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Abstract 

This paper addresses the problem of 
automatically generating test cases of the 
behavior of communication software systems, the 
protocols, which are usually specified in Extended 
Finite State Machines. The specification technique 
Statecharts is considered here for specifying the 
protocol behavior with the objective of using its 
descriptive power of the hierarchy, orthogonality 
and synchronization features. To deal with the 
state explosion problem a strategy is proposed for 
test generation in steps (separated phases) based 
on the concepts of independent  and synchronizing 
transitions. Another topic of study is related to the 
formal aspects of the specification into matrix 
algebra and Kronecker operators. Both the 
proposed strategy and mapping of the 
specification into matrix algebra are in the initial 
phase. 

1. Introduction 

In the space system software technology area, 
communication systems play an important role 
especially with the progress in data 
communication protocol. The standardization of 
space protocols and interfaces lead to facilitate 

cross-supporting among agencies and even the re-
use of common systems in different missions. 

A set of space protocols has been 
standardized, due to the efforts of the CCSDS 
committee, whose standards may be found in 
[http://www.ccsds.org/all-books.html]. 
These protocols are formally specified in 
Extended Finite State Machine (presented in the 
form of state x event tables) so that any space 
agency or any company in the world may 
implement and use the space protocols benefiting 
from the standardization advantages.  

In order to assure the correct communication 
between the computer systems from different 
manufacturers it must be possible to ascertain that 
the implemented protocols really conform to the 
standard protocol specification. This activity is 
known as protocol conformance testing. An 
overview of the state-of-art of protocol testing 
may be found in [Bochmann et al, 1994], 
[Dssouli, 1999] and [Lai, 2002]. However, 
protocol conformance testing is not an easy task. 
The difficulties in conformance testing are related 
to insufficient techniques and support to test 
specification, besides that tests take too much time 
and effort. It may consume up to 50% of the 
project resources in a software development 
project [Tretmans, 1999]. 



Many efforts have been concentrated in 
automating the test case generation from protocol 
specifications in order to cover the conformance 
testing activity. The literature has pointed out 
several approaches of automating the test case 
generation for FSM -based protocol specifications 
[Tan, 1996]. In situations where data and 
conditions of transitions have to be considered, 
EFSM-based protocol specifications are best 
suited [Bourhfir, 1997], [Martins,1999].  

In fact, communication protocols are 
considered as reactive systems which deal with 
distribution, communication and synchronization 
features. Because of  that, the use of Statecharts as 
defined in [Harel, 1987] is proposed to represent 
the protocol specification.  

A Statecharts-based specification may 
represent the behavior of different components in 
parallel, in depth and allows broadcasting of 
events [Harel, 1987]. Some approaches in 
generating test cases from Stetecharts can be 
found in [Bogdanov, 1999], [Hong,2001], [Kim, 
1999], [Fabri, 1999].  

Statecharts greatly simplify the system 
behavior specification, through the philosophy of 
top-down approach; the system behavior is 
specified by the behavior of each component of 
the system. In case of protocol specification, for 
example, each virtual channel could be 
represented by one component. For protocol with 
more than one level, each level could be specified 
by one comp onent, and the interaction between 
each level could be represented by synchronizing 
events.  

However, in order to generate test cases from a 
Statecharts-based specification, all possible 
configurations (system global state) that are 
produced while converting Statecharts into an 
equivalent Finite State Machine must be taken 
into consideration. In doing that one has to deal 
with the state explosion problem. The number of 
Statecharts configurations is usually equal (in the 
worst case) to the product of the number of states 
of each system component. In order to 
automatically generate a tractable number of test 
cases from a Statecharts-based specification, 
Hong [Hong, 2001] proposed to generate test 
cases as counterexamples during the model 
checking of the specification.  

In the approach discussed here, a method is 
proposed to incrementally generate test cases 
based on the transition classification. The 
transitions may be independent or synchronized. 

The method suggests to generate test cases first, 
considering each component independently. Later 
only the synchronizing transitions are considered. 
The system behavior is represented in matrix 
algebra. To generate test case, in both phases, we 
will make use of an existing tool named ConData 
[Sabião, 1999], which imple ments a transition-
tour-based method to create the behavioral test 
cases from the specification.  

The paper is organized as follows: section 2 
presents the formal description of two models 
used to specify the protocol behavior, the EFSM 
that has been used for this purpose and the 
Statecharts that is proposed here to specify the 
protocol synchronization aspects. Section 3, 
summarizes some concepts that have been 
explored in order to formalize the formal 
representation of the synchronizing transitions 
into matrices. Section 4 concludes the paper as 
well as pointing out future works.  

2. Protocol Behavior Modeling  

Generally, the behavior of a protocol is 
specified in a Finite State Machine (FSM), which 
is a formal way to define how of the 
communication rules should be implemented. A 
finite state machine contains a finite number of 
states and according to the received input or 
stimulus it generates the outputs. Because of the 
practical importance of this specification 
technique, there is a great number of research in 
automatic testing on FSM-based specification. In 
[Lee, 1996] the FSM-based methods,  principles 
and problems are discussed.  

A FSM-base covers only the behavior aspect 
of the specified system. However, in practice, the 
protocol specification includes variables, whose 
values are checked and changed as the protocol 
state changes. So, it is used the Extended Finite 
State Machine – EFSM in order to include control 
and data aspects of the protocol at is specification. 

The EFSM includes the variable handling and 
the concept of condition associated to a transition. 
A EFSM is formally defined as a 8-tuple M = 
(Σ,Q, δ, q0, F, V, P, A) where: 

• Σ  = input symbol alphabet  
• Q = finite set of possible states  
• δ = state transition function  -  δ: Q x Σ x 

P(V) → Q x O x A(V) 
• q0 = initial state;   q0 ∈ Q 
• F = output interactions set  



• V = variables set 
• P = set of predicates expressed in terms 

of  variables of V,  parameters of Σ and 
constants; 

• A = set of actions related to variables. 

In the EFSM, a transition is represented as  

t = (source-state, target-state, input, predicate, 
output), where:  source-state and target-state ∈ Q;  
input ∈ Σ;  predicate ∈ P and output ∈ F.  

 
Statecharts extend the finite state machine 

(FSM) with the concepts of hierarchical state 
decomposition (depth/abstraction), orthogonality 
(representation of parallel activities) and 
interdependency (broadcast communication). The 
basic elements of Statecharts to represent a system 
are: configuration  (the global state of the system, 
which means the set of the active basic state of 
each orthogonal component), event (external – 
explicitly stimulated; and internal – automatically 
stimulated by the internal logic of Statecharts), 
action (which may cause an output or a variable 
change or yet trigger another event), and the 
concepts of condition,  transition , expressions, 
variables and labels. The general notation of a 
transition label in Statecharts is 
event[condition]/action . Action may be a change 
of an expression, a change of a variable or even 
events that  are triggered in other orthogonal 
components. Internal events are: true (condition), 
false (condition), entered(X) and exit(X).  

An example of a statecharts-based 
specification is illustrated in Figure 1, where  a 
producer – consumer  protocol is specifie d. In this 
example there are three orthogonal components, 
M1, Buffer (B) and M2. M1 comprises three basic 
states: W1,  T1 and F1 . In the transition from the 

state W1,  to T1, the expression [not inB.2] is a 
condition associated to the event a1, which means 
that the transition will be trigged only if the 
component Buffer is not in the state 2. And, in the 
transition from T1 to W1 the action  inc will cause 
a transition in the component B. More detail of the 
Statecharts notation may be found in [Harel at al, 
1998].  

3. Statecharts synchronizing transitions 
in Matrix Algebra 

In this section the concepts of independent and 
synchronizing transitions are described. In the 
following, the concept of transition descriptor to 
represent synchronizing transitions is shown as 
Kronecker product of boolean matrices [Eisele 
and Mason, 1970]. The sum of those descriptors 
generate a reduced state machine from which test 
cases will be extracted, the main subject of this 
thesis. 

Synchronizing transition concept 

A synchronizing transition is a transition from 
one basic state to another in a Statecharts 
component that comprises at least one of the 
following features: 

- a broadcast event – an event that is 
received by more than one component, 

- an event generated by an action of other 
component, 

- a state condition – a condition (if not 
satisfied) that avoids the transition firing 
namely. The approach discussed in this 
paper considers only “not in state” 
condition.  
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Figure 1 – Statecharts-based specification of producer-consumer protocol 



 
 

In order to illustrate the concepts presented 
above, observe the Statecharts-based specification 
of a producer – consumer  protocol showned in 
Figure 1. In this example there are six 
synchronizing transitions:  (W1, a1 [not in B.2], 
T1), (T1,  p1/inc, W1), (W2,  a2 [not in B.0], T2), 
(B.2, dec, B.1), (B.1, dec, B.0), (B.0, inc, B.1), 
(B.1, inc, B.2).  
The independent transitions are (T1,  f1, F1), (F1, c1 
, W1), (T2,  f2, F2) , (F2, c2, W2), (T2, p2, W2). 

Matrix representation of the transition descriptor 

Any Finite State Machine may be written as a 
boolean matrix.. In such a matrix, M |state| x |state| , 
the lines are the source states, the columns the 
target states and the elements may be 1 if there is 
a transition (S, e, S’), where S and S’ are states of 
the machine and e a transition from S to S’, and 0 
otherwise. For the component M1 shown in Figure 
1, which comprises the transitions (W1, a1 [not in 
B.2], T1), (T1, p1/inc, W1), (T1,  f1, F1), (F1, c1 , W1) 
the corresponding matrix is shown in Figure 2. 

Figure 2. Boolean Matrix of the Component M1 
As synchronizing transitions involve 

communication among components, one single 
matrix representing one component is not enough. 
It is necessary to take into account the behavior of 
other components related to such transitions based 
on actions, restrictive conditions (not in state) and 
events that are fired in more than one component. 
Taking as an example, consider the transition 
from W1 to T1 in M1 component. Event a1 is tied 
to a condition (not in state) directly related to the 
behavior in the B component. How to represent 
this dependence in a matrix form? 

M1 component is represented by the states that 
are involved in the transition, i.e., W1 and T1 (2 x 
2 matrix is enough). This means that states that 
are not related in the transition are not necessary 

to be represented or are represented by the identity 
matrix. Matrix representing B component is 
described as an identity matrix except the line 
(column) corresponding to the state mentioned in 
the condition is assigned to zero. The algebraic 
expression of the matrices representing the 
synchronizing transition of the system as a whole 
is shown in Figure 3 as a Kronecker product of the 
component matrices.  

The Kronecker (or tensor) product [Eisele and 
Mason, 1970] is suitable because of the difference 
among the matrix dimension.  

The result of the product, illustrated in figure 
4, is also a boolean matrix named, here, transition 
descriptor.  

 

Figure 4. (W1,a1 [not in B.2],T1)  
transition descriptor 

 
The lines and columns of the descriptor 

represents a configuration, the state of the system 
state as a whole, as (W1, B.0, W2), (W1, B.0, T2), 
etc.. and the elements may value 1 whenever there 
are a transition from the configuration in line to 
the configuration in the column and 0 otherwise.  
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Figure 3.   Transition Descriptor of the synchronizing transition (W1, a1 [not in B.2],T1).  

Reduced State Machine 

The complete representation of the system 
behavior only considering the communication 
aspects, e.g., the synchronizing transitions, is 
obtained by adding the transition descriptors as a 
scalar matrix sum. The elements of the resulting 
matrix correspond to the transitions from 
configuration to configuration, so it represents the 
equivalent FSM for the unfolded Statecharts 
specification only considering the 
intercommunication features. An algorithmic 
conversion from a Statechart-based specification 
to a  finite state machine is given in [Vijaykumar, 
1999] and [Vijaykumar et al, 2002]. However, the 
presented solution through transition matrix 
appears to be more precise and one may find more 
efficient algorithms to store and tour the 
specification as they are highly sparse matrices 
[Fernandes, 1998] [Ciardo, 2001].  

To automatically generate test case from the 
resulting FSM comprising the synchronization  
components of the protocol Statecharts-based 
specification, it is intended to use the Condata. 
This available tool is able to extract test cases 
based on the tour transition method.  

4. Comments and Future Plans  

A strategy to automatically generate test cases 
to a Statecharts-based specification considering 
the synchronization aspects of the system 
behavior is presented. In fact, the proposed 
approach needs to be tested. There are still some 
problems to be solve while generating test cases 
with ConData from the resulting matrix with the 
synchronizing transitions. Some of them are: to 
guarantee that the resulting machine is a strongly 
connected graph and that the initial state belongs 
to the resulting machine. Moreover, it is clear that 
some configurations will not be a part of the 
resulting matrix, in other words, the behavior of 
the protocol specification is a partial one, so 
investigations need to be done in order to evaluate 

the efficiency of the test case suite generated by 
the proposed method. 

In order to evaluated the efficiency of the 
test case suite generated to the reduced machine, 
the following experiment will be taken: (i) the 
example of the Statecharts specification of 
Producer x Consumer will be implemented in C; 
(ii) generate a set of interface mutants based on 
the work of [Delamaro, 1997], (iii) generate the 
tests based on the complete specification; (iv) 
generate the tests based on the reduced machine; 
(v) apply the test of the (iv) and (iii) over the 
mutants; (vi) compare the power of fault detection 
of the tests generated in (iv).  
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