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Abstract: In this paper the problem of spacecraft orbit control with minimum fuel consumption is 
considered, in terms of simulating low thrust maneuvers for a spacecraft around the Earth. A numerical 
suboptimal solution is tried, when the direction of the thrust is assumed to be a quadratic form function 
of a reference angle that specify the position of the satellite in the orbit. The main goal is to develop a 
software that can calculate the control laws for real missions. The problem is numerically treated by 
using a direct search approach. The numerical solution of the problem in each iteration is reduced to 
one of nonlinear programming, which is then solved with the gradient projection method. The 
spacecraft is supposed to be in Keplerian motion controlled by the thrusts, that are assumed to be of 
fixed magnitude (either low or high) and operating in an on-off mode.  Results of simulations are 
presented.  
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1 Introduction 
 

This paper is a sequence of previous papers [1], 
[2], [3], that studied the problem of optimal 
maneuvers for a spacecraft controlled by the force 
given by a continuos thrust. In the present paper, the 
subotimal approach is emphasized, this time using a 
quadratic form for the control, so we can observe the 
gain given by this more complex motion of the 
direction of the thrust. The same mission considered 
in the references cited above are used for comparison.  

R. H. Goddard [4] was one of the first researchers 
to work on the problem of optimal transfers of a 
spacecraft between two points. He proposed optimal 
approximate solutions for the problem of sending a 
rocket to high altitudes with minimum fuel 
consumption.  

After him comes the important work done by 
Hohmann [5]. He solved the problem of minimum ∆
V transfers between two circular coplanar orbits.  

A numerical scheme to solve the transfer between 
two generic coplanar elliptic orbits is presented by 
Bender [6]. Another line of research studies the 
effects of the finite thrust, like the one used in the 
present paper, in the results obtained from the 
impulsive model. Zee [7] obtained analytical 
expressions for the extra fuel consumed to reach the 
same transfer and for the errors in the orbital 
elements and energy for a nominal maneuver (a real 
maneuver that uses the impulses calculated with the 
impulsive model).  

The three-impulse concept was introduced in the 
literature by Hoelker and Silber [8] and Shternfeld 
[9]. They showed that a bi-elliptical transfer between 
two circular orbits has a lower ∆V than the Hohmann 
transfer, for some combinations of initial and final 
orbits.  

Roth [10] obtained the minimum ∆V solution for 
a bi-elliptical transfer between two inclined orbits. 
Following the idea of more than two impulses, we 
have the work done by Prussing [11], that admits two 
or three impulses; Prussing [12] that admits four 
impulses and Eckel [13] that admits N impulses.  

Another important assumption is to consider the 
low thrust. This case is based on the "Primer-Vector" 
theory developed by Lawden [14], [15]. This 
situation is considered in several researches, like 
in the reference [16] [17] and [18]. 

The third-body perturbation [19] can also be 
used to help in reducing the costs, like shown in 
[20], [21] and [22]. In some situations, an 
onboard orbit determination [23] has to be 
performed, so you have the actual information 
about the orbital parameters of the satellite in the 
moment of starting the maneuver. 

 
 

2 Definition of the Problem 

 
The basic problem discussed in this paper is the 

problem of orbit transfer maneuvers. The objective of 
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this problem is to modify the orbit of a given 
spacecraft. In the case considered in this paper, an 
initial and a final orbit around the Earth is completely 
specified. The problem is to find how to transfer the 
spacecraft between those two orbits in a such way that 
the fuel consumed is minimum. There is no time 
restriction involved here and the spacecraft can leave 
and arrive at any point in the given initial and final 
orbits. The maneuver is performed with the use of an 
engine that is able to deliver a thrust with constant 
magnitude and quadratic variable direction. The 
mechanism, time and fuel consumption to change the 
direction of the thrust is not considered in this paper. 
 

3 Model Used 
 
      The spacecraft is supposed to be in Keplerian 
motion controlled only by the thrusts, whenever they 
are active.  
 This means that there are two types of motion: 
 
i) A Keplerian orbit, that is an orbit obtained by 
assuming that the Earth's gravity (assumed to be a 
point of mass) is the only force acting on the 
spacecraft. This motion occurs when the thrusts are 
not firing; 
 
ii) The motion governed by two forces: the Earth's 
gravity field (also assumed to be a point of mass) and 
the force delivered by the thrusts. This motion occurs 
during the time that the thrusts are firing. 
 

The thrusts are assumed to have the following 
characteristics: 

 
i) Fixed magnitude: The force generated by them is 
always of constant magnitude during the maneuver. 
The value of this constant is a free parameter (an input 
for the algorithm developed here) that can be high or 
low; 
 
ii) Constant Ejection Velocity: Meaning that the 
velocity of the gases ejected from the thrusts is 
constant; 
 
iii) Constrained angular motion: This means that the 
direction of the force given by the thrusts can be 
modified during the transfer. This direction can be 
specified by the angles α and β, called pitch (the angle 
between the direction of the thrust and the 
perpendicular to the line Earth-spacecraft) and yaw 
(the angle with the orbital plane). The motion of those 
angles are constrained to a quadratic form; 
 

iv) Operation in on-off mode: It means that 
intermediate states are not allowed. The thrusts are 
either at zero or maximum level all the time. 

The solution is given in terms of the constants 
that specifies the control to be applied and the fuel 
consumed. Several numbers of "thrusting arcs" (arcs 
with the thrusts active) can be used for each 
maneuver. Instead of time, the "range angle" (the 
angle between the radius vector of the spacecraft and 
an arbitrary reference line in the orbital plane) is used 
as the independent variable. 
 
4 Optimal Control Formulation 
 

The minimum fuel spacecraft maneuver can 
be treated as a typical optimal control problem, 
formulated as follows: 

 
Objective Function: Let Mf, the final mass of the 
vehicle, to be maximized with respect to the control 
u(.) that is the time to start and to stop the engine and 
the pitch and yaw angles of the thrust at every instant 
of time, since the magnitude of the thrust is assumed 
to be constant. Since we are assuming quadratic 
variation for the control, all that needs to be specified 
is the set of six constants: three for the pitch angle and 
three for the yaw angle. 
 
      This system is subject to the following equations 
of motion:       
 
dX1/ds = f1 = SiX1F1                                                 [1] 
 

dX2/ds = f2 = Si{[(Ga+1)cos(s)+X2]F1+νF2sin(s)}                                       
         [2] 
 

dX3/ds = f3 = Si{[(Ga+1)sin(s)+X3]F1 -νF2cos(s)}                                        
         [3] 
 

dX4/ds = f4 = SiνF(1-X4)/(X1W)                          [4] 
 

dX5/ds = f5 = Siν(1-X4)m0/X1                                                       [5] 

 

dX6/ds = f6 = - SiF3[X7cos(s)+X8sin(s)]/2            [6] 
 

dX7/ds = f7 = SiF3[X6cos(s)-X9sin(s)]/2                [7] 
 

dX8/ds = f8 = SiF3[X9cos(s)+X6sin(s)]/2               [8] 
 

dX9/ds = f9 = SiF3[X7sin(s)-X8cos(s)]/2                 [9] 
 
where: 
 
Ga = 1 + X2cos(s) + X3sin(s)                              [10] 
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Si = (µ X1
4)/[Ga3m0(1-X4)]                                [11] 

 

)cos()cos(FF1 βα=                                          [12] 

 

)cos()(FsinF2 βα=                                           [13] 

 

)(FsinF3 β=                                                      [14] 

 

 
and F is the magnitude of the thrust, W is the velocity 
of the gases when leaving the engine, ν is the true 
anomaly of the spacecraft, s is the range angle of the 
spacecraft, µ is the gravitational parameter of the 
main body and m0 is the initial mass of the spacecraft. 

 In those equations the state was transformed 
from the Keplerian elements (a = semi-major axis, e = 
eccentricity, i = inclination, Ω = argument of the 
ascending node, ω = argument of periapsis, ν = true 
anomaly of the spacecraft), in the variables Xi, to 
avoid singularities, by the relations: 
 
X1 = [a(1-e

2)/µ]1/2                [15] 
 

X2 = ecos(ω-φ)                            [16] 

 
X3 = esin(ω-φ)                 [17] 
 
X4 = (Fuel consumed)/m0               [18] 
 
X5 = t = time                 [19] 
 
X6 = cos(i/2)cos((Ω+φ)/2)                [20] 
 
X7 = sin(i/2)cos((Ω-φ)/2)                [21] 
 
X8 = sin(i/2)sin((Ω-φ)/2)                [22] 

 
X9 = cos(i/2)sin((Ω+φ)/2)                [23] 
 
φ = ν +ω - s.                  [24] 
 
 This system is also subject to the constraints 
in state, because five of the the Keplerian elements of 
the initial and the final orbit are fixed: a, e, i, ω, Ω. 
All the parameters (gravitational force field, initial 
values of the satellite, etc...) are assumed to be 
known. 
 A quadratic parametrization is used as an 
approximation for the control law (angles of pitch (α) 
and yaw (β)): 
 

α = α0 + α' * ( s – s0 ) + α'' * ( s – s0 )
2         [25] 

 

β = β0 + β' * ( s – s0 ) + β'' * ( s – s0 )
2            [26] 

 

where α0, β0, α', β', α'', β'' are parameters to be 

found, s is the instantaneous range angle and s0 is the 

range angle when the motor is turned-on.  
 Considering these assumptions, there is a set 
of eight variables to be optimized (start and end of 
thrusting and the parameters α0, β0, α', β', α'', β'') for 

each "burning arc" in the maneuver. Note that this 
number of arcs is given "a priori" and it is not an 
"output" of the algorithm.  
 By using parametric optimization, this 
problem is reduced to one of nonlinear programming, 
which can be solved by several standard methods 
 
 

5 Numerical Method 
 

 To solve the nonlinear programming problem, 
the gradient projection method was used [24].  
 It means that at the end of the numerical 
integration, in each iteration, two steps are taken: 
 
i) Force the system to satisfy the constraints by 
updating the control function according to: 
 

u u
i 1 i+

−

= −∇ ∇ ∇f . f. f f
T T

1

                          [27] 

 
 
where f is the vector formed by the active constraints; 
 
ii) After the constraints are satisfied, try to minimize 
the fuel consumed. This is done by making a step 
given by: 
 

d

d
α+=+ i1i

uu                            [28] 

 
where: 
 

d).(

)(

u

u

J

J

∇
= γα                            [29] 

 

[ ]( ) )(J..
1TT

u∇∇∇∇−−=
−
ffffId               [30] 

 
 
where I is the identity matrix, d is the search 
direction, J is the function to be minimized (fuel 
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consumed) and γ is a parameter determined by a 
trial and error technique. The possible 
singularities in equations [27] to [30] are avoided 
by choosing the error margins for tolerance in 
convergence large enough. This procedure 
continues until u u

i 1 i+ − < ε  in both equations 

[27] and [28], where ε is a specified tolerance. 
 

6 - Simulations and Numerical Tests 

 
 The maneuvers used to validate the method 
and the software developed are the same ones used in 
Biggs [16], with the idea of having the possibility of 
comparing the solutions obtained.  
 
6.1 - MANEUVER 1: 

Initial orbit: Semi-major axis: 99000 km, eccentricity: 
0.7, inclination: 10 deg, longitude of the ascending 
node: 55 deg, argument of periapsis: 105 deg. 
Initial data of the spacecraft: Total mass: 300 kg, 
Thrust magnitude: 1.0 N, Initial position: 0, True 
anomaly: -105 deg, Ejection velocity of the gas: 2.5 
km/s. 
Condition imposed in the final orbit: Semi-major axis 
= 104000 km. 
Propulsion: 1 arc. 
Solution obtained: s0 = 80.3 deg, sf = 134.5 deg, α0 = 

-3.2, β0 = 0.0, α′ = 0.443, β′ = 0.0, α′′ = 0.041, β′′ = 

0.00, Fuel consumed = 2.35 kg, Duration of burn = 
6088.4 s. 
Final orbit obtained: Semi-major axis: 104000.71 km, 
eccentricity: 0.712, inclination: 10 deg, longitude of 
the ascending node: 55 deg, argument of periapsis: 
105 deg, True Anomaly = 30.1 deg. 
 
Considering a linear approximation: s0 = 78.0 deg, sf 

= 132.5 deg, α0 = -8.8, β0 = 0.0, α′ = 0.469, β′ = 0.0, 

Fuel consumed = 2.39 kg, Duration of burn = 6111.6 
s. 
Final orbit obtained: Semi-major axis: 104000.73 km, 
eccentricity: 0.714, inclination: 10 deg, longitude of 
the ascending node: 55 deg, argument of periapsis: 
105 deg, True Anomaly = 28.2 deg. 
 
 This maneuver changes only the semi-major 
axis, so the minimum fuel consumption solution is 
planar, as shown by the results β0 = 0.0, β′ = 0.0. 

 
6.2 - MANEUVER 2: 

Initial orbit: Semi-major axis: 99000 km, eccentricity: 
0.7, inclination: 10 deg, longitude of the ascending 
node: 55 deg, argument of periapsis: 105 deg. 

Initial data of the spacecraft: Total mass: 300 kg, 
Thrust magnitude: 1.0 N, Initial position: 0, True 
anomaly: -105 deg, Ejection velocity of the gas: 2.5 
km/s. 
Condition imposed in the final orbit: Semi-major axis 
= 104000 km. 
Propulsion: 1 arc, with restriction in applying thrust 
between the true anomalies of 120.0 deg and 180.0 
deg. 
Solution obtained: s0 = 23.1 deg, sf = 63.1 deg, α0 = -

15.2, β0 = 0.0, α′ = 0.098, β′ = 0.0, α′′ = 0.034, β′′ = 

0.00, Fuel consumed = 2.76 kg, Duration of burn = 
7001.1 s. 
Final orbit obtained: Semi-major axis: 104000.03 km, 
eccentricity: 0.711, inclination: 10 deg, longitude of 
the ascending node: 55 deg, argument of periapsis: 
100.3 deg, True Anomaly = 318.2 deg. 
 
Considering a linear approximation: s0 = 25.2 deg, sf 

= 65.0 deg, α0 = -26.3, β0 = 0.0, α′ = 0.179, β′ = 0.0, 

Fuel consumed = 2.80 kg, Duration of burn = 7037.2 
s. 
Final orbit obtained: Semi-major axis: 104000.06 km, 
eccentricity: 0.713, inclination: 10 deg, longitude of 
the ascending node: 55 deg, argument of periapsis: 
102.1 deg, True Anomaly = 320.1 deg. 
 
Maneuver 2 considers the same situation simulated 
before, but there is an extra constraint in the 
propulsion phase. It is clear that the inclusion of this 
constraint provided a solution with a larger fuel 
consumption.  
 
6.3 - MANEUVER 3: 

Initial orbit: Semi-major axis: 9900 km, eccentricity: 
0.2, inclination: 10 deg, longitude of the ascending 
node: 0 deg, argument of periapsis: 25 deg. 
Initial data of the spacecraft: Total mass: 300 kg, 
Thrust magnitude: 2.0 N, Initial position: 0, True 
anomaly: -10 deg, Ejection velocity of the gas: 2.5 
km/s. 
Condition imposed in the final orbit: Semi-major axis 
= 10000 km. 
Propulsion: 1 arc. 
Solution obtained: s0 = 0.0 deg, sf = 178.1 deg, α0 = 

0.1, β0 = 0.0, α′ = 0.032, β′ = 0.0, α′′ = 0.022, β′′ = 

0.00, Fuel consumed = 3.68 kg, Duration of burn = 
4601.1 s. 
Final orbit obtained: Semi-major axis: 10000.00 km, 
eccentricity: 0.2, inclination: 10 deg, longitude of the 
ascending node: 55 deg, argument of periapsis: 22.9 
deg, True Anomaly = 163.2 deg. 
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Considering a linear approximation: s0 = 0.0 deg, sf = 

179.3 deg, α0 = 2.1, β0 = 0.0, α′ = 0.058, β′ = 0.0, 

Fuel consumed = 3.73 kg, Duration of burn = 4675.3 
s. 
Final orbit obtained: Semi-major axis: 10000.00 km, 
eccentricity: 0.2, inclination: 10 deg, longitude of the 
ascending node: 55 deg, argument of periapsis: 23.2 
deg, True Anomaly = 165.9 deg. 
 

Note that the constraint s0 ≥ 0.0 is active. 

 
6.4 - MANEUVER 4: 

Initial orbit: Semi-major axis: 9900 km, eccentricity: 
0.2, inclination: 10 deg, longitude of the ascending 
node: 0 deg, argument of periapsis: 25 deg. 
Initial data of the spacecraft: Total mass: 300 kg, 
Thrust magnitude: 2.0 N, Initial position: 0, True 
anomaly: -10 deg, Ejection velocity of the gas: 2.5 
km/s. 
Condition imposed in the final orbit: Semi-major axis 
= 10000 km. 
Propulsion: 2 arcs. 
Solution obtained: First arc: s0 = 0.0 deg, sf = 89.7 

deg, α0 = 1.0, β0 = 0.0, α′ = 0.172, β′ = 0.0; Second 

arc: s0 = 299.1 deg, sf = 417.6 deg, α0 = -8.1, β0 = 

0.0, α′ = 0.091, β′ = 0.0, Fuel consumed = 3.21 kg, 
Duration of burn = 4009.9 s. 
Final orbit obtained: Semi-major axis: 10000.02 km, 
eccentricity: 0.207, inclination: 10 deg, longitude of 
the ascending node: 0.0 deg, argument of periapsis: 
21.2 deg, True Anomaly = 45.1 deg. 
 

This maneuver shows that the use two arcs for 
the propulsion reduces the fuel consumption, from 
3.73 kg  to 3.21 kg in this case. 
 
6.5 - MANEUVER 5: 

Initial orbit: Semi-major axis: 4500 km, eccentricity: 
0.5, inclination: 8 deg, longitude of the ascending 
node: -145 deg, argument of periapsis: -20 deg. 
Initial data of the spacecraft: Total mass: 11300 kg, 
Thrust magnitude: 60000 N, Initial position: 0, True 
anomaly: 170 deg, Ejection velocity of the gas: 4.25 
km/s. 
Condition imposed in the final orbit: Semi-major axis 
= 10000 km, eccentricity = 0.122, Inclination = 2.29 
deg.. 
Propulsion: 1 arc and the burn must be completed 
before the true anomaly of 35.0 deg. 
Solution obtained: s0 = 6.6 deg, sf = 27.8 deg, α0 = 

0.8, β0 = 16.5, α′ = -0.033, β′ = -0.069, Fuel 

consumed = 5249.9 kg, Duration of burn = 377.4 s. 
Final orbit obtained: Semi-major axis: 7435.00 km, 

eccentricity: 0.122, inclination: 2.290 deg, longitude 
of the ascending node: 255.2 deg, argument of 
periapsis: 169.0 deg, True Anomaly = 324.6 deg. 
 

This maneuver considers the case where the 
thrust is large and that there are three keplerian 
elements to be changed. 
 After that, a real mission planned by Brazil is 
used. For this mission, two kinds of maneuvers will 
be necessary (in both phases the fuel used is 
Hydrazine): 
 i) Initial transfer phase, where the objective is 
to send the satellite from the parking orbit to the 
nominal orbit; 
 ii) Station-keeping, where the objective is to 
keep the satellite near the nominal orbit. 
 The transfer phase will occur, in the worst 
case, with the following data: 
i) Initial orbit: Semi-major axis of 6768.14, 
eccentricity of 0.00591, inclination of 97.44 degrees, 
ascending node of 67.27 degrees, argument of perigee 
of 97.66 degrees, mean anomaly of 270 degrees; 
ii) Final orbit: Semi-major axis of 7017.89, 
eccentricity of 0.000, inclination of 97.94 degrees, 
free ascending node, free argument of perigee, free 
mean anomaly; 
iii) Initial mass of 170 kg; 
iv) Thrust level of 4.0 N. 
 The station-keeping phase will correct the 
semi-major axis only, and this will occur when its 
value gets 1.26 km below the nominal value. Using 
these values, a typical maneuver will increase the 
semi-major axis from 7016.63 km to 7017.89 km and 
it will keep the eccentricity in zero and the inclination 
in 97.94 degrees. The initial mass is 150 kg and the 
thrust level is 4.0 N. 
 Considering these values, the solutions 
obtained are compared with Hohmann Transfer. 
Initially, the suboptimal method was applied in the 
transfer phase, with 2, 4 and 8 "thrusting arcs" and no 
constraints in the control. The results are shown in 
Table 1 
 
 

 Table 1 
Suboptimal initial transfer phase with 2, 4 and 8 

"thrusting arcs" 
 

Arc s0(deg) sf(deg) α0(deg)β0(deg)   α'     β'   Fuel-kg

 1   459.9   721.9   11.4   -60.2  0.029  0.501   ------  
 2   963.2   1184.5  17.2   49.5   -0.111 -0.049  14.24  
        
  1   498.0   603.3   0.2    -25.5   0.018 -0.054  ------  
  2   1025.5  1125.7  10.2   41.1   -0.160 -0.190  ------  
  3   1590.1  1697.9  3.0    -51.2  -0.010  0.498  ------  
  4   2105.9  2206.7  10.0   40.5   -0.151 -0.187  12.14  
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 1    527.3 576.8 1.3 -16.6  -0.099 -0.055 ------  
 2    1055.4  1105.5  6.9    36.3   -0.153 -0.111  ------  
 3    1622.2  1672.9  2.6    -39.9  -0.005  0.561  ------  
 4    2135.4  2187.5  6.0  35.6   -0.140 -.089   ------  
 5    2327.4  2377.6  1.8    -16.9   0.099 -0.107  ------  
 6    2855.5  2905.8  6.0    35.3   -0.150 -0.111  ------  
 7    3422.1  3473.1  2.5    -39.9  -0.006  0.564  ------  
 8    3935.5  3987.8  6.9    35.8  -0.191 -0.099  11.92  

 
 In a second set of simulations the same 
maneuvers were performed with the additional 
constraints that the control angles must be fixed (α' = 
β' = 0); and, in a third set, the constraint α0 = 0 was 

added (only β0 is a free parameter for the control 

law). The objective is to know how much more fuel is 
required to compensate a more simple implementation 
of the control device and  to satisfy the constraints of 
keeping some equipment (antennas, for example) 
pointed toward Earth. The same maneuvers were 
simulated with the optimal control approach in Prado 
and Rios-Neto [3]. Table 2 shows the comparison in 
fuel expenditure for all cases studied. The value 
obtained by considering a Hohmann Transfer is about 
12.00 kg of fuel. 

 
Table 2 

Fuel expenditure (kg) for all  maneuvers simulated 
 

Method  2 arcs 4 arcs 8 arcs 
Suboptimal 14.24 12.14 11.92 

Suboptimal (α'=β'=0) 21.39 17.06 12.88 

Suboptimal(α'=β'=α0=0) ------- 17.98 13.42 

Optimal 13.04 12.09 11.87 

 
 For the station-keeping phase, the 
suboptimal and optimal methods were applied 
with no constraints in control, and with 1, 2, 3 
and 4 "thrusting arcs" applied in different 
positions of the orbit. The results showed that, 
due to the small magnitudes involved, there is no 
difference in all methods tested. As an example, 
the results for the suboptimal and optimal 
methods with 1 "thrusting arc" are shown in 
Table 3. 
 

Table 3 
Station-keeping  with sub-optimal (top) and 

optimal (bottom) methods  
 

Arc  s0(deg) sf(deg) A0(deg) B0(deg)   A'     B'   Fuel(kg)

 1   0.0 1.56 0.0 0.0 0.0 0.0 47.0   
        

Arc xs(deg) xe(deg) A(const.) B(const.)   Fuel(kg)

 1   0.0 1.56 0.0 0.0   47.0   

 
 
7 - CONCLUSIONS 

 
 Suboptimal control was explored to 
generate algorithms to obtain solutions for the 
minimum fuel maneuvers for a spacecraft.  
 By comparing the results obtained with 
the algorithms developed and those found in the 
literature [16] it seems that the suboptimal 
solutions is very adequate, specially when a large 
number of "thrusting arcs" is used. 
 The results obtained here are very close to 
the ones available in the literature, including an 
old implementation of this method made by the in 
reference [1]. 
 The method have a good numerical 
behavior, but it can not be used in real time. 
Process time (CPU) is short (less than a minute, 
in a PC computer) for simple maneuvers, but 
when several constraints and/or "thrusting arcs" 
are present the process time can be large (more 
than one hour, in some cases). 
 Optimization techniques are not required 
when station-keeping maneuvers are considered..  
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