

Automatic Test Case Generation of the Behavior of Communication
Software Systems

Ana Maria Ambrosio1

1Ground Systems

Development Division
(DSS)

ana@dss.inpe.br

Solon V. de Carvalho2
Nandamudi L. Vijaykumar2

2Associated Laboratory of

Computing and Applied
Mathematics (LAC)

National Institute for Space
Research (INPE)

{solon, vijay}@lac.inpe.br

Eliane Martins3

3Institute of Computing (IC)

State University of Campinas
(UNICAMP)

eliane@ic.unicamp.br

Abstract

This paper addresses the problem of
automatically generating test cases of the
behavior of communication software systems, the
protocols, which are usually specified in Extended
Finite State Machines. The specification technique
Statecharts is considered here for specifying the
protocol behavior with the objective of using its
descriptive power of the hierarchy, orthogonality
and synchronization features. To deal with the
state explosion problem a strategy is proposed for
test generation in steps (separated phases) based
on the concepts of independent and synchronizing
transitions. Another topic of study is related to the
formal aspects of the specification into matrix
algebra and Kronecker operators. Both the
proposed strategy and mapping of the
specification into matrix algebra are in the initial
phase.

1. Introduction

In the space system software technology area,
communication systems play an important role
especially with the progress in data
communication protocol. The standardization of
space protocols and interfaces lead to facilitate

cross-supporting among agencies and even the re-
use of common systems in different missions.

A set of space protocols has been
standardized, due to the efforts of the CCSDS
committee, whose standards may be found in
[http://www.ccsds.org/all-books.html].
These protocols are formally specified in
Extended Finite State Machine (presented in the
form of state x event tables) so that any space
agency or any company in the world may
implement and use the space protocols benefiting
from the standardization advantages.

In order to assure the correct communication
between the computer systems from different
manufacturers it must be possible to ascertain that
the implemented protocols really conform to the
standard protocol specification. This activity is
known as protocol conformance testing. An
overview of the state-of-art of protocol testing
may be found in [Bochmann et al, 1994],
[Dssouli, 1999] and [Lai, 2002]. However,
protocol conformance testing is not an easy task.
The difficulties in conformance testing are related
to insufficient techniques and support to test
specification, besides that tests take too much time
and effort. It may consume up to 50% of the
project resources in a software development
project [Tretmans, 1999].

Many efforts have been concentrated in
automating the test case generation from protocol
specifications in order to cover the conformance
testing activity. The literature has pointed out
several approaches of automating the test case
generation for FSM -based protocol specifications
[Tan, 1996]. In situations where data and
conditions of transitions have to be considered,
EFSM-based protocol specifications are best
suited [Bourhfir, 1997], [Martins,1999].

In fact, communication protocols are
considered as reactive systems which deal with
distribution, communication and synchronization
features. Because of that, the use of Statecharts as
defined in [Harel, 1987] is proposed to represent
the protocol specification.

A Statecharts-based specification may
represent the behavior of different components in
parallel, in depth and allows broadcasting of
events [Harel, 1987]. Some approaches in
generating test cases from Stetecharts can be
found in [Bogdanov, 1999], [Hong,2001], [Kim,
1999], [Fabri, 1999].

Statecharts greatly simplify the system
behavior specification, through the philosophy of
top-down approach; the system behavior is
specified by the behavior of each component of
the system. In case of protocol specification, for
example, each virtual channel could be
represented by one component. For protocol with
more than one level, each level could be specified
by one comp onent, and the interaction between
each level could be represented by synchronizing
events.

However, in order to generate test cases from a
Statecharts-based specification, all possible
configurations (system global state) that are
produced while converting Statecharts into an
equivalent Finite State Machine must be taken
into consideration. In doing that one has to deal
with the state explosion problem. The number of
Statecharts configurations is usually equal (in the
worst case) to the product of the number of states
of each system component. In order to
automatically generate a tractable number of test
cases from a Statecharts-based specification,
Hong [Hong, 2001] proposed to generate test
cases as counterexamples during the model
checking of the specification.

In the approach discussed here, a method is
proposed to incrementally generate test cases
based on the transition classification. The
transitions may be independent or synchronized.

The method suggests to generate test cases first,
considering each component independently. Later
only the synchronizing transitions are considered.
The system behavior is represented in matrix
algebra. To generate test case, in both phases, we
will make use of an existing tool named ConData
[Sabião, 1999], which imple ments a transition-
tour-based method to create the behavioral test
cases from the specification.

The paper is organized as follows: section 2
presents the formal description of two models
used to specify the protocol behavior, the EFSM
that has been used for this purpose and the
Statecharts that is proposed here to specify the
protocol synchronization aspects. Section 3,
summarizes some concepts that have been
explored in order to formalize the formal
representation of the synchronizing transitions
into matrices. Section 4 concludes the paper as
well as pointing out future works.

2. Protocol Behavior Modeling

Generally, the behavior of a protocol is
specified in a Finite State Machine (FSM), which
is a formal way to define how of the
communication rules should be implemented. A
finite state machine contains a finite number of
states and according to the received input or
stimulus it generates the outputs. Because of the
practical importance of this specification
technique, there is a great number of research in
automatic testing on FSM-based specification. In
[Lee, 1996] the FSM-based methods, principles
and problems are discussed.

A FSM-base covers only the behavior aspect
of the specified system. However, in practice, the
protocol specification includes variables, whose
values are checked and changed as the protocol
state changes. So, it is used the Extended Finite
State Machine – EFSM in order to include control
and data aspects of the protocol at is specification.

The EFSM includes the variable handling and
the concept of condition associated to a transition.
A EFSM is formally defined as a 8-tuple M =
(Σ,Q, δ, q0, F, V, P, A) where:

• Σ = input symbol alphabet
• Q = finite set of possible states
• δ = state transition function - δ: Q x Σ x

P(V) → Q x O x A(V)
• q0 = initial state; q0 ∈ Q
• F = output interactions set

• V = variables set
• P = set of predicates expressed in terms

of variables of V, parameters of Σ and
constants;

• A = set of actions related to variables.

In the EFSM, a transition is represented as

t = (source-state, target-state, input, predicate,
output), where: source-state and target-state ∈ Q;
input ∈ Σ; predicate ∈ P and output ∈ F.

Statecharts extend the finite state machine

(FSM) with the concepts of hierarchical state
decomposition (depth/abstraction), orthogonality
(representation of parallel activities) and
interdependency (broadcast communication). The
basic elements of Statecharts to represent a system
are: configuration (the global state of the system,
which means the set of the active basic state of
each orthogonal component), event (external –
explicitly stimulated; and internal – automatically
stimulated by the internal logic of Statecharts),
action (which may cause an output or a variable
change or yet trigger another event), and the
concepts of condition, transition , expressions,
variables and labels. The general notation of a
transition label in Statecharts is
event[condition]/action . Action may be a change
of an expression, a change of a variable or even
events that are triggered in other orthogonal
components. Internal events are: true (condition),
false (condition), entered(X) and exit(X).

An example of a statecharts-based
specification is illustrated in Figure 1, where a
producer – consumer protocol is specifie d. In this
example there are three orthogonal components,
M1, Buffer (B) and M2. M1 comprises three basic
states: W1, T1 and F1 . In the transition from the

state W1, to T1, the expression [not inB.2] is a
condition associated to the event a1, which means
that the transition will be trigged only if the
component Buffer is not in the state 2. And, in the
transition from T1 to W1 the action inc will cause
a transition in the component B. More detail of the
Statecharts notation may be found in [Harel at al,
1998].

3. Statecharts synchronizing transitions
in Matrix Algebra

In this section the concepts of independent and
synchronizing transitions are described. In the
following, the concept of transition descriptor to
represent synchronizing transitions is shown as
Kronecker product of boolean matrices [Eisele
and Mason, 1970]. The sum of those descriptors
generate a reduced state machine from which test
cases will be extracted, the main subject of this
thesis.

Synchronizing transition concept

A synchronizing transition is a transition from
one basic state to another in a Statecharts
component that comprises at least one of the
following features:

- a broadcast event – an event that is
received by more than one component,

- an event generated by an action of other
component,

- a state condition – a condition (if not
satisfied) that avoids the transition firing
namely. The approach discussed in this
paper considers only “not in state”
condition.

System

0

1

F1

T1

p/inc1

a[not in(B.2)]1

c1

W1

f 1

dec inc

2

dec inc

F2

T2

p 2

a[not in(B.0)]/dec2

c2

W2

f2

M1 M2B

Figure 1 – Statecharts-based specification of producer-consumer protocol

In order to illustrate the concepts presented
above, observe the Statecharts-based specification
of a producer – consumer protocol showned in
Figure 1. In this example there are six
synchronizing transitions: (W1, a1 [not in B.2],
T1), (T1, p1/inc, W1), (W2, a2 [not in B.0], T2),
(B.2, dec, B.1), (B.1, dec, B.0), (B.0, inc, B.1),
(B.1, inc, B.2).
The independent transitions are (T1, f1, F1), (F1, c1
, W1), (T2, f2, F2) , (F2, c2, W2), (T2, p2, W2).

Matrix representation of the transition descriptor

Any Finite State Machine may be written as a
boolean matrix.. In such a matrix, M |state| x |state| ,
the lines are the source states, the columns the
target states and the elements may be 1 if there is
a transition (S, e, S’), where S and S’ are states of
the machine and e a transition from S to S’, and 0
otherwise. For the component M1 shown in Figure
1, which comprises the transitions (W1, a1 [not in
B.2], T1), (T1, p1/inc, W1), (T1, f1, F1), (F1, c1 , W1)
the corresponding matrix is shown in Figure 2.

Figure 2. Boolean Matrix of the Component M1
As synchronizing transitions involve

communication among components, one single
matrix representing one component is not enough.
It is necessary to take into account the behavior of
other components related to such transitions based
on actions, restrictive conditions (not in state) and
events that are fired in more than one component.
Taking as an example, consider the transition
from W1 to T1 in M1 component. Event a1 is tied
to a condition (not in state) directly related to the
behavior in the B component. How to represent
this dependence in a matrix form?

M1 component is represented by the states that
are involved in the transition, i.e., W1 and T1 (2 x
2 matrix is enough). This means that states that
are not related in the transition are not necessary

to be represented or are represented by the identity
matrix. Matrix representing B component is
described as an identity matrix except the line
(column) corresponding to the state mentioned in
the condition is assigned to zero. The algebraic
expression of the matrices representing the
synchronizing transition of the system as a whole
is shown in Figure 3 as a Kronecker product of the
component matrices.

The Kronecker (or tensor) product [Eisele and
Mason, 1970] is suitable because of the difference
among the matrix dimension.

The result of the product, illustrated in figure
4, is also a boolean matrix named, here, transition
descriptor.

Figure 4. (W1,a1 [not in B.2],T1)
transition descriptor

The lines and columns of the descriptor

represents a configuration, the state of the system
state as a whole, as (W1, B.0, W2), (W1, B.0, T2),
etc.. and the elements may value 1 whenever there
are a transition from the configuration in line to
the configuration in the column and 0 otherwise.

















001
101

010

...........

1

1

1

111

F
T

W

FTW













































00

000000
000000
001000
0001000
000010
000001

2
2
1
1

0
0
2
2
1
1

0
0

21

21

21

21

21

21

21

21

21

21

21

21

FBT
WBT
FBT
WBT

FBT
WBT
TBW
WBW
TBW
WBW

FBW
WBW

 M1 B M2









⊗
















⊗








=

10
01

000

010
001

00
10

])[(21 NotInBaD

Figure 3. Transition Descriptor of the synchronizing transition (W1, a1 [not in B.2],T1).

Reduced State Machine

The complete representation of the system
behavior only considering the communication
aspects, e.g., the synchronizing transitions, is
obtained by adding the transition descriptors as a
scalar matrix sum. The elements of the resulting
matrix correspond to the transitions from
configuration to configuration, so it represents the
equivalent FSM for the unfolded Statecharts
specification only considering the
intercommunication features. An algorithmic
conversion from a Statechart-based specification
to a finite state machine is given in [Vijaykumar,
1999] and [Vijaykumar et al, 2002]. However, the
presented solution through transition matrix
appears to be more precise and one may find more
efficient algorithms to store and tour the
specification as they are highly sparse matrices
[Fernandes, 1998] [Ciardo, 2001].

To automatically generate test case from the
resulting FSM comprising the synchronization
components of the protocol Statecharts-based
specification, it is intended to use the Condata.
This available tool is able to extract test cases
based on the tour transition method.

4. Comments and Future Plans

A strategy to automatically generate test cases
to a Statecharts-based specification considering
the synchronization aspects of the system
behavior is presented. In fact, the proposed
approach needs to be tested. There are still some
problems to be solve while generating test cases
with ConData from the resulting matrix with the
synchronizing transitions. Some of them are: to
guarantee that the resulting machine is a strongly
connected graph and that the initial state belongs
to the resulting machine. Moreover, it is clear that
some configurations will not be a part of the
resulting matrix, in other words, the behavior of
the protocol specification is a partial one, so
investigations need to be done in order to evaluate

the efficiency of the test case suite generated by
the proposed method.

In order to evaluated the efficiency of the
test case suite generated to the reduced machine,
the following experiment will be taken: (i) the
example of the Statecharts specification of
Producer x Consumer will be implemented in C;
(ii) generate a set of interface mutants based on
the work of [Delamaro, 1997], (iii) generate the
tests based on the complete specification; (iv)
generate the tests based on the reduced machine;
(v) apply the test of the (iv) and (iii) over the
mutants; (vi) compare the power of fault detection
of the tests generated in (iv).

References

Bogdanov, K. ; Holcombe, M.; Singh, H.
Automated Test Set Generation for Statecharts.
Lectures Notes in Computer Science 1641 (1999)
107-121

[Bochmann et al, 1994] Bochmann, G.; Petrenko,
A . – Protocol Testing: Review of Methods and
Relevance for Software Testing – Proceedings of
the 1994 International Symposium on Software
Testing and Analysis, p.109-124, August 17-19,
1994 – Seatle, Washington, USA.

Bourhfir, C.; Dssouli, R.; Aboulhamid, El M.;
Rico, N. Automatic Executable Test Case
Generation for Extended Finite State Machine
Protocols. IFIP International Workshop on
Testing Communicating Systems, Korea, 1997.

Ciardo, G - What a Structural World – invited
paper of Aachen International Multiconference on
Measurement, Modeling and Evaluation of
Computer-Communication Systems, September,
2001.

Delamaro, M.E. – Mutação de Interface: Critério
de Adequação Interprocedural para o Teste de
Integração – Ph D. Thesis – Instituto de Física de
São Carlos - Universidade de São Paulo, 1997.

Dssouli, H.; Salek, K.; Aboulhamid, E ; En-
Nouaary, A ; Bourhfir, C - Test Development for
Communication Protocols: Towards Automation.
Computer Networks 31, 1999 1835-1872.

Eisele, J.A ; Mason, R.M. – Applied Matrix and
Tensor Analysis – John Wiley & Sons, 1970.

Fabri, SCPF; Maldonado, J.C.; Delamaro, M.E.;
Masieiro P.C. Mutation Testing Applied to
Validate Specification based on Statecharts.
Proceedings of the Tenth International
Symposium on Software Reliability Engineering,
Flórida 1999, 210-219.

Fernades, P; Plateau, B.; Steart, W. - Efficient
Descriptor-Vector Multiplications in Stochastic
Automata Networks – Journal of ACM, v. 45, n. 3
May 1998, 381-414.

Harel, D. Statecharts: a visual formalism for
complex systems. Science of Computer
Programming, 8, (1987) 231-274

Harel, D.; Politi, M. – Modeling Reatctive
Systems with Statecharts – The Statemate
Approach – MacGraw-Hill, 1998
Hong, H.S.; Lee, I.; Sokolsky, O.; Cha, S.D. -
``Automatic Test Generation from Statecharts
Using Model Checking,'' Proceedings of the First
Workshop on Formal Approaches to Testing of
Software (FATES '01), pp. 15-30, Aalborg,
Denmark, Aug. 2001.

Huzar, Z.; Magott, J. – New semantics for
Markovian Statecharts –
http;//www.dur.ac.uk/nigel.thomas/UKPEW2000/
online-proceedings.html

Kim, Y.G.; Hong, H.S.; Cho, S.M.; Bae, D.H.;
Cha S.D. – Test Case Generation from UML State
Diagrams – IEE Proceedings software, V. 146, N.
4, , Aug. 1999, 187-192.

Lai, R. – A survey of communication protocol
testing – The Journal of Systems and Software,
62, 2002, pp. 21-46.

Lee, D.; Yannakakis, M. Principles and Methods
of Testing Finite State Machines – a Survey –
Proceedings IEEE, 84 (8): 1090-1123. 1996.

Martins, E. Sabião, S.B.; Ambrosio, A. M. -
ConData: a Tool for Automating Sapecification-
based Test Case Generation for Communication
Systems. Software Quality Journal, 8 (4) (1999)
303-319.
Sabião, S. B. A Method for Test Case Generation
based on Extended Finite State Machines
combining Black-Box Testing Techniques. Master
thesis. Institute of Computing, State Univ ersity of
Campinas, Brazil, 1999.

Tan, Q.M.; Petrenko, A.; Bochmann, G. A Test
Generation Tool for Specifications in the Form of
State Machines. Proceedings of the International
Communications Conference ICC 96, Texas,
1996, 225-229
Tretmans, J.; Belinfante, A. – Automatic Testing
with Formal Methods – In Proceedings of the
Conference on Software Testing, Analysis and
Review. EuroSTAR´99, November, 1999.

Vijaykumar, N. L. Statecharts: Their Use in
Specifying and Dealing with Performance
Models. Ph.D. Thesis – Aeronautics Inst. of
Technology (ITA). S. J. Campos, Brazil, 1999.

Vijaykumar, N. L.; Carvalho, S. V.;
Abdurahiman, V. On proposing Statecharts to
specify Performance Models. International
Transactions in Operational Research, 9(3),
(2002) 321-336.

