of this study is to analyze the
behavior of a particle that orbits around different
solids divided into a finite number of tetrahedra. In
our numerical simulation we will consider a sphere,
a prolate and an oblate ellipsoid with different
number of tetrahedral, as showed in Table 1.

For each solid created as a group of tetrahedra,
trajectories are simulated using a Runge-Kutta
numerical integrator considering different initial
positions for the particle that orbits around each
body. The central body is fixed considered the
origin of the system. A particle with negligible mass
is put in different initial positions and the integration
occurs during a determined period of time,
calculated by the two body problem approximation.
The first case shows the orbit propagation around a

unit sphere radius. After that, the central body
considered was a prolate ellipsoid with the axes
(1x3x1) and, finally, an oblate ellipsoid with the
axes (2x1x2).

Table 1 – 3-D solid classification

Solid Semiaxes Number of
Tetrahedra

Sphere 1 493

Prolate
ellipsoid

(1 x 3 x 1) 239

Oblate
ellipsoid

(2 x 1 x 2) 451

The initial conditions (position and velocity) of
the particle were:

   00 ,,RZ,Y,X  and

  ,,,Vz,Vy,Vx 









R
μ00

where  is the product of the mass by the
gravitational constant of the solid.

The numerical results consist of a group of
trajectories around different solids, where the
symbols in the figures are: R is the initial position of
the particle in the X-axis and T is the number of
periods given by the two-body problem.

In Figure 2 we can see that the orbit is circular
and closed when the particle is distant from the
body, but when it is next to the sphere (R ≤ 1.5), the
particle suffer a small perturbation by the
gravitational potential due to the polyhedral shape
of the body, and it causes a small change in the
trajectory. It is important to note that the sphere
was generated by a group of tetrahedra and it
is\\does not represent the body very well, so it has
some imprecision in its form that causes numerical
errors that increase with the proximity of the particle
from the body. However, this method is efficient to
calculate the gravitational potential of irregular
shaped bodies. In this particular case, the sphere was
very well represented by the polyhedra. For better
results it is possible to represent the body by a large
number of triangular faces in its polyhedral model.

Then we simulated a group of orbits around a
prolate ellipsoid with the axes (1x3x1) for different
initial positions of the particle. The orbital plane
considered is the XZ plane. The results show that the
orbit is similar to the Keplerian orbit when the
particle is relatively close to the body, but after an
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orbital period (T) the particle do not return to its
initial position, because its orbital period is longer
than the Keplerian one.

After that, we studied orbits around an oblate
ellipsoid with the axes (2x1x2) for different initial
positions of the particle. The orbital plane
considered is the XZ plane. We can see that, after an
orbital period the particle, it advances its initial

position, i.e., its orbital period is shorter than the
Keplerian one.

For both cases, prolate and oblate ellipsoids, the
orbits become eccentric and it precess. For the
oblate ellipsoid the trajectories show that the
potential effect can be compared with the Earth’s
flattening (J2).

Fig. 2 – Group of trajectories around a unit sphere for different initial positions of the particle. The orbital plane
considered is the XZ plane.
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4. Orbital Maneuvers
The problem of orbital maneuver consists of
determining the orbital behaviour and transfer of a
spatial vehicle between two given orbits.  There are
several factors in an orbital transference, as the
control of the transference time, economy in the
consumption of fuel, etc.

From the dynamic of the orbit studied, an orbital
maneuver will be simulated between an internal
orbit (given the initial values of position, velocity
and time, respectively - R0, V0 and T0) to an external
orbit (given the final values of Rf, Vf and Tf) with the
application of an impulse V that has the smallest
possible magnitude.

After each test the result will be a transfer from
an initial orbit O0 to a final orbit Of with the
minimum V . The best transfer will occur from a
point Pi in the internal orbit (given R0 and V0) to a
point Pj in the external orbit (given Rf and Vf) with a
minimum V . The classical methods of orbital
maneuvers are based in the model of impulsive
propulsion.  One of them is the Hohmann transfer
(Prado [1]).  This is a bi-impulsive solution for an
optimal transfer between two circular and coplanar
orbits with free time.

In this work, the method to solve this maneuver
is based in the Two-Point Boundary Value Problem
(TPBVP).  It was chosen an initial orbit with R0 and
V0 and a final orbit with Rf and Vf given by:

  52
0

2
0

2
00  ZYXR and

  .ZYXR ffff 10222 

The first test of an orbital maneuver considered
is the one around a spherical central body.  Each
orbit was discretized in an ensemble of 4 points
equally spaced, generating a total of 16 groups of
solutions for the maneuver, in a time that varies

from T1 to T2, where
4
0

1
T

T  (a quarter of the

initial orbit) and T2 = Tf, corresponding to the period
of the final orbit. The group of solutions generates
graphics of the velocity increment versus time (

T.vs.V ) for each group of points P0i e Pfj. The
best maneuver corresponds to the minimum point of
the graphic, i.e., the minimum V .

The second test considers the oblate ellipsoid as
the central body. The initial and final orbits are the
same ones (R0 = 5 and Rf = 10).  The minimum V
for this maneuver is obtained, choosing the best
group of points.

Tables 2 and 3 show the ensembles of points of
each discretized orbit that generated the best orbital
transfer, the V and the smaller time of transfer for
each case.

According to the results presented in Tables 1
and 2 and Figure 6, we can verify that the best
transfer for each group of points is similar to the
Hohmann transfer.  That analysis can be verified by
calculating the values of the pericenter and
apocenter of the transfer orbit (Rper and Rapo).  Those
values are close to the semi-major axis of the
internal orbit ( 5perR ) and the external orbit (

10apoR ).  The other groups of points showed a
large increment of velocity and a large time for the
transfer.
For more accurate calculations we can increase the
number of points in the discretization of the final
and initial orbits.

Table 2 – Minimum V for each group of points of
the discretized orbits. The central body is
represented by the Sphere.

P0i / Pfj V T

1 / 3 1,804 36

2 / 4 1,787 31

3 / 1 1,782 30

4 / 2 1,795 32

Table 3 – Minimum V for each group of points of
the discretized orbits. The central body is
represented by the Oblate ellipsoid.

P0i / Pfj V T

1 / 3 3,481 12

2 / 4 3,583 14

3 / 1 3,369 12

4 / 2 3,305 12

Figure 3 shows the values of V during a
determined period of time. We can see that the point
of minimum of this graphic corresponds to the
minimum V for a given period.

Figure 4 shows one of those orbital transfers,
considering the oblate ellipsoid as the central body.
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Fig.3– Minimum value of V

Fig. 4 – Orbital maneuver of an internal orbit
(R0 = 5) to an external orbit (Rf = 10), with a
minimum V . The central body is the oblate
ellipsoid and the transfer occurs in the 4 / 2 group of
points.

5. Final Comments
In this work we studied the behavior of a particle
that orbits around a body characterized by a set of
tetrahedra, emphasizing the effect of the potential in
the neighborhood of the solid.

We considered three types of objects: a sphere,
a prolate ellipsoid and an oblate ellipsoid. Our
results show that the sphere modeled by a set of
tetrahedra does not work very well for R ≤ 10. The
orbits close to the ellipsoids show the effects of its
potential, so the orbits become eccentric and
precess. In the prolate case the orbital period
becomes shorter than the keplerian value, while in
the case of the oblate ellipsoid it becomes longer.

This research was then completed with the
presentation of a type of maneuver around a set of
bodies approximated by tetrahedral, showing the
smallest values for the velocity increment required
to perform an orbital maneuver. This study used the
Two-Point Boundary Value Problem. The results
showed that the orbital transfers had best results
(minimum comsumption of fuel) for a maneuver

similar to the Hohmann transfer. Similar orbital
maneuvers can be performed using a smaller step in
the discretization to find a more accurate minimum.
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