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Abstract. The aim of this paper is to determine a linear regression model that explains the forest conversion to 
pasture at the Arch of deforestation in the Brazilian Amazon. Data from regular cells (25 x 25 Km²) of an initial 
set of nineteen explanatory variables were processed and, after mathematical transformations and statistical 
analysis, a linear regression model with eleven variables was obtained. Results show that connection to São 
Paulo (national market), distance to railroads, percentage of protected area and population density are the most 
important factors for the model – greatest values of beta coefficients. Finally, it is noted that, when euclidean 
distance to nearest road (a twentieth explanatory variable that had not been considered previously) is included, 
population density variable is replaced with the former in the subset of the highlighted beta values without even 
remaining in the model. 
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1. Introduction 

The Amazon Forest remained “unharmed” until the commonly called “era of deforestation” 
initiates with the instatement of Trans-Amazon Road in 1970 (Fearnside, 2005). Migration on 
Legal Amazon began in context of national integration policy project which included poles of 
development, land appropriation for agriculture projects and agrarian reform, mining and 
more recently, grain exportation. Since 1970, migration process expanded and millions of 
hectares of forestall lands were occupied for range landing implantation, colonization and 
agrarian reform policy application (Alves, 2001). 

At this intricate context, decision makers need to understand the determinant factors and 
the anticipation of possible situations and scenarios. The task is the identification between 
proximate causes and underlying driven forces for not giving superlative importance of a 
single factor (Aguiar, 2006; Veldkamp and Lambin, 2001). 

Several approaches on Land Use and Land Cover Change (LUCC) Modeling have been 
done with different emphasis, goals, perspectives and data (Aguiar, 2006; Hietel et al., 2006; 
Irwin and Geogegan, 2001; Lambin et al., 2001; Veldkamp and Fresco, 1996). Models have 
been developed based just on social-economic theory, or on spatial context; involving both 
approaches and just few of them exploring intra-regional differences (Aguiar, 2006). 

This work is aimed at presenting a model that explains the forest conversion to pasture in 
the Brazilian Amazon by exploring regional scale data from regular cells (25 x 25 Km²) at the 
Arch of deforestation through linear regression technique. 
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2. Study Area and Data 

The study area for application of linear regression model is the Arch of deforestation or the 
densely populated Arch called by Becker (2005) of one of the three macro-regions in Amazon 
(Figure 1). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Study area: densely populated Arch [source: Aguiar (2006)]. 
Aguiar (2006) collected and processed data into 2026 regular cells in fine scale resolution 

(25 x 25 km²) using CLUE framework modeling. Only a subset of variables provided for that 
author was used in this work and the explanatory ones are divided into categories as shown on 
Table 1. 

Table 1 – Categories of explanatory variables [source: Aguiar (2006)]. 
Category 

Cellular Database 
Variable 

Description Source 

Dist_Rivers Euclidean distance to nearest large river [Km] IBGE 

Dist_Railroads Euclidean distance to nearest railroad [Km] IBGE 

Conn_sp_inv_p Connection to SP (national market) through the road network considering the type of road IBGE 

Accessibility to 
Markets 

Conn_ne_inv_p Connection to NE (national market) through the road network considering the type of road IBGE 

Dist_Wood Euclidean distance to poles of timber production [Km] IBAMA Economical 
Attractiveness Dist_Mineral Euclidean distance to all types of mineral deposits [Km] CPRM 

Pop_Dens_96 Population density in 1996 IBGE 
Demographical 

Pop_Tot_Var_81_91 Total population variation between 1981-1991 IBGE 

Tech_Tractor Number of tractor per number of property owners IBGE 
Technological 

Tech_Fertilizer Number of fertilized properties per number of property owners IBGE 

Agr_Area_Small 

Agr_Area_Large 
Percentage of small and large properties in terms of municipalities area [% of cell area] IBGE 

Agr_nr_Small 

Agrarian 
Structure 

Agr_nr_Large 

Percentage of small and large properties in terms of number of properties in the municipalities 
[% of cell area] 

IBGE 

Settl_nfamilies_70_99 Number of settled families until 1999 INCRA 
Political 

Prot_all Percentage of protected area (any type) [% of cell area] IBAMA/FUNAI 

Soil_fert_B1 Percentage of soils of high and medium fertility [% of cell area] IBGE 

Clima_humi_min_3_ave Humidity mean (May, Jun, Jul, Aug) [% ] INMET Environmental 

Clima_humi_min_3_ave Total precipitation (May, Jun, Jul, Aug) INMET 

The pattern of distribution of dependent variable Luc_Past (percentage of pasture area in 
1996/1997) is shown on Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Pattern of distribution of dependent variable [source: Aguiar (2006)]. 
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3. Building the linear regression model (LRM) 

Neter et al. (1996) present the fluxogram (Figure 3) that was used to build the linear 
regression model in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Fluxogram for building regression model [source: Neter et al. (1996)]. 
The dependent variable and the nineteen predictor ones were compared into a matrix 

correlation table and a scatterplot matrix graph for finding out correlations and relationships 
among variables. They indicated the necessity of applying transformations over the variables. 

The Shapiro-Wilk test indicated non-normality of dependent variable. It was expected due 
to the large number of null value cases (Figure 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Exploratory plot of dependent variable. 
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The analysis of residuals suggested the linearity of regression function, nonconstancy of 
error variance, presence of outliers, independence and normality of error terms. 

Logarithmic and square root functions were applied on dependent variable in order to find 
out better correlation and minimize the non-constant tendency of its variance. The same 
transformations were applied on explanatory variables to improve the analysis and relational 
comprehension based on Pearson coefficient. 

The square root transformation of the dependent variable (Y0.5) was the best one and the 
functions for the explanatory ones are shown on Table 2. 

Table 2 – Transformations applied on explanatory variables. 
Variable Function Variable Function 

Dist_Rivers None Agr_Area_Small Logarithmic 

Dist_Railroads None Agr_Area_Large None 

Conn_sp_inv_p None Agr_nr_Small Logarithmic 

Conn_ne_inv_p Square Root Agr_nr_Large None 

Dist_Wood Logarithmic Settl_nfamilies_70_99 Square Root 

Dist_Mineral Logarithmic Prot_all None 

Pop_Dens_96 Logarithmic Soil_fert_B1 None 

Pop_Tot_Var_81_91 Logarithmic Clima_humi_min_3_ave None 

Tech_Tractor Logarithmic Clima_precip_min_3_ave Logarithmic 

Tech_Fertilizer Logarithmic   

The log(Tech_Tractor) variable is highly correlated with several explanatory variables. It 
was decided to exclude this one in order to avoid ill-conditioning during the mathematical 
regression procedure and also to reduce information ambiguity. 

Three variables (log(Pop_Tot_Var_81_91), log(Clima_precip_min_3_ave) and 
Agr_Area_Large) were also excluded because of the high correlation with other one in their 
categories (0.79 with log (Pop_Dens_96), 0.76 with Clima_humi_min_3_ave and -0.89 with 
log(Agr_Area_Small), respectively). 

The variables log(Agr_nr_Small) and Agr_nr_Large were eliminated due the negligible 
correlation value with the dependent one (0.03 and 0.06, respectively). These variables 
become useless for explanatory variables in the LUCC model. 

Analysis of p-value by a t-test suggested exclusion of log(Agr_Area_Small) for α =5% 
and Dist_Rivers for α=1%. A forward stepwise procedure suggested the same variables to 
purge by the last steps applied over the correlation linear model. 

An F-test was conduced to conclude if both variables are non-significant at the same time. 
The test was conduced considering a full model with 13 variables and a reduced model with 
11 variables. The test concluded that both are non-significant for α=1%, as suggested the t-
test and the forward stepwise procedure. 

As a complementary and decisive method, the all-possible-regressions procedure was 
implemented, which considered all possible subsets in the set of potential X variables letting 
identify and inspect just the “best” subsets according the individual criterion for each 
approach. 

The R² (Figure 5(a)) and adjusted R² (Figure 5(b)) criteria reached the 0.69 as its top 
determination coefficient value with a medium set of possible variables involved (7 to 13) for 
being implemented as the chosen model between the ranges of 0.66 to 0.69. 

However, the Cp value reduced significantly the possible set of variables combinations 
that could be “suitable” for the model. The chosen set was for 11 variables (n + 1 is equal of 
number of parameters, using as criterion of choosing), the Cp value was 11.5, which was the 
lowest one for all subsets combinations (Figure 5(c)). 
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Figure 5 – R², adjusted R² and Cp criteria. 
The correlations among the variables of the chosen model are presented on Table 3 and 

its regression summary, on Table 4. 
Table 3 – Correlation matrix for the chosen model. 
 
 
 
 
 
 
 
 
 

 

Table 4 – Regression Summary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chosen Model 

(c) 

(b) (a) 

LOG 

(Pop_dens_

96)

LOG 

(Tech_Fert

ilizer+1)

Sqrt(Setl_nF) Prot_all1 LOG 

(Dist_wood)

LOG 

(Dist_Min)

Dist_Railr

oads

Conn_SP_

Inv_P

Sqrt(Conn

_ne)

Clima_Hu

mi_Min_3_

Avi

Soils_Fert_

B1

Y^0,5

LOG(Pop_dens_96) 1.000 0.022 0.353 -0.122 -0.142 -0.264 -0.443 0.120 0.480 -0.001 0.194 0.479

LOG(Tech_Fertilizer+1) 0.022 1.000 -0.120 -0.085 -0.105 0.233 0.009 0.320 0.025 -0.267 0.173 0.038

Sqrt(Setl_nF) 0.353 -0.120 1.000 -0.104 0.030 -0.107 -0.266 0.063 0.243 -0.053 0.031 0.286

Prot_all1 -0.122 -0.085 -0.104 1.000 0.100 0.052 0.093 -0.209 -0.213 0.076 -0.098 -0.445

LOG(Dist_wood) -0.142 -0.105 0.030 0.100 1.000 0.179 -0.212 0.103 0.136 -0.386 -0.078 -0.088

LOG(Dist_Min) -0.264 0.233 -0.107 0.052 0.179 1.000 -0.013 0.025 0.004 -0.338 0.052 -0.218

Dist_Railroads -0.443 0.009 -0.266 0.093 -0.212 -0.013 1.000 -0.199 -0.548 0.348 -0.026 -0.458

Conn_SP_Inv_P 0.120 0.320 0.063 -0.209 0.103 0.025 -0.199 1.000 0.528 -0.556 0.167 0.576

Sqrt(Conn_ne) 0.480 0.025 0.243 -0.213 0.136 0.004 -0.548 0.528 1.000 -0.343 0.110 0.472

Clima_Humi_Min_3_Avi -0.001 -0.267 -0.053 0.076 -0.386 -0.338 0.348 -0.556 -0.343 1.000 -0.069 -0.304

Soils_Fert_B1 0.194 0.173 0.031 -0.098 -0.078 0.052 -0.026 0.167 0.110 -0.069 1.000 0.237

Y^0,5 0.479 0.038 0.286 -0.445 -0.088 -0.218 -0.458 0.576 0.472 -0.304 0.237 1.000

R= ,83597043 R²= ,69884656 Adjusted R²= ,69650378

F(11,1414)=298,30 p<0,0000 Std.Error of estimate: ,15301

Beta Std.Err. B Std.Err. t(1411) p-level

Intercept 1.2604 0.149243 8.4452 0.000000

LOG(Pop_dens_96) 0.245854 0.020014 0.1133 0.009224 12.2840 0.000000

LOG(Tech_Fertilizer+1) -0.171948 0.016864 -0.4597 0.045087 -10.1963 0.000000

Sqrt(Setl_nF) 0.064787 0.015946 0.0032 0.000777 4.0629 0.000051

Prot_all1 -0.287469 0.015261 -0.2540 0.013484 -18.8373 0.000000

LOG(Dist_wood) -0.136202 0.016898 -0.1080 0.013394 -8.0604 0.000000

LOG(Dist_Min) -0.110961 0.017136 -0.0683 0.010544 -6.4754 0.000000

Dist_Railroads -0.300484 0.019504 0.0000 0.000000 -15.4066 0.000000

Conn_SP_Inv_P 0.535703 0.021975 153.9667 6.315700 24.3784 0.000000

Sqrt(Conn_ne) -0.181267 0.022468 -3.5292 0.437442 -8.0679 0.000000

Clima_Humi_Min_3_Avi -0.066901 0.021467 -0.0034 0.001106 -3.1165 0.001867

Soils_Fert_B1 0.102160 0.015334 0.0884 0.013268 6.6623 0.000000
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The Shapiro-Wilk test was applied for normal analysis of residuals accepting the null 
hypothesis for α = 1% (Figure 6(a)). The normal probability plot (Figure 6(b)) shows high 
normality based on coefficient of correlation. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 – Normal analysis of residuals. 
Modified Levene test indicated homocedasticity for α = 1%. 
Outlying cases did not affect the whole model according to Cook’s distance measure and 

only 4.9% of cases were identified as influent values on themselves by DFFITS values. 
Since the predictor variables are correlated among themselves, multicollinearity takes 

place in the model. The effects of this situation are various: inhibit the ability of obtaining 
good fit, estimated regression coefficients individually may not be statistically significant and 
simple inference of a specific variable while the other ones are held constant it is no longer 
applicable.  

Then, a metric measure called variance inflation factor (VIF) was applied. Its mean value 
is 1.628546, concluding that no multicollinearity affects the model (mean VIF is not 
considerably larger than 1). 

Among the several methods used for validation a model, mean squared prediction error 
(MSPR) was the selected one. Thirty per cent of original data (600 of 2026 cases) were 
previously separated for this procedure. Since MSPR value (0.023568) is fairly close to mean 
square error (0.023411), the selected model it is not seriously biased and gives an appropriate 
indication of the predictive ability of the model. 

The final LRM obtained is shown on Equation 1. 
Y0.5 = 1.2604 + 0.1133*logX1 – 0.4597*log(X2+1) + 0.0032*X3

0.5 – 0.2540*X4                 
– 0.1080*logX5 – 0.0683*logX6 – 2.7*10-7*X7 + 153.9667*X8 – 3.5292*X9

0.5 – 0.0034*X10 + 
0.0884*X11 + ξ.              (1) 

Where: 
Y = Luc_Past; X5 = Dist_Wood; X10 = Clima_humi_min_3_ave; 
X1 = Pop_Dens_96; X6 = Dist_Mineral; X11 = Soil_fert_B1; 
X2 = Tech_Fertilizer; X7 = Dist_Railroads; ξ = Random error term. 
X3 = Settl_nfamilies_70_99; X8 = Conn_sp_inv_p;  
X4 = Prot_all; X9 = Conn_ne_inv_p;  

The most important explanatory variables for the model are highlighted by the beta 
values. They are: Conn_sp_inv_p, Dist_Railroads, Prot_all and Pop_Dens_96. 

In order to verify if the euclidean distance to nearest road influences the model, the 
variable Dist_Roads – a twentieth explanatory variable that had not been considered 
previously – was incorporated to the data set. 

All the steps were replicated and the final model has the same explanatory variables, 
excepted for the replacing log(Pop_Dens_96) with the square root of Dist_Road – including 
its place in the highlighted beta values set (Table 5). 

(b) (a) 

6562



Table 5 – Regression Summary (considering the distance to nearest road variable) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is an important statement because distance from roads could be measured easier by 

remote sensing users/researchers than demographical data collection. 
In spite of data set are spatially distributed, the approach used in this work did not 

consider the spatial effects. In order to provide a visual analysis, a map is presented 
containing residuals cell frame (Figure 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Spatial distribution for standardized residuals. 
The global Moran index of 0.38 was calculated, indicating medium spatial dependence. 

4. Conclusions 

Data from 2026 regular cells (25 x 25 Km²) of an initial set of nineteen explanatory variables 
were processed and refinements procedures produced a linear regression model with eleven 
explanatory variables. The most important ones were highlighted by the beta values: 
connection to São Paulo, distance to railroads, percentage of protected area and population 
density. 

This result ratifies the heterogeneity of factors that should explain the forest conversion to 
pasture at the Arch in the Brazilian Amazon in the last decades. While accessibility to markets 
motivates the deforestation, the political activity of creating protected areas appears as an 

R= ,83551737 R²= ,69808927 Adjusted R²= ,69574060

F(11,1414)=297,23 p<0,0000 Std.Error of estimate: ,15320

Beta Std.Err. B Std.Err. t(1411) p-level

Intercept 1.4962 0.147925 10.1145 0.000000

LOG(Tech_Fertilizer+1) -0.132716 0.016746 -0.3548 0.044772 -7.9252 0.000000

Sqrt(Setl_nF) 0.071190 0.015858 0.0035 0.000773 4.4893 0.000008

Prot_all1 -0.274234 0.015286 -0.2423 0.013507 -17.9397 0.000000

LOG(Dist_wood) -0.111728 0.017424 -0.0886 0.013811 -6.4123 0.000000

LOG(Dist_Min) -0.145645 0.016599 -0.0896 0.010213 -8.7743 0.000000

Dist_Railroads -0.317844 0.019216 0.0000 0.000000 -16.5408 0.000000

Sqrt(Dist_Roads) -0.228890 0.018880 -0.0007 0.000056 -12.1231 0.000000

Conn_SP_Inv_P 0.428526 0.022398 123.1628 6.437290 19.1327 0.000000

Sqrt(Conn_ne) -0.120569 0.021221 -2.3475 0.413177 -5.6815 0.000000

Clima_Humi_Min_3_Avi -0.072079 0.021515 -0.0037 0.001108 -3.3502 0.000829

Soils_Fert_B1 0.112589 0.015214 0.0974 0.013163 7.4005 0.000000

-1.00 

1.00 

0.00 
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effective method to avoid this situation. These factors are followed by a demographic one 
(population density) which is able to make deforestation worse. 

Incorporating the euclidean distance to nearest road variable to the data set, the final 
model has the same explanatory variables. Except for the replacing population density 
variable with the former in the final model – including its place in the highlighted beta values. 

The conclusions at this point should be the same, but there is an extra advantage: distance 
from roads could be measured easier by remote sensing users/researchers than demographical 
data collection. 

Although the approach used in this work did not consider the spatial effects, the 
distribution for standardized residuals in the map suggests spatial dependence which is 
confirmed by the global Moran index as a medium one. 
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