Classificação hierárquica e fuzzy de imagens de alta resolução

Rodrigo Mikosz Gonçalves¹
João Batista Ramos Cortes¹
Marcio Augusto Reolon Schmidt¹
Marcos Benedito Schimalski¹

¹ Universidade Federal do Paraná – UFPR/CPGCG Caixa Postal 19001 - 81531-990 - Curitiba - PR, Brasil rodrigo.mikosz@gmail.com jbrc@cefetgo.br marcio.schmidt@gmail.com schimalski@uol.com.br

Abstract. This paper describes a case of classification using high resolution images. A Ikonos II with one meter of ground resolution was used. The objective is to obtain a classified image by hierarquical class and fuzzy rules. Those methods are an alternative to conventional ones. The steps to solution are: the segmentation of the image in hierarchical levels, collecting the samples and choose of the fuzzy rules. The result is a new image classified. The classification showed good visual results but tests of acurracy with numerical data or in field are needed.

Palavras-chave: remote sensing, image processing, high resolution image, sensoriamento remoto, processamento de imagens, imagem de alta resolução.

1. Introdução

Um dos principais enfoques de estudos na área de informática voltada para sensoriamento remoto e processamento digital de imagens é a visão computacional. Como extrair informações de preferência automatizada do mundo real através de técnicas de sensoriamento remoto?

Segundo Dal Poz (2003), a extração de feições pode ser dividida em duas etapas. A primeira etapa é chamada de reconhecimento que depende do conhecimento semântico para atribuir o significado ao objeto. A segunda etapa é definida como delineamento, ou seja, logo após o reconhecimento, o objeto pode ser delineado geometricamente usando informações: geométricas e radiométricas.

Pesquisas recentes relatam métodos automáticos que desempenham ambas tarefas, reconhecimento e delineamento. Entretanto, poucos são os resultados que levam a produtos de qualidade. O mais usual é encontrar métodos semi-automáticos que trabalham com a tarefa de delineamento e o reconhecimento fica a cargo do operador humano (Dal Poz, 2003).

Neste trabalho, utiliza-se a classificação orientada a objetos para uma imagem de satélite com alta resolução espacial (1 metro). Nessa metodologia os objetos são obtidos através da segmentação da imagem, onde conjuntos de *pixels* com características similares são agrupados. Essa técnica leva em consideração os aspectos espectrais e de forma dos objetos, que de acordo com Pinho et al. (2005) mostram ser uma alternativa promissora quando comparado com classificadores *pixel-a-pixel*.

O conceito de classificação hierárquica é aplicado, relacionando os objetos através do conhecimento inserido pelo especialista. Ressalta-se a aplicação da técnica *fuzzy* para o conhecimento do mundo real, através de parâmetros que podem ser espectrais e de forma, por exemplo. Alguns trabalhos já trazem esta visão de classificação hierárquica e *fuzzy* como é o caso de Castro Filho (2006), Antunes (2005) e Antunes (2003).

Este artigo está organizado da seguinte maneira: na seção 2, aspectos básicos da segmentação de imagem são apresentados. A seção 3 descreve o modelo de classificação

hierárquica. A seção 4 aspectos da orientação a objetos. Na seção 5 apresenta-se o desenvolvimento do trabalho seguido dos seguintes passos: 5.1 criação das classes; 5.2 segmentação; 5.3 artificios para melhorar a apresentação; e 5.4 classificação. Os resultados experimentais e análises são apresentados na seção 6 e, enfim, na seção 7, as conclusões.

2. Segmentação da Imagem

Segundo Baatz e Schape (2001), a tarefa principal da segmentação de imagens é buscar a automatização da extração de objetos de interesse conforme uma determinada tarefa.

A segmentação subdivide a imagem em objetos constituintes e o nível até a qual essa subdivisão pode ser realizada, depende da escala e/ou do problema a ser resolvido. O processo de segmentação pode ser realizado em etapas, ou seja, uma imagem pode sofrer várias segmentações. A escala e os critérios de semelhança controlam o resultado da segmentação, criando objetos maiores ou menores, homogêneos ou menos homogêneos, ou ainda, suavizados ou não. A escolha do parâmetro de escala e os critérios de semelhança estão relacionados com as resoluções espacial e espectral da imagem. Baatz e Schape (2001) retratam essa metodologia.

O conceito de segmentação multi-resolução apresentado no trabalho de Molennaar (1998) é aplicado neste trabalho e tem como base o contexto espacial, que permite a construção de estruturas hierárquicas. Isso significa que um objeto relativo a determinada classe se relaciona com outros objetos de acordo com um grau de hierarquia através de definições semânticas dos objetos e suas estruturas descritivas.

3. Classificação hierárquica

A classificação hierárquica passa a ser realizada em uma estrutura de classes e superclasses, através de uma relação de dependência subordinada ao conhecimento adquirido. Essa relação pode ser formada por regras b*ooleanas* e é oriunda das propriedades que compõem os objetos. Essas propriedades são de caráter geométrico e descritivo. A **Figura 1** apresenta um esquema hierárquico onde há duas grandes superclasses distintas que vão formando subdivisões. As classes do nível inferior só podem existir condicionadas a superclasse do nível superior e assim sucessivamente.

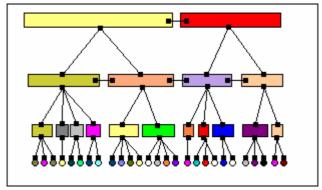


Figura 1 - Esquema da classificação orientada a objetos com dependência hierárquica.

4. Orientação a objetos

A orientação a objeto permite ao usuário definir regras complexas baseadas em características espectrais e relações espaciais. Esse modelo permite que a semântica possa ser desenvolvida apoiada em parâmetros físicos e de conhecimento sobre relacionamentos, Darwish et al. (2003).

Segundo MOLENAAR & CHENG (2000), o agrupamento de objetos com topologia vetorial permite a determinação de regiões baseadas em características semânticas, podendo gerar um mapa temático que pode ser composto pelo conjunto de regiões que compartilham de uma mesma classe.

5. Desenvolvimento

A classificação foi realizada com o *software e-cognition* da empresa D*efiniens*. Para testar o método de classificação proposto, utilizou-se uma imagem IKONOS II do município de Canoinhas (SC), conforme a **Figura 11.** As etapas seguintes descrevem os passos para classificação da imagem teste.

5.1 Criação das classes

Em uma análise visual inicial da imagem é possível localizar um rio, uma rodovia, áreas com plantio, vegetação, áreas de banhado e área urbana. Em uma análise mais detalhada com o conhecimento da região, por um dos autores do artigo, foi possível planejar e estruturar a hierarquia aplicada ao experimento, conforme a **Figura 2.**

Figura 2 – Relação Hierárquica

5.2 Segmentação

Antes de iniciar a segmentação da imagem, criou-se três níveis hierárquicos, que foram interligados por uma função booleana, mostrada na **Figura 3**. O valor central indica o nível (*level*) que esta sendo criado na segmentação e os valores laterais mostram os níveis hierárquicos, inferior e superior, na qual o mesmo esta ligado.

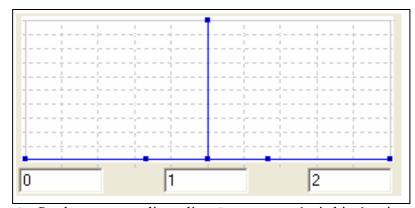


Figura 3 - Função Booleana que realiza a ligação entre os níveis hierárquicos

A imagem no formato TIFF foi segmentada em três níveis, de acordo com os parâmetros apresentados na **Tabela 1.**

Tabela 1 - Parâmetros utilizados em cada nível para a segmentação da imagem

Níveis de segmentação	Nível 1	Nível 2	Nível 3
Scale Parameter (parâmetro de escala)	90	180	300
Shape Factor (fator de forma)	0,1	0,25	0,1
Compactness (compacidade)	0,5	0,5	0,5
Smoothness (Suavização)	0,5	0,5	0,5

O nível superior é obtido pela fusão dos objetos similares do nível imediatamente inferior, levando em consideração os parâmetros de segmentação. Desse modo, no nível 1 os objetos são menores e em maior quantidade, sendo portanto o nível que oferece melhor detalhamento. No nível 3, devido as fusões dos objetos ocorridas nos níveis 1 e 2, os mesmos são maiores e em menor quantidade, sendo o nível mais genérico. As **Figuras 4, 5** e 6 apresentam a segmentação obtida em cada nível.

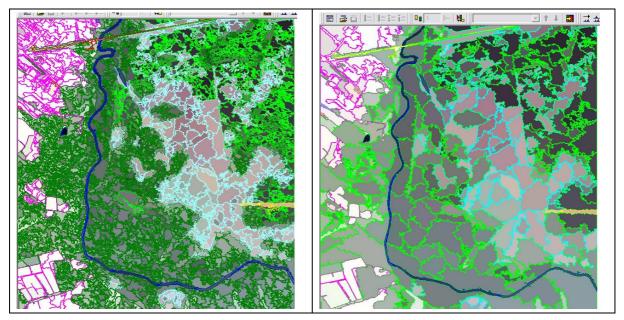


Figura 4 - Segmentação do nível 1

Figura 5 - Segmentação do nível 2

Figura 6 - Segmentação do nível 3

5.3 Artifícios para melhorar a qualidade da classificação

Com os parâmetros de segmentação utilizados, o rio perdia a sua continuidade nos locais de encontro com as áreas alagadas. Esse problema foi solucionado inserindo um *layer* temático, antes da segmentação da imagem, a partir de polígonos de lagos e rios previamente digitalizados, juntamente com sua respectiva tabela de atributos, no caso, um identificador com valor inteiro (ID = 1), sendo possível pré-delimitar essa área na classificação.

5.4 Classificação

O método utilizado foi o de classificação supervisionada, onde o operador coleta amostras inerentes a cada classe.

Após coletar as amostras, foram selecionadas as seguintes funções em *layer values: mean* (média), stddev (desvio-padrão) e razão entre bandas (*ratio*), com o propósito de verificar a separabilidade de amostras referentes às classes.

Uma função matemática é criada (computada) e editada pelo usuário, buscando sempre os locais onde as distintas classes são melhores separadas. Destaca-se aqui que não é necessário ter uma completa separação entre duas classes distintas. É possível cruzar funções, por exemplo, o cruzamento de duas curvas gaussianas pegando parte de amostras de duas classes. Isso é possível, pois em casos deste tipo, a teoria *fuzzy* fica encarregada em determinar um grau de pertinência para as classes. A **Figura 7** apresenta a forma com que as funções são computadas.

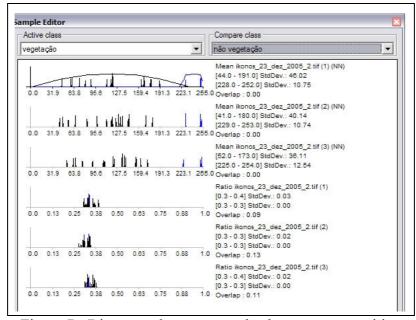


Figura 7 - Diagrama de separação de classes no e-cognition

A classificação iniciou-se pelo nível 3 (o mais genérico), definindo a princípio duas superclasses temáticas: vegetação e não vegetação. O resultado dessa classificação é mostrado na **Figura 8.** Algumas condições são impostas para validar a classificação hierárquica. Por exemplo, no nível 3, são criadas as superclasses: não-vegetação e vegetação. Após isso, se efetua a classificação da imagem, nesse nível de segmentação mais genérico. No nível 2, que contém a segmentação um pouco mais detalhada, é necessário subdividir as superclasses. A vegetação foi separada na superclasse mata e classe áreas alagadas (banhado). A superclasse não vegetação foi dividida na classe urbana e superclasse não urbano, conforme apresentado

na **Figura 9**. Criando a hierarquia com o nível anterior (nível 3), associa-se a existência da classe "filha" somente se existir a classe "pai". Para tal, é imposto a condição de forma *booleana* garantindo que só vai existir a classe "urbano" em regiões onde existe nãovegetação. No nível 1, o mais especifico, a superclasse mata foi dividida nas classes vegetação nativa e araucária. Já a superclasse não urbano, foi separada em solo exposto e estrada. O resultado dessa classificação pode ser vista na **Figura 10**.

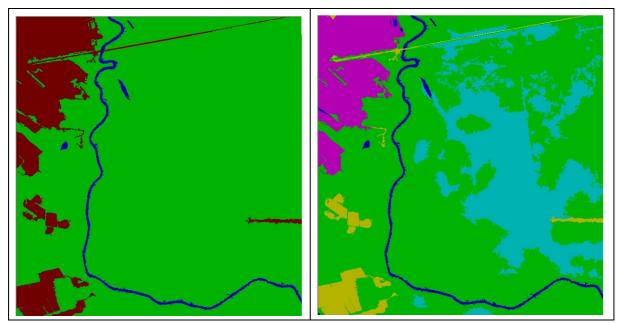


Figura 8 - Classificação no nível 3

Figura 9 - Classificação no nível 2

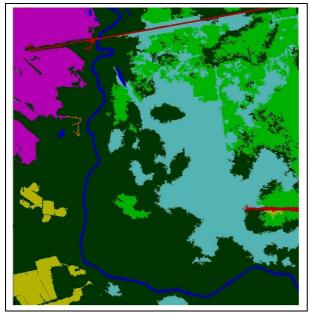


Figura 10 - Classificação no nível 1

6 Resultados e análises

Na **Figura 11 e 12** pode-se observar a imagem IKONOS II utilizada para classificação e a imagem classificada com suas respectivas classes.

Em uma análise visual, foram comparadas as posições e seus respectivos elementos das classes na imagem classificada com a original. Nesse caso, foi possível qualificar a classificação obtida como boa, pois não apresentou discrepâncias significativas nessa comparação.

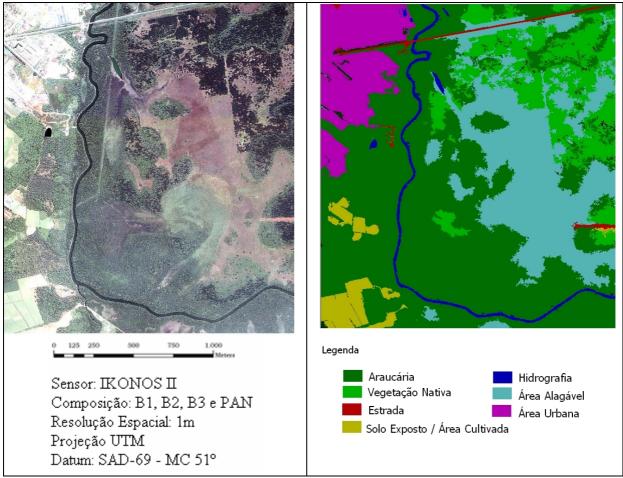


Figura 11 - Imagem IKONOS

Figura 12 Imagem classificada

7 Conclusões

A maior dificuldade encontrada foi definir os parâmetros de escala e de forma para realizar a segmentação da imagem. A quantização desses parâmetros implica na alteração da forma, tamanho e quantidades de objetos. Em alguns casos, a escolha inadequada pode causar aglutinação de classes, comprometendo a classificação.

A classificação hierárquica orientada a objetos é uma ferramenta que facilita a classificação. Seu formato contribui para evitar erros, pois a mesma é realizada do nível mais genérico para o específico.

Um fator que contribuiu para a classificação e para a análise final foi o pré-conhecimento da área em questão, o que pode indicar o grau de dependência do conhecimento do usuário sobre a região na qualidade final do produto.

Destaca-se o uso da técnica *fuzzy* para delimitar as classes como forma mais flexível de lidar com as informações do mundo real. Em trabalhos futuros, recomenda-se realizar uma avaliação da acurácia dos resultados obtidos, quer seja no âmbito numérico ou prático (em campo).

Referências

Antunes, A. F. B. Classificação de ambiente ciliar baseada em orientação a objeto em imagens de alta resolução espacial. Tese (Doutorado em Ciências Geodésicas) — Universidade Federal do Paraná, Curitiba 2003.

Antunes, A. F. B. Determinação da acurácia temática de dados oriundos da classificação digital de objetos por meio de lógica fuzzy. In: XII SIMPOSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 2005, Goiânia. Determinação da acurácia temática de dados oriundos da classificação digital de objetos por meio de lógica fuzzy. SJ dos Campos: INPE, 2005. p. 3451-3459.

Baatz, M.; Shäpe, A. Multiresolution segmentation: na optimization approach for high quality multiscale image segmentation. München. Disponível em <www.definiens.com>. Acesso em outubro 2006.

Castro Filho, C. A. P. Análise temática de classificação orientada a segmentos para apoio ao cadastro técnico multifinalitário urbano. In: Anais, COBRAC 2006 – Congresso Brasileiro de Cadastro Técnico Multifinalitário – UFSC Florianópolis, 2006, p.1-10.

Dal Poz, A. P. Reconhecimento e delineamento automático de segmentos de rodovia através de agrupamento de objetos semânticos. In: III Colóquio Brasileiro de Ciências Geodésicas, 2003, Curitiba, PR. v. 1. p. 1-16.

Darwish, A.; Leukert K.; Reinhardt W., 2003. **Image Segmentation for the Purpose of Object-Based Classification.** Neubiberg: Geoscience and Remote Sensing Symposium, 2003. Disponível em http://www.definiens.com/pdf/publications/FR07 1420.PDF>. Acesso em: outubro 2006.

Molenaar, M.; Cheng T, Fuzzy spatial objects and their dynamics. **ISPRS journal of photogrammetry and remote sensing**, vol. 55, no 3 (32 ref.), pp. 164-175, 2000.

Pinho, C. M. D.; Feitosa, F. F.; Kux, H. Classificação automática de cobertura do solo urbano em imagens IKONOS: Comparação entre a abordagem pixel-a-pixel e orientada a objetos. In: XII SIMPOSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 2005, Goiânia. SJ dos Campos: INPE, 2005. p. 4217-4224.

Agradecimentos

Os autores agradecem: ao professor Dr.Alzir Felippe Buffara Antunes, ao curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná (UFPR) e ao CNPq.